Pseudopotentials
Veer.

* The pseudopotential and
the wave function

* Real potential and wave
function are shown in blue

V

* Pseudopotential and
pseudo wave function in red

* Qutside the cutoff region
(vertical black line)
the two are 1dentical




Pseudopotentials 6‘01{\,\ tO I qmnx

e Hlectrons in the inner shells do not contribute to
bonding

* Core electrons are effectively trozen

* Replace Coulomb potential between electrons and nuclet

with effective potential, the pseudopotenti?l
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Solids: Real and reciprocal lattices

we assume: all atoms sit on equilibrium positions
simplification: zfinite and periodic lattice ot atoms
fundamental concept to describe this: Bravais lattice

Bravais lattice: all the points that can be reached by:

d{:"“a( €y U t 135

here: ni, nz, n3 are integer numbers
vectors a are called “primitive vectors”, choice 1s not unique
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Solids: Real and reciprocal lattices
*  Bravais lattice: all the points that can be achieved by:
R = nja; + nqaz + ngas

- at each of these R there can be either one atom (or multiple
- see next slide):

* but it is the same object for all R
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Solids: Real and reciprocal lattices
Bravais lattice: all the points that can be achieved by:
R = nja; + nqaz + ngas

at each of these R there can be either one atom, or many
atoms, molecules, ...; this 1s called “atomic basis”
Basis 1s the same object for all points R of the lattice

(c) physics.stackexchange.com



Solids: Real and reciprocal lattices

- primitive (unit) cell: the volume that can, if repeated infinitely

many times, fill the entire space without gaps and without
overlap

» choice of the a vectors not unique, primitive cell 1s not unique

Wigner-Seitz
cell /
primitive UV
cells

—»
non-primitTve >
unit cells

(c) http:/ /users-phys.au.dk/philip /pictures/solid_crystalstructures/unitcells.gif
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Solids: Real and reciprocal lattices
* recipe to construct primitive cell: Wigner-Seitz construction

» tind all the volume that is closer to a given lattice point than to
any other lattice point

« 2D: - 3D:




Towards a Band Theory of Solids: Reciprocal Lattice

- a specitic reciprocal lattice refers to a specific real-space lattice
- example: fcc <-> bcc, cubic <-> cubic, ...
» fcc and bcc are reciprocal to each other
- reciprocal lattice of cubic lattice 1s cubic
- 1f direct lattice vectors are known, reciprocal lattice vectors
tfollow from:

ads X aAsg

b1 — 27
aj - (ag X ag)

az X aj

bg — 27
aj - (ay X ag)

a; X a

b3 = 2
ai (8.2 X 8.3)



Towards a Band Theory of Solids: Reciprocal Lattice

- Wigner-Seitz cell of reciprocal lattice: Brillouin zone

Ilk
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Bloch theorem for solids

» we assume: all atoms sit on equilibrium positions
- this leads to a perzodic lattice of atoms (potential for electrons)

« Bloch theorem:
» if the potential is periodic, i.e.,, V(r) = V(r + R)

then wave function 1s of the form:
Unx(r) = 6ikrun,k(r)
U e(¥) = Ui (r + R)

» this 1s true for a// periodic potentials
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Band structure in solids

* solution of the freeEelectron o2s:

k2 Krdduced + K)°
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Band structure in solids

(kreduced + K) ’

» solution of the free-electron gas:
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(c) http://users-phys.au.dk/philip /pictures /physicsfigures/

node8.html




Band structure in solids: Empty lattice approximation

- lattice 1s periodic, but no atoms are present

- plot solutions for different lattice types: don’t show periodicity

1D 2D (square) 2D (hexagonal)
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(c) http://lamp.tu-graz.ac.at/~hadley/ss1/empty/empty.php
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Band Structure and DOS for a real material
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(c) Phys. Rev. B 73, 245212 (2006)
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Basis Sets

Basis set choices:

* For molecules: use atomic orbitals, or localized functions like
(Gaussians

* For solids, periodic functions such as sines and cosines (1.e.,
plane waves)

* Use Bloch Theorem for periodic solids:

‘ arbrtrary phase factor ‘

/I point K in Brillouin Zone ‘

HTR] =0 = Pulr) = uni(r) exp(ik - r)
! )

Hamiltonian and translation

operator commute \’{\AN\(“B - E/CM\L (Ct\ Qﬂ (‘(1'")

wavefunction of electron n at 'Q‘C ([w\,oo(,
wavevector k in Brillouin Zone

(Wigner-Seitz cell in reciprocal space)
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Basis Sets: Plane waves

Superposition of plane waves to represent orbitals:

unk(r) — Z an(G) eXp(i G- I‘)

|G|<Gmax
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Basis Sets

Superposition of plane waves to represent orbitals:

unk(r) — Z an(G) eXp(i G- I‘)

|G| <Gmax
A particular plane wave:  fi(r) = cik+c o~ i(k+G)-r
A, 52 ,
Its kinett . . — f e ‘ _ |
s kinetic energy Eyin = fi(r) [ 2mv } fi(r) 2m|k G|

* Low KE plane waves typically contribute more than higher KE
=> we can truncate the approximation to unk(r) at Ecu
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Quantum Espresso: Plane-wave cutoff convergence
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Plane waves: Real-space quantities

The wavefunction (and energy) of each electron depends
on both its quantum number n and its position k within
the Brillouin Zone

]’k ’l/-),“k(r) — E.H,k ’l/)ll,k(r)

Real-space quantities are computed by a discrete sum over
n and integration over k within the Brillouin Zone
(approximated over a grid at finite k-points)

-\(c"' ]

| o Ve
e.g. density, n(r) n(r) = (27)3 /113'/, (Z

' n=1

|":{’n.k(r) ’2> dk
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Quantum Espresso: k-point convergence

'865. 1 I I I I | I | I | I I I I I I I I I ] I

-865.2 — =

-865.3 —

-865.4 [~ -

-865.5 -

E , (eV/atom)

-865.6 — -

-865.7 — —

-865.8 - -

Number of k-points

20



