Time-dependent density functional theory

E.K.U. Gross

Fritz Haber Center for Molecular Dynamics

האוניברםיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM الجامعة العبرية في اورشليم القدس

DAY 2: Real-time TDDFT beyond the linear regime: Ultrafast laser-driven spin dynamics in solids

First experiment on ultrafast laser induced demagnetization

Beaurepaire et al, PRL 76, 4250 (1996)

First experiment on ultrafast laser induced demagnetization

Beaurepaire et al, PRL 76, 4250 (1996)
Demagnetization in less than 100 fs has been demonstrated experimentally

Non-collinear-Spin TDDFT with Spin-Orbit-Coupling (weakly relativistic limit of relativistic TDDFT)

$$
\begin{aligned}
i \frac{\partial}{\partial t} \varphi_{k}(r, t)= & {\left[\frac{1}{2}\left(-i \nabla-A_{\text {laser }}(t)\right)^{2}+v_{S}[\rho, \boldsymbol{m}](r, t)-\mu_{B} \sigma \cdot B_{S}[\rho, \boldsymbol{m}](r, t)\right.} \\
& \left.+\frac{\mu_{B}}{2 c} \sigma \cdot\left(\nabla v_{S}[\rho, \boldsymbol{m}](r, t)\right) \times(-i \nabla)\right] \varphi_{k}(r, t)
\end{aligned}
$$

$$
\begin{aligned}
& v_{S}[\rho, \boldsymbol{m}](r, t)=v_{\text {lattice }}(r)+\int \frac{\rho\left(r^{\prime}, t\right)}{\left|r-r^{\prime}\right|} d^{3} r^{\prime}+v_{x c}[\rho, \boldsymbol{m}](r, t) \\
& B_{S}[\rho, \boldsymbol{m}](r, t)=B_{\text {external }}(r, t)+B_{x c}[\rho, \boldsymbol{m}](r, t)
\end{aligned}
$$

where $\varphi_{k}(r, t)$ are Pauli spinors

Non-collinear-Spin TDDFT with Spin-Orbit-Coupling (weakly relativistic limit of relativistic TDDFT)

$$
\begin{aligned}
i \frac{\partial}{\partial t} \varphi_{k}(r, t)= & {\left[\frac{1}{2}\left(-i \nabla-A_{\text {laser }}(t)\right)^{2}+v_{S}[\rho, \boldsymbol{m}](r, t)-\mu_{B} \sigma \cdot B_{S}[\rho, \boldsymbol{m}](r, t)\right.} \\
& \left.+\frac{\mu_{B}}{2 c} \sigma \cdot\left(\nabla v_{S}[\rho, \boldsymbol{m}](r, t)\right) \times(-i \nabla)\right] \varphi_{k}(r, t)
\end{aligned}
$$

$$
\begin{aligned}
& v_{S}[\rho, \boldsymbol{m}](r, t)=v_{\text {lattice }}(r)+\int \frac{\rho\left(r^{\prime}, t\right)}{\left|r-r^{\prime}\right|} d^{3} r^{\prime}+v_{x c}\left[\begin{array}{l}
\rho, \boldsymbol{m}](r, t) \\
B_{S}[\rho, \boldsymbol{m}](r, t)=B_{\text {external }}(r, t)+B_{x c}[\rho, \boldsymbol{m}](r, t) \begin{array}{l}
\text { Universal } \\
\text { functionals } \\
\text { of } \rho \text { and } \mathbf{m}
\end{array}
\end{array}\right.
\end{aligned}
$$

where $\varphi_{k}(r, t)$ are Pauli spinors

$$
n(r, t)=\sum_{j=1}^{N} \varphi_{j}^{\dagger}(r, t) \varphi_{j}(r, t)
$$

$$
\overline{\mathbf{m}}(r, t)=\sum_{j=1}^{N} \varphi_{j}^{\dagger}(r, t) \bar{\sigma} \varphi_{j}(r, t)
$$

