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DAY 2: Real-time TDDFT beyond the linear regime:
Ultrafast laser-driven spin dynamics in solids




First experiment on ultrafast laser induced demagnetization
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First experiment on ultrafast laser induced demagnetization
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Demagnetization in less than 100 fs has been demonstrated experimentally



Non-collinear-Spin TDDFET with Spin-Orbit-Coupling
(weakly relativistic limit of relativistic TDDFET)
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Non-collinear-Spin TDDFET with Spin-Orbit-Coupling
(weakly relativistic limit of relativistic TDDFET)
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Quantity of prime interest:
vector field of spin magnetization
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Aspects of the numerical implementation

* Wauve length of laser in the visible regime
(very large compared to unit cell)

— Dipole approximation is made
(i.e. electric field of laser is assumed to be spatially constant)

) Laser can be described by a purely time-dependent vector potential
* Periodicity of the TDKS Hamiltonian is preserved!

* Implementation in ELK code (FLAPW) (http://elk.sourceforge.net/)




Aspects of the numerical implementation

* Wauve length of laser in the visible regime
(very large compared to unit cell)

) Dipole approximation is made
(i.e. electric field of laser is assumed to be spatially constant)

) Laser can be described by a purely time-dependent vector potential
* Periodicity of the TDKS Hamiltonian is preserved!

* Implementation in ELK code (FLAPW) (http://elk.sourceforge.net/)

ELK = Electrons in K-Space
or
Electrons in Kay's Space

Kay Dewhurst Sangeeta Sharma
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Demagnetisation in Fe, Co and Ni
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Analysis of the results
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Exact equation of motion
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Exact equation of motion
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Exact equation of motion

%mz(r,t):
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Dynamics of total moment: Integrate over the unit cell



Exact equation of motion for total moment
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Exact equation of motion for total moment
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Exact equation of motion for total moment

5 i Global torque
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theorem)
1

+: d3r2—cz{§< : [VVS (r,t)x ], (r, t)] ~ - [VVS (r,t)xj, (r, t)]} SOC

—: d’r{Vv-j,(r,t)} =0

3(1', t) — <6 ® 3(1’)> spin current tensor

SOC is the only term which can change the total moment!
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Demagnetization occurs in two steps:

- Initial excitation by laser moves magnetization from atomic region
into interstitial region. Total Moment is basically conserved
during this phase.

- Spin-Orbit term drives demagnetization of the more localized
electrons until stabilization at lower moment is achieved

- This is a local mechanism, hence occurs in this form in essentially
all systems, e.g. magnetic clusters (Sanvito group, Dublin) or
magnetic mono-layer / few-layer systems

K. Krieger, J.K. Dewhurst, P. Elliott, S. Sharma, E.K.U. Gross,
JCTC 11, 4870 (2015).

K. Krieger, P. Elliott, T. Miiller, N. Singh, J. K. Dewhurst,
E.K.U. Gross, S. Sharma, J. Phys. Cond. Matter 29, 224001 (2017).

* V. Shokeen, M. Sanchez Piaia, J.Y. Bigot, T. Mueller, P. Elliott, J.K. Dewhurst,
S. Sharma, E.K.U. Gross, Phys. Rev. Lett. 119, 107203 (2017).



Beyond 3D bulk
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Experimental confirmation:

Spin Flips versus Spin Transport in Nonthermal Electrons Excited by Ultrashort
Optical Pulses in Transition Metals,

V. Shokeen, M. Sanchez Piaia, J.-Y. Bigot, T. Mueller, P. Elliott, J.K. Dewhurst,
S. Sharma, E. K. U. Gross, Phys. Rev. Lett. 119, 107203 (2017).

Review article:

Time-Dependent Density Functional Theory for Spin Dynamics,

P. Elliott, M. Stamenova, J. Simoni, S. Sharma, S. Sanvito, and E.K.U. Gross,
in: Handbook of Materials Modeling, W. Andreoni, S. Yip eds, Springer
(2020), p. 841



xc-functional in SDFT




simple magnets
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Construction of a novel xc functional
for non-collinear magnetism

Enforce property of the exact xc functional:
exact . exact
B (r)—VxAxC (r)

K. Capelle, E.K.U. Gross, PRL 78, 1872 (1997)

By virtue of Helmholtz’ theorem, any vector field can be
decomposed as:

B (1) =V x A (r)+Ve(r)

Enforce exact property by subtracting source term!




