
Pseudopotentials

• The pseudopotential and 
the wave function 

• Real potential and wave 
function are shown in blue 

• Pseudopotential and 
pseudo wave function in red 

• Outside the cutoff  region 
(vertical black line) 
the two are identical
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Pseudopotentials

• Electrons in the inner shells do not contribute to 
bonding 

• Core electrons are effectively frozen 
• Replace Coulomb potential between electrons and nuclei 
with effective potential, the pseudopotential
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• we assume: all atoms sit on equilibrium positions 
• simplification: infinite and periodic lattice of  atoms 
• fundamental concept to describe this: Bravais lattice 

• Bravais lattice: all the points that can be reached by:

• here: n1, n2, n3 are integer numbers 
• vectors a are called “primitive vectors”, choice is not unique

Solids: Real and reciprocal lattices

R =n,a, +n=42 +4340
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• Bravais lattice: all the points that can be achieved by:

R = n1a1 + n2a2 + n3a3

• at each of  these R there can be either one atom (or multiple 
- see next slide):

• but it is the same object for all R

Solids: Real and reciprocal lattices

↑
-
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• Bravais lattice: all the points that can be achieved by:

R = n1a1 + n2a2 + n3a3

• at each of  these R there can be either one atom, or many 
atoms, molecules, …; this is called “atomic basis” 

• Basis is the same object for all points R of  the lattice

(c) physics.stackexchange.com

Solids: Real and reciprocal lattices

-

⑧ -
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• primitive (unit) cell: the volume that can, if  repeated infinitely 
many times, fill the entire space without gaps and without 
overlap 

• choice of  the a vectors not unique, primitive cell is not unique

(c) http://users-phys.au.dk/philip/pictures/solid_crystalstructures/unitcells.gif

Solids: Real and reciprocal lattices
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• recipe to construct primitive cell: Wigner-Seitz construction 
• find all the volume that is closer to a given lattice point than to 

any other lattice point

• 2D: • 3D:

Solids: Real and reciprocal lattices

*
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Towards a Band Theory of  Solids: Reciprocal Lattice

b1 = 2⇡
a2 ⇥ a3

a1 · (a2 ⇥ a3)

b2 = 2⇡
a3 ⇥ a1

a1 · (a2 ⇥ a3)

b3 = 2⇡
a1 ⇥ a2

a1 · (a2 ⇥ a3)

• a specific reciprocal lattice refers to a specific real-space lattice 
• example: fcc <-> bcc, cubic <-> cubic, … 

• fcc and bcc are reciprocal to each other 
• reciprocal lattice of  cubic lattice is cubic 

• if  direct lattice vectors are known, reciprocal lattice vectors 
follow from:
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Towards a Band Theory of  Solids: Reciprocal Lattice

• Wigner-Seitz cell of  reciprocal lattice: Brillouin zone
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• Bloch theorem: 
• if  the potential is periodic, i.e.,  

then wave function is of  the form:
V (r) = V (r+R)

• we assume: all atoms sit on equilibrium positions 
• this leads to a periodic lattice of  atoms (potential for electrons)

• this is true for all periodic potentials

Bloch theorem for solids

 n,k(r) = eikrun,k(r)

un,k(r) = un,k(r+R)

E =E- e
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• solution of  the free-electron gas:

E(k) = ~2 k2

2m
= ~2 (kreduced +K)2

2m

Band structure in solids

#



12

• solution of  the free-electron gas:

E(k) = ~2 k2

2m
= ~2 (kreduced +K)2

2m

(c) http://users-phys.au.dk/philip/pictures/physicsfigures/
node8.html

Band structure in solids
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1D 2D (square) 2D (hexagonal)

(c) http://lamp.tu-graz.ac.at/~hadley/ss1/empty/empty.php

BZ: BZ:

• lattice is periodic, but no atoms are present
• plot solutions for different lattice types: don’t show periodicity

E(k) = ~2 k2

2m
= ~2 (kreduced +K)2

2m

Band structure in solids: Empty lattice approximation
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Band Structure and DOS for a real material

(c) Phys. Rev. B 73, 245212 (2006)



Basis Sets
Basis set choices: 
• For molecules: use atomic orbitals, or localized functions like 
Gaussians 

• For solids, periodic functions such as sines and cosines (i.e., 
plane waves) 

• Use Bloch Theorem for periodic solids:
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[H, TR] = 0 ⇥ �(r) = unk(r) exp(ik · r)[H, TR] = 0 ⇥ �(r) = unk(r) exp(ik · r)[H, TR] = 0 ⇥ �(r) = unk(r) exp(ik · r)[H, TR] = 0 ⇥ �(r) = unk(r) exp(ik · r)

Hamiltonian and translation 
operator commute

wavefunction of electron n at 
wavevector k in Brillouin Zone 

(Wigner-Seitz cell in reciprocal space)

point k in Brillouin Zone

arbitrary phase factor

win() =2car (h) xp(iGr)
191Gmax



Basis Sets: Plane waves
Superposition of  plane waves to represent orbitals:
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unk(r) =
�

|G|�Gmax

cnk(G) exp(iG · r)



Basis Sets
Superposition of  plane waves to represent orbitals:
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unk(r) =
�

|G|�Gmax

cnk(G) exp(iG · r)

A particular plane wave:

Its kinetic energy:

• Low KE plane waves typically contribute more than higher KE 
=> we can truncate the approximation to unk(r) at Ecut



Quantum Espresso: Plane-wave cutoff  convergence
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The wavefunction (and energy) of  each electron depends 
on both its quantum number n and its position k within 
the Brillouin Zone 

Real-space quantities are computed by a discrete sum over 
n and integration over k within the Brillouin Zone 
(approximated over a grid at finite k-points) 

e.g. density, n(r)

Plane waves: Real-space quantities
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Quantum Espresso: k-point convergence
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