Quantity of prime interest: vector field of spin magnetization

Quantity of prime interest: vector field of spin magnetization

Cr monolayer in ground state

Aspects of the numerical implementation

- Wave length of laser in the visible regime (very large compared to unit cell)

Dipole approximation is made
(i.e. electric field of laser is assumed to be spatially constant)
\longrightarrow Laser can be described by a purely time-dependent vector potential

- Periodicity of the TDKS Hamiltonian is preserved!
- Implementation in ELK code (FLAPW) (http://elk.sourceforge.net/)

Aspects of the numerical implementation

- Wave length of laser in the visible regime (very large compared to unit cell)
\square
Dipole approximation is made
(i.e. electric field of laser is assumed to be spatially constant)
\longrightarrow Laser can be described by a purely time-dependent vector potential
- Periodicity of the TDKS Hamiltonian is preserved!
- Implementation in ELK code (FLAPW) (http://elk.sourceforge.net/)

Kay Dewhurst
$\begin{aligned} \text { ELK }= & \underline{\text { Electrons in } \underline{K} \text {-Space }} \\ & \text { or } \\ & \underline{\text { Electrons in Kay's Space }}\end{aligned}$

Sangeeta Sharma

Aspects of the numerical implementation

- Wave length of laser in the visible regime (very large compared to unit cell)
\longmapsto Dipole approximation is made (i.e. electric field of laser is assumed to be spatially constant)
\longmapsto Laser can be described by a purely time-dependent vector potential
- Periodicity of the TDKS Hamiltonian is preserved!
- Implementation in ELK code (FLAPW) (http://elk.sourceforge.net/)

Demagnetisation in Fe , Co and Ni

K. Krieger, K. Dewhurst, P. Elliott, S. Sharma, E.K.U.G., JCTC 11, 4870 (2015)

Analysis of the results

Calculation without spin-orbit coupling

components of spin moment

Exact equation of motion

$$
\begin{aligned}
& \frac{\partial}{\partial \mathrm{t}} \mathrm{~m}_{\mathrm{z}}(\mathrm{r}, \mathrm{t})=\frac{\mathrm{i}}{\hbar}\left\langle\Phi_{\mathrm{KS}}^{\mathrm{det}}(\mathrm{t})\right|\left[\hat{\mathrm{H}}_{\mathrm{KS}}, \hat{\mathrm{~m}}_{\mathrm{z}}(\mathrm{r})\right]\left|\Phi_{\mathrm{KS}}^{\mathrm{det}}(\mathrm{t})\right\rangle \\
& \quad=\left\{\mathrm{m}_{\mathrm{x}}(\mathrm{r}, \mathrm{t}) \mathrm{B}_{\mathrm{xc}, \mathrm{y}}(\mathrm{rt})-\mathrm{m}_{\mathrm{y}}(\mathrm{r}, \mathrm{t}) \mathrm{B}_{\mathrm{xc}, \mathrm{x}}(\mathrm{rt})\right\} \\
& \quad+\frac{1}{2 \mathrm{c}^{2}}\left\{\hat{\mathrm{x}} \cdot\left[\nabla \mathrm{v}_{\mathrm{s}}(\mathrm{r}, \mathrm{t}) \times \mathrm{j}_{\mathrm{y}}(\mathrm{r}, \mathrm{t})\right]-\hat{\mathrm{y}} \cdot\left[\nabla \mathrm{v}_{\mathrm{s}}(\mathrm{r}, \mathrm{t}) \times \mathrm{j}_{\mathrm{z}}(\mathrm{r}, \mathrm{t})\right]\right\} \\
& \\
& -\nabla \cdot \mathrm{j}_{\mathrm{z}}(\mathrm{r}, \mathrm{t})
\end{aligned}
$$

$$
\overrightarrow{\mathrm{j}}(\mathrm{r}, \mathrm{t})=\langle\hat{\sigma} \otimes \hat{\mathrm{j}}(\mathrm{r})\rangle \quad \text { spin current tensor }
$$

