Pseudopotentials

- The pseudopotential and the wave function
- Real potential and wave function are shown in blue
- Pseudopotential and pseudo wave function in red
- Outside the cutoff region (vertical black line) the two are identical

Pseudopotentials frozen core approx

- Electrons in the inner shells do not contribute to bonding
- Core electrons are effectively frozen
- Replace Coulomb potential between electrons and nuclei
with effective potential, the pseudopotential
with effective potential, the pseudopotential
AC

$$
\begin{aligned}
& \text { Pseudo NL } \\
& z=3 \\
& \begin{array}{l}
3 p+2,7 c \cup\{\text { valence } i \\
35+1 \\
35-7,8 \mathrm{cv}
\end{array} \\
& {\left[-\frac{1}{2} \nabla^{2}+V_{\mathrm{eff}}\right] \varphi_{i}=\epsilon_{i} \varphi_{i}} \\
& {\left[-\frac{1}{2} \nabla^{2}+V_{\text {eff }}^{\text {pseudo }}\right] \varphi_{i}^{\text {pseudo }}=\epsilon_{i} \varphi_{i}^{\text {pseudo }}}
\end{aligned}
$$

Solids: Real and reciprocal lattices

- we assume: all atoms sit on equilibrium positions
- simplification: infinite and periodic lattice of atoms
- fundamental concept to describe this: Bravais lattice
- Bravais lattice: all the points that can be reached by:

$$
\mathbb{R}=u_{1} a_{1}+u_{2} a_{2}+u_{3} a_{3}
$$

- here: $\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}$ are integer numbers
- vectors a are called "primitive vectors", choice is not unique

Solids: Real and reciprocal lattices

- Bravais lattice: all the points that can be achieved by:

$$
\mathbf{R}=n_{1} \mathbf{a}_{\mathbf{1}}+n_{2} \mathbf{a}_{\mathbf{2}}+n_{3} \mathbf{a}_{\mathbf{3}}
$$

- at each of these R there can be either one atom (or multiple - see next slide):

- but it is the same object for all R

Solids: Real and reciprocal lattices

- Bravais lattice: all the points that can be achieved by:

$$
\mathbf{R}=n_{1} \mathbf{a}_{\mathbf{1}}+n_{2} \mathbf{a}_{\mathbf{2}}+n_{3} \mathbf{a}_{\mathbf{3}}
$$

- at each of these R there can be either one atom, or many atoms, molecules, ...; this is called "atomic basis"
- Basis is the same object for all points R of the lattice

Solids: Real and reciprocal lattices

- primitive (unit) cell: the volume that can, if repeated infinitely many times, fill the entire space without gaps and without overlap
- choice of the a vectors not unique, primitive cell is not unique

(c) http://users-phys.au.dk/philip/pictures/solid crystalstructures/unitcells.gif

Solids: Real and reciprocal lattices

- recipe to construct primitive cell: Wigner-Seitz construction
- find all the volume that is closer to a given lattice point than to any other lattice point
- 2D:

Towards a Band Theory of Solids: Reciprocal Lattice

- a specific reciprocal lattice refers to a specific real-space lattice
- example: fcc <-> bcc, cubic <-> cubic, ...
- fcc and bcc are reciprocal to each other
- reciprocal lattice of cubic lattice is cubic
- if direct lattice vectors are known, reciprocal lattice vectors follow from:

$$
\begin{aligned}
& \mathbf{b}_{1}=2 \pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{\mathbf{a}_{1} \cdot\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)} \\
& \mathbf{b}_{2}=2 \pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{\mathbf{a}_{1} \cdot\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)} \\
& \mathbf{b}_{3}=2 \pi \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{\mathbf{a}_{1} \cdot\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)}
\end{aligned}
$$

Towards a Band Theory of Solids: Reciprocal Lattice

- Wigner-Seitz cell of reciprocal lattice: Brillouin zone

© bilbao crystallographic server
http://www.cryst.ehu.es

Bloch theorem for solids

- we assume: all atoms sit on equilibrium positions
- this leads to a periodic lattice of atoms (potential for electrons)
- Bloch theorem:
- if the potential is periodic, i.e., $V(\mathbf{r})=V(\mathbf{r}+\mathbf{R})$ then wave function is of the form:

$$
\begin{aligned}
& \psi_{n, \mathbf{k}}(\mathbf{r})=e^{i \mathbf{k r}} u_{n, \mathbf{k}}(\mathbf{r}) \\
& u_{n, \mathbf{k}}(\mathbf{r})=u_{n, \mathbf{k}}(\mathbf{r}+\mathbf{R})
\end{aligned}
$$