Explicit construction:

S. Sharma, E.K.U. Gross, A. Sanna, K. Dewhurst, JCTC14, 1247 (2018)

V¢(r)=42V-B." (r)
~ ]

B, (r)=B." (r) —EV¢(1’)

BiF (r) = Séxc (r)

Scaling factor, s, only depends on underlying functional
(GGA/LSDA), nothing else. (s = 1.14 for GGASs)




Source-free LSDA

Vector field B,. for BaFe,As, on a plane containing the Fe atoms. Colors indicate the
magnitude of B,. while arrows show the direction. The black field lines originate from a

regular grid in the plane and follow the vector field B,.. The removal of the source term
leads to an enhancement ofnon-collinearity.
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(a) (b)

Ni bulk Co bulk
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(a) Middle panel shows the total moment (red) and the bottom panel x (green), y (brown)
and z (blue) projected moments for bulk Ni as a function of time. Dashed lines are the
results obtained using the ALSDA and full lines the results obtained using the source-free

functional. (b) The same as (a) but for bulk Co.
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Left panel: Local xc torque for bulk Ni in (111) plane. Right panel: Local xc torque for 3ML
Ni@5ML Pt in the (110) plane. The arrows indicate the direction and colors the
magnitude.



Optical intersublattice spin transfer
(OISTR)

P. Elliott, T. Mueller, K. Dewhurst, S. Sharma, E.K.U.Gross,
Scientific Reports 6, 38911 (2016)

K. Dewhurst, P. Elliott, S. Shallcross, E.K.U. Gross, S. Sharma,
Nano Lett. 18, 1842 (2018)

OISTR was first predicted with TDDFT and later found experimentally
(Aeschlimann group, Kaiserslautern, 2018)
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Global moment |M(t)| nearly preserved. Local moments change.

Laser parameters: w=2.72 ¢V, a FWHM of 2.42 fs, and fluence of
93.5 mJ/cm2, giving a peak intensity of 1 x 1014 W/cm?2.
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Mn;Ga (ferri-magnet)

Ga
Mn

TDDFT prediction for Mn;Ga: ferri — ferro transition within 4 fs
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Ultrafast optically induced spin transfer

in ferromagnetic alloys

M. Hofherr'?, S. Hauser’, J. K. Dewhurst®, P. Tengdin®, S. Sakshath’, H. T. Nembach*>,
S.T. Weber', J. M. Shaw?, T. J. Silva’, H. C. Kapteyn*, M. Cinchetti®, B. Rethfeld', M. M. Murnane®*,
D. Steil’, B. Stadtmiiller’?, S. Sharma®, M. Aeschlimann’, S. Mathias”*

The vision of using light to manipulate electronic and spin excitations in materials on their fundamental time and
length scales requires new approaches in experiment and theory to observe and understand these excitations.

Copyright © 2020

The Authors, some
rights reserved;
exclusive licensee
American Association
for the Advancement
of Science. No claim to
original U.S. Government
Works. Distributed
under a Creative
Commons Attribution
NonCommerecial
License 4.0 (CC BY-NC).

The ultimate speed limit for all-optical manipulation requires control schemes for which the electronic or magnetic
subsystems of the materials are coherently manipulated on the time scale of the laser excitation pulse. In our
work, we provide experimental evidence of such a direct, ultrafast, and coherent spin transfer between two mag-
netic subsystems of an alloy of Fe and Ni. Our experimental findings are fully supported by time-dependent den-
sity functional theory simulations and, hence, suggest the possibility of coherently controlling spin dynamics on
subfemtosecond time scales, i.e., the birth of the research area of attomagnetism.

INTRODUCTION

Next-generation quantum materials will make it possible to surpass
the speed and efficiency limits of current devices to generate faster,
smaller, and more energy-efficient technological implementations (1-8).
A promising approach to enhance data processing speed is to use ever
shorter external stimuli for the manipulation and control of the state
of matter. In this context, light represents the fastest means to alter
the state of a material since laser pulses can now be generated with
extremely short temporal duration down to a few tens of attoseconds.
Visible lasers can deliver pulses with few-femtosecond durations that
can be used to excite matter, while attosecond pulses can be generated
in the extreme ultraviolet (EUV) and soft x-ray regions to probe the
resulting dynamics (9-12). When combined with advanced spectros-

HHHHHH thnnn canr Lokt nnvivncan ava anahlicna cacninwnhacaisra sriavira Seda

material results in a nonequilibrium hot charge distribution, which
subsequently triggers a series of cascaded incoherent secondary
processes including transport, (spin-flip) scattering, and quasiparticle
generation, ultimately leading to macroscopic demagnetization of
the magnetic material within <500 fs (18-22).

The fastest manipulation of the magnetic state should occur,
however, through the direct (possibly coherent) interaction between
the spin system of the material and the light field itself (23-25).
While the first experiments have provided indications that such a
direct manipulation scheme might be possible (26-29), to our
knowledge, only one experimental study on magnetic metallic systems
to date has focused on this challenging aspect of coherent ultrafast
magnetism induced by femtosecond laser pulses (24). One particu-
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What’s missing:

* Include relaxation processes due to el-el scattering
- in principle contained in TDDFT,
- but not with adiabatic xc functionals
- need xc functional approximations with memory or CDFT functional

* Include relaxation processes due to electron-nuclear interaction
- decoherence

* Include relaxation due to radiative effects
- simultaneous propagation of TDKS and Maxwell equations

* Include dipole-dipole interaction to describe motion of domains
- construct approximate xc functionals associated with dipole
dipole interaction



Sangeeta Sharma Florian Eich
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