Exact equation of motion

$$
\begin{aligned}
& \frac{\partial}{\partial \mathrm{t}} \mathrm{~m}_{\mathrm{z}}(\mathrm{r}, \mathrm{t})=\frac{\mathrm{i}}{\hbar}\left\langle\Phi_{\mathrm{KS}}^{\mathrm{det}}(\mathrm{t})\right|\left[\hat{\mathrm{H}}_{\mathrm{KS}}, \hat{\mathrm{~m}}_{\mathrm{z}}(\mathrm{r})\right]\left|\Phi_{\mathrm{KS}}^{\text {det }}(\mathrm{t})\right\rangle \begin{array}{l}
\text { local spin torque } \\
\left(\mathrm{m} \mathrm{x}_{\mathrm{Bc}}\right)_{\mathrm{z}}
\end{array} \\
& \quad=\left\{\mathrm{m}_{\mathrm{x}}(\mathrm{r}, \mathrm{t}) \mathrm{B}_{\mathrm{xc}, \mathrm{y}}(\mathrm{rt})-\mathrm{m}_{\mathrm{y}}(\mathrm{r}, \mathrm{t}) \mathrm{B}_{\mathrm{xc}, \mathrm{x}}(\mathrm{rt})\right\} \\
& \quad+\frac{1}{2 \mathrm{c}^{2}}\left\{\hat{\mathrm{x}} \cdot\left[\nabla \mathrm{v}_{\mathrm{s}}(\mathrm{r}, \mathrm{t}) \times \mathrm{j}_{\mathrm{y}}(\mathrm{r}, \mathrm{t})\right]-\hat{\mathrm{y}} \cdot\left[\nabla \mathrm{v}_{\mathrm{s}}(\mathrm{r}, \mathrm{t}) \times \mathrm{j}_{\mathrm{z}}(\mathrm{r}, \mathrm{t})\right]\right\} \text { SOC } \\
& \\
& -\nabla \cdot \mathrm{j}_{\mathrm{z}}(\mathrm{r}, \mathrm{t}) \quad \text { continuity" }
\end{aligned}
$$

$$
\ddot{\mathrm{j}}(\mathrm{r}, \mathrm{t})=\langle\hat{\sigma} \otimes \hat{\mathrm{j}}(\mathrm{r})\rangle \text { spin current tensor }
$$

Exact equation of motion

$$
\begin{aligned}
& \frac{\partial}{\partial \mathrm{t}} \mathrm{~m}_{\mathrm{z}}(\mathrm{r}, \mathrm{t})=\frac{\mathrm{i}}{\hbar}\left\langle\Phi_{\mathrm{KS}}^{\mathrm{det}}(\mathrm{t})\right|\left[\hat{\mathrm{H}}_{\mathrm{KS}}, \hat{\mathrm{~m}}_{\mathrm{z}}(\mathrm{r})\right]\left|\Phi_{\mathrm{KS}}^{\text {det }}(\mathrm{t})\right\rangle \begin{array}{l}
\text { local spin torque } \\
\left(\mathrm{m} \mathrm{x}_{\mathrm{xc}}\right)_{\mathrm{z}}
\end{array} \\
& \quad=\left\{\mathrm{m}_{\mathrm{x}}(\mathrm{r}, \mathrm{t}) \mathrm{B}_{\mathrm{xc}, \mathrm{y}}(\mathrm{rt})-\mathrm{m}_{\mathrm{y}}(\mathrm{r}, \mathrm{t}) \mathrm{B}_{\mathrm{xc}, \mathrm{x}}(\mathrm{rt})\right\} \\
& \quad+\frac{1}{2 \mathrm{c}^{2}}\left\{\hat{\mathrm{x}} \cdot\left[\nabla \mathrm{v}_{\mathrm{s}}(\mathrm{r}, \mathrm{t}) \times \mathrm{j}_{\mathrm{y}}(\mathrm{r}, \mathrm{t})\right]-\hat{\mathrm{y}} \cdot\left[\nabla \mathrm{v}_{\mathrm{s}}(\mathrm{r}, \mathrm{t}) \times \mathrm{j}_{\mathrm{z}}(\mathrm{r}, \mathrm{t})\right]\right\} \text { SOC } \\
& -\nabla \cdot \mathrm{j}_{\mathrm{z}}(\mathrm{r}, \mathrm{t}) \quad \text { "continuity" } \\
& \quad \mathrm{j}(\mathrm{r}, \mathrm{t})=\langle\hat{\sigma} \otimes \hat{\mathrm{j}}(\mathrm{r})\rangle \text { spin current tensor }
\end{aligned}
$$

