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* Charge-transfer dynamics

* Some basic TDDFT equations, Tamm-Dancoff approximation, and
inclusion of exact exchange

* Jacob’s ladder of functionals — how do they do for TDDFT excitation
energies, including charge-transfer energies?

* Some challenges for TDDFT
* What 1s a charge-transter transition?
* What is the TDDFT charge-transfer error and why does it exist?

* Hybrid and range-separated hybrid functionals to help fix charge-transfer
error

* Optimal tuning of long-range corrected hybrids



Real-time TDDFT for modeling charge transfer dynamics

Matrix form of density evolution: Propagate the density matrix P:
0P P(,.,)=U@,)Pt, U, (,)

i—=|H(t),P(t)]
ot U(tm) _ C(tm )eie(tm)2AtcT(tm)

Hamiltonian is the Kohn-Sham matrix

(TDDFT) or Fock matrix (IDHF)
H(t)=H, )+ V(1)
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Real-time TDDFT: time-dependent dipole moment

Matrix