- this is true for all periodic potentials
$E=\frac{\hbar^{2} V^{2}}{2 m}=\frac{\left(k_{\text {reducid }}+K\right)^{2}}{2 m}$

Band structure in solids

- solution of the freefelectron gas:

Band structure in solids

- solution of the free-electron gas:

$$
E(\mathbf{k})=\hbar^{2} \frac{\mathbf{k}^{2}}{2 m}=\hbar^{2} \frac{\left(\mathbf{k}_{\text {reduced }}+\mathbf{K}\right)^{2}}{2 m}
$$

Band structure in solids: Empty lattice approximation

- lattice is periodic, but no atoms are present
- plot solutions for different lattice types: don't show periodicity

(c) http://lamp.tu-graz.ac.at/~hadley/ss1/empty/empty.php

Band Structure and DOS for a real material

(c) Phys. Rev. B 73, 245212 (2006)

Basis Sets

Basis set choices:

- For molecules: use atomic orbitals, or localized functions like Gaussian
- For solids, periodic functions such as sines and cosines (ie., plane waves)
- Use Bloch Theorem for periodic solids:

$\left[\mathcal{H}, \mathcal{T}_{\mathbf{R}}\right]=0 \quad \Rightarrow \quad \varphi_{n k}(\mathbf{r})=u_{n k}(\mathbf{r}) \exp (i \mathbf{k} \cdot \mathbf{r})$
 operator commute

$$
\downarrow
$$

$$
u_{u, k}(1)=\sum c_{u x}(G) \exp (i G \cdot v)
$$

wavefunction of electron n at

$$
|G|<G_{\text {max }}
$$ (Wigner-Seitz cell in reciprocal space)

Basis Sets: Plane waves

Superposition of plane waves to represent orbitals:

$$
u_{n k}(\mathbf{r})=\sum_{|\mathbf{G}| \leq G_{\max }} c_{n k}(\mathbf{G}) \exp (i \mathbf{G} \cdot \mathbf{r})
$$

Basis Sets

Superposition of plane waves to represent orbitals:

$$
u_{n k}(\mathbf{r})=\sum_{|\mathbf{G}| \leq G_{\max }} c_{n k}(\mathbf{G}) \exp (i \mathbf{G} \cdot \mathbf{r})
$$

A particular plane wave: $\quad f_{i}(\mathbf{r})=c_{i, \mathbf{k}+\mathbf{G}} e^{-i(\mathbf{k}+\mathbf{G}) \cdot \mathbf{r}}$
Its kinetic energy:

$$
E_{k i n}=f_{i}(\mathbf{r})\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}\right] f_{i}(\mathbf{r})=\frac{\hbar^{2}}{2 m}|\mathbf{k}+\mathbf{G}|^{2}
$$

- Low KE plane waves typically contribute more than higher KE $=>$ we can truncate the approximation to $\mathrm{u}_{\mathrm{nk}}(\mathrm{r})$ at $\mathrm{E}_{\text {cut }}$

Quantum Espresso: Plane-wave cutoff convergence

Plane waves: Real-space quantities

The wavefunction (and energy) of each electron depends on both its quantum number n and its position k within the Brillouin Zone

$$
\hat{h}_{\mathbf{k}} \psi_{n, \mathbf{k}}(\mathbf{r})=\varepsilon_{n, \mathbf{k}} \psi_{n, \mathbf{k}}(\mathbf{r})
$$

Real-space quantities are computed by a discrete sum over n and integration over k within the Brillouin Zone (approximated over a grid at finite k-points)
e.g. density, $\mathrm{n}(\mathrm{r}) \quad n(\mathbf{r})=\frac{V_{\text {cell }}}{(2 \pi)^{3}} \int_{1 \mathrm{BZ}}\left(\sum_{n=1}^{N_{\mathrm{el}}}\left|\psi_{n, \mathbf{k}}(\mathbf{r})\right|^{2}\right) d \mathbf{k}$

Quantum Espresso: k-point convergence