Dynamics of total moment: Integrate over the unit cell

Exact equation of motion for total moment

$$
\begin{aligned}
& \frac{\partial}{\partial \mathrm{t}} \mathrm{M}_{\mathrm{z}}(\mathrm{t})=\frac{\mathrm{i}}{\hbar} \int \mathrm{~d}^{3} \mathrm{r}\left\langle\Phi_{\mathrm{KS}}^{\mathrm{det}}(\mathrm{t})\right|\left[\hat{\mathrm{H}}_{\mathrm{KS}}, \hat{\mathrm{~m}}_{\mathrm{z}}(\mathrm{r})\right]\left|\Phi_{\mathrm{KS}}^{\mathrm{det}}(\mathrm{t})\right\rangle \\
& \quad=\int \mathrm{d}^{3} \mathrm{r}\left\{\mathrm{~m}_{\mathrm{x}}(\mathrm{r}, \mathrm{t}) \mathrm{B}_{\mathrm{xc}, \mathrm{y}}(\mathrm{rt})-\mathrm{m}_{\mathrm{y}}(\mathrm{r}, \mathrm{t}) \mathrm{B}_{\mathrm{xc}, \mathrm{x}}(\mathrm{rt})\right\} \\
& \quad+\int \mathrm{d}^{3} \mathrm{r} \frac{1}{2 \mathrm{c}^{2}}\left\{\hat{\mathrm{x}} \cdot\left[\nabla \mathrm{v}_{\mathrm{s}}(\mathrm{r}, \mathrm{t}) \times \mathrm{j}_{\mathrm{y}}(\mathrm{r}, \mathrm{t})\right]-\hat{\mathrm{y}} \cdot\left[\nabla \mathrm{v}_{\mathrm{s}}(\mathrm{r}, \mathrm{t}) \times \mathrm{j}_{\mathrm{z}}(\mathrm{r}, \mathrm{t})\right]\right\} \text { SOC } \\
& \quad-\int \mathrm{d}^{3} \mathrm{r}\left\{\nabla \cdot \mathrm{j}_{\mathrm{z}}(\mathrm{r}, \mathrm{t})\right\}=\mathbf{0} \\
& \quad \ddot{\mathrm{j}}(\mathrm{r}, \mathrm{t})=\langle\hat{\sigma} \otimes \hat{\mathrm{j}}(\mathrm{r})\rangle \text { spin current tensor }
\end{aligned}
$$

Exact equation of motion for total moment

$$
\begin{aligned}
& \frac{\partial}{\partial \mathrm{t}} \mathrm{M}_{\mathrm{z}}(\mathrm{t})=\frac{\mathrm{i}}{\hbar} \int \mathrm{~d}^{3} \mathrm{r}\left\langle\Phi_{\mathrm{KS}}^{\mathrm{det}}(\mathrm{t})\right|\left[\hat{\mathrm{H}}_{\mathrm{KS}}, \hat{\mathrm{~m}}_{\mathrm{z}}(\mathrm{r})\right]\left|\Phi_{\mathrm{KS}}^{\mathrm{det}}(\mathrm{t})\right\rangle \\
& =\int \mathrm{d}^{3} \mathrm{r}\left\{\mathrm{~m}_{\mathrm{x}}(\mathrm{r}, \mathrm{t}) \mathrm{B}_{\mathrm{xc}, \mathrm{y}}(\mathrm{rt})-\mathrm{m}_{\mathrm{y}}(\mathrm{r}, \mathrm{t}) \mathrm{B}_{\mathrm{xc}, \mathrm{x}}(\mathrm{rt})\right\} \\
& +\int \mathrm{d}^{3} \mathrm{r} \frac{1}{2 \mathrm{c}^{\mathrm{c}^{2}}}\left\{\hat{\mathrm{x}} \cdot\left[\nabla \mathrm{v}_{\mathrm{s}}(\mathrm{r}, \mathrm{t}) \times \mathrm{j}_{\mathrm{y}}(\mathrm{r}, \mathrm{t})\right]-\hat{\mathrm{y}} \cdot\left[\nabla \mathrm{v}_{\mathrm{s}}(\mathrm{r}, \mathrm{t}) \times \mathrm{j}_{\mathrm{z}}(\mathrm{r}, \mathrm{t})\right]\right\} \text { SOC } \\
& -\int d^{3} r\left\{\nabla \cdot j_{z}(r, t)\right\}=0 \\
& \ddot{\mathrm{j}}(\mathrm{r}, \mathrm{t})=\langle\hat{\sigma} \otimes \hat{\mathrm{j}}(\mathrm{r})\rangle \text { spin current tensor }
\end{aligned}
$$

Exact equation of motion for total moment

$$
\begin{aligned}
& \frac{\partial}{\partial \mathrm{t}} \mathrm{M}_{\mathrm{z}}(\mathrm{t})=\frac{\mathrm{i}}{\hbar} \int \mathrm{~d}^{3} \mathrm{r}\left\langle\Phi_{\mathrm{KS}}^{\mathrm{det}}(\mathrm{t})\right|\left[\hat{\mathrm{H}}_{\mathrm{KS}}, \hat{\mathrm{~m}}_{\mathrm{z}}(\mathrm{r})\right]\left|\Phi_{\mathrm{KS}}^{\mathrm{det}}(\mathrm{t})\right\rangle \\
& \text { Global torque } \\
& \text { exerted by } \mathrm{B}_{\mathrm{xc}} \\
& \text { = } 0 \text { (zero } \\
& =\int d^{3} r\left\{m_{x}(r, t) B_{x c, y}(r t)-m_{y}(r, t) B_{x c, x}(r t)\right\} \\
& +\int \mathrm{d}^{3} \mathrm{r} \frac{1}{2 \mathrm{c}^{2}}\left\{\hat{\mathrm{x}} \cdot\left[\nabla \mathrm{v}_{\mathrm{s}}(\mathrm{r}, \mathrm{t}) \times \mathrm{j}_{\mathrm{y}}(\mathrm{r}, \mathrm{t})\right]-\hat{\mathrm{y}} \cdot\left[\nabla \mathrm{v}_{\mathrm{s}}(\mathrm{r}, \mathrm{t}) \times \mathrm{j}_{\mathrm{z}}(\mathrm{r}, \mathrm{t})\right]\right\} \text { SOC } \\
& -\int d^{3} r\left\{\nabla \cdot j_{z}(r, t)\right\}=0 \\
& \overrightarrow{\mathrm{j}}(\mathrm{r}, \mathrm{t})=\langle\hat{\sigma} \otimes \hat{\mathrm{j}}(\mathrm{r})\rangle \text { spin current tensor }
\end{aligned}
$$

SOC is the only term which can change the total moment!

Demagnetization occurs in two steps:

- Initial excitation by laser moves magnetization from atomic region into interstitial region. Total Moment is basically conserved during this phase.
- Spin-Orbit term drives demagnetization of the more localized electrons until stabilization at lower moment is achieved
- This is a local mechanism, hence occurs in this form in essentially all systems, e.g. magnetic clusters (Sanvito group, Dublin) or magnetic mono-layer / few-layer systems
- K. Krieger, J.K. Dewhurst, P. Elliott, S. Sharma, E.K.U. Gross, JCTC 11, 4870 (2015).
- K. Krieger, P. Elliott, T. Müller, N. Singh, J. K. Dewhurst, E.K.U. Gross, S. Sharma, J. Phys. Cond. Matter 29, 224001 (2017).
- V. Shokeen, M. Sanchez Piaia, J.Y. Bigot, T. Mueller, P. Elliott, J.K. Dewhurst, S. Sharma, E.K.U. Gross, Phys. Rev. Lett. 119, 107203 (2017).

Beyond 3D bulk

Time: 0.0 fs

Cr monolayer

SPIN CURRENT

Experimental confirmation:

Spin Flips versus Spin Transport in Nonthermal Electrons Excited by Ultrashort Optical Pulses in Transition Metals,
V. Shokeen, M. Sanchez Piaia, J.-Y. Bigot, T. Mueller, P. Elliott, J.K. Dewhurst, S. Sharma, E. K. U. Gross, Phys. Rev. Lett. 119, 107203 (2017).

Review article:

Time-Dependent Density Functional Theory for Spin Dynamics, P. Elliott, M. Stamenova, J. Simoni, S. Sharma, S. Sanvito, and E.K.U. Gross, in: Handbook of Materials Modeling, W. Andreoni, S. Yip eds, Springer (2020), p. 841

xc-functional in SDFT

Construction of a novel xc functional for non-collinear magnetism

Enforce property of the exact xc functional:

$$
\boldsymbol{B}_{x c}^{\text {exact }}(\boldsymbol{r})=\nabla \times A_{x c}^{\text {exact }}(\boldsymbol{r})
$$

K. Capelle, E.K.U. Gross, PRL 78, 1872 (1997)

By virtue of Helmholtz' theorem, any vector field can be decomposed as:
$\boldsymbol{B}_{x c}^{G G A}(\boldsymbol{r})=\nabla \times A_{x c}(\boldsymbol{r})+\nabla \phi(r)$
Enforce exact property by subtracting source term!

Explicit construction:

S. Sharma, E.K.U. Gross, A. Sanna, K. Dewhurst, JCTC14, 1247 (2018)

$$
\begin{aligned}
& \nabla^{2} \phi(\boldsymbol{r})=4 \pi \nabla \cdot B_{x c}^{G G A}(\boldsymbol{r}) \\
& \tilde{B}_{x c}(\boldsymbol{r}) \cong B_{x c}^{G G A}(\boldsymbol{r})-\frac{1}{4 \pi} \nabla \phi(\boldsymbol{r}) \\
& B_{x c}^{S F}(\boldsymbol{r})=s \tilde{B}_{x c}(\boldsymbol{r})
\end{aligned}
$$

Scaling factor, s, only depends on underlying functional (GGA/LSDA), nothing else. ($s=1.14$ for GGAs)

LSDA

Source-free LSDA

Vector field B_{xc} for $\mathrm{BaFe}_{2} \mathrm{As}_{2}$ on a plane containing the Fe atoms. Colors indicate the magnitude of B_{xc} while arrows show the direction. The black field lines originate from a regular grid in the plane and follow the vector field $B_{x c}$. The removal of the source term leads to an enhancement ofnon-collinearity.

(a) Middle panel shows the total moment (red) and the bottom panel x (green), y (brown) and z (blue) projected moments for bulk Ni as a function of time. Dashed lines are the results obtained using the ALSDA and full lines the results obtained using the source-free functional. (b) The same as (a) but for bulk Co.

Left panel: Local xc torque for bulk Ni in (111) plane. Right panel: Local xc torque for 3 ML $\mathrm{Ni} @ 5 \mathrm{ML}$ Pt in the (110) plane. The arrows indicate the direction and colors the magnitude.

Optical intersublattice spin transfer (OISTR)

P. Elliott, T. Mueller, K. Dewhurst, S. Sharma, E.K.U.Gross, Scientific Reports 6, 38911 (2016)
K. Dewhurst, P. Elliott, S. Shallcross, E.K.U. Gross, S. Sharma, Nano Lett. 18, 1842 (2018)

OISTR was first predicted with TDDFT and later found experimentally (Aeschlimann group, Kaiserslautern, 2018)

Global moment $|\mathbf{M}(t)|$ nearly preserved. Local moments change.

Laser parameters: $\omega=2.72 \mathrm{eV}$, a FWHM of 2.42 fs , and fluence of $93.5 \mathrm{~mJ} / \mathrm{cm} 2$, giving a peak intensity of $1 \times 1014 \mathrm{~W} / \mathrm{cm} 2$.

NiMnSb

$\mathrm{Mn}_{3} \mathrm{Ga}$ (ferri-magnet)

Ga
 Mn

TDDFT prediction for $\mathbf{M n}_{3} \mathbf{G a}:$ ferri \rightarrow ferro transition within $4 \mathbf{f s}$

Ultrafast optically induced spin transfer in ferromagnetic alloys

Abstract

M. Hofherr ${ }^{1,2}$, S. Häuser ${ }^{1}$, J. K. Dewhurst ${ }^{3}$, P. Tengdin ${ }^{4}$, S. Sakshath ${ }^{1}$, H. T. Nembach ${ }^{4,5}$, S. T. Weber ${ }^{1}$, J. M. Shaw ${ }^{5}$, T. J. Silva ${ }^{5}$, H. C. Kapteyn ${ }^{4}$, M. Cinchetti ${ }^{6}$, B. Rethfeld ${ }^{1}$, M. M. Murnane ${ }^{4}$, D. Steil ${ }^{7}$, B. Stadtmüller ${ }^{1,2}$, S. Sharma ${ }^{8}$, M. Aeschlimann ${ }^{1}$, S. Mathias ${ }^{7}{ }^{*}$

The vision of using light to manipulate electronic and spin excitations in materials on their fundamental time and length scales requires new approaches in experiment and theory to observe and understand these excitations. The ultimate speed limit for all-optical manipulation requires control schemes for which the electronic or magnetic subsystems of the materials are coherently manipulated on the time scale of the laser excitation pulse. In our work, we provide experimental evidence of such a direct, ultrafast, and coherent spin transfer between two magnetic subsystems of an alloy of Fe and Ni . Our experimental findings are fully supported by time-dependent density functional theory simulations and, hence, suggest the possibility of coherently controlling spin dynamics on subfemtosecond time scales, i.e., the birth of the research area of attomagnetism.

Copyright © 2020

The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC)

INTRODUCTION

Next-generation quantum materials will make it possible to surpass the speed and efficiency limits of current devices to generate faster, smaller, and more energy-efficient technological implementations (1-8). A promising approach to enhance data processing speed is to use ever shorter external stimuli for the manipulation and control of the state of matter. In this context, light represents the fastest means to alter the state of a material since laser pulses can now be generated with extremely short temporal duration down to a few tens of attoseconds. Visible lasers can deliver pulses with few-femtosecond durations that can be used to excite matter, while attosecond pulses can be generated in the extreme ultraviolet (EUV) and soft x-ray regions to probe the resulting dynamics (9-12). When combined with advanced spectros-
material results in a nonequilibrium hot charge distribution, which subsequently triggers a series of cascaded incoherent secondary processes including transport, (spin-flip) scattering, and quasiparticle generation, ultimately leading to macroscopic demagnetization of the magnetic material within <500 fs (18-22).

The fastest manipulation of the magnetic state should occur, however, through the direct (possibly coherent) interaction between the spin system of the material and the light field itself (23-25). While the first experiments have provided indications that such a direct manipulation scheme might be possible (26-29), to our knowledge, only one experimental study on magnetic metallic systems to date has focused on this challenging aspect of coherent ultrafast magnetism induced by femtosecond laser pulses (24). One particu-

Ultrafast optically induced spin transfer in ferromagnetic alloys

M. Hofherr ${ }^{1,2}$, S. Häuser ${ }^{1}$, J. K. Dewhurst ${ }^{3}$, P. Tengdin ${ }^{4}$, S. Sakshath ${ }^{1}$, H. T. Nembach ${ }^{4,5}$,
S. T. Weber ${ }^{1}$, J. M. Shaw ${ }^{5}$, T. J. Silva ${ }^{5}$, H. C. Kapteyn ${ }^{4}$, M. Cinchetti ${ }^{6}$, B. Rethfeld ${ }^{1}$, M. M. Murnane ${ }^{4}$, D. Steil ${ }^{7}$, B. Stadtmüller ${ }^{1,2}$, S. Sharma ${ }^{8}$, M. Aeschlimann ${ }^{1}$, S. Mathias ${ }^{7 *}$
The vision of using light to manipulate electronic and spin excitations in materials on their fundamental time and length scales requires new approaches in experiment and theory to observe and understand these excitations. The ultimate speed limit for all-optical manipulation requires control schemes for which the electronic or magnetic subsystems of the materials are coherently manipulated on the time scale of the laser excitation pulse. In our work, we provide experimental evidence of such a direct, ultrafast, and coherent spin transfer between two magnetic subsystems of an alloy of Fe and Ni . Our experimental findings are fully supported by time-dependent density functional theory simulations and, hence, suggest the possibility of coherently controlling spin dynamics on subfemtosecond time scales, i.e., the birth of the research area of attomagnetism.

Copyright © 2020

The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC)

INTRODUCTION

Next-generation quantum materials will make it possible to surpass the speed and efficiency limits of current devices to generate faster, smaller, and more energy-efficient technological implementations (1-8). A promising approach to enhance data processing speed is to use ever shorter external stimuli for the manipulation and control of the state of matter. In this context, light represents the fastest means to alter the state of a material since laser pulses can now be generated with extremely short temporal duration down to a few tens of attoseconds. Visible lasers can deliver pulses with few-femtosecond durations that can be used to excite matter, while attosecond pulses can be generated in the extreme ultraviolet (EUV) and soft x-ray regions to probe the resulting dynamics (9-12). When combined with advanced spectros-
material results in a nonequilibrium hot charge distribution, which subsequently triggers a series of cascaded incoherent secondary processes including transport, (spin-flip) scattering, and quasiparticle generation, ultimately leading to macroscopic demagnetization of the magnetic material within $<500 \mathrm{fs}$ (18-22).

The fastest manipulation of the magnetic state should occur, however, through the direct (possibly coherent) interaction between the spin system of the material and the light field itself (23-25). While the first experiments have provided indications that such a direct manipulation scheme might be possible (26-29), to our knowledge, only one experimental study on magnetic metallic systems to date has focused on this challenging aspect of coherent ultrafast magnetism induced by femtosecond laser pulses (24). One particu-

What's missing:

- Include relaxation processes due to el-el scattering
- in principle contained in TDDFT,
- but not with adiabatic xc functionals
- need xc functional approximations with memory or CDFT functional
- Include relaxation processes due to electron-nuclear interaction
- decoherence
- Include relaxation due to radiative effects
- simultaneous propagation of TDKS and Maxwell equations
- Include dipole-dipole interaction to describe motion of domains
- construct approximate xc functionals associated with dipole dipole interaction

Kevin Krieger

Peter Elliott

Florian Eich

Lecture Notes in Physics 706 (Springer, 2006)

Lecture Notes in Physics 837

Miguel A. L. Marques
Neepa T. Maitra
Fernando M. S. Nogueira
Eberhard K. U. Gross
Angel Rubio Editors

Fundamentals of Time-Dependent Density Functional Theory

Lecture Notes in Physics $\mathbf{8 3 7}$ (Springer, 2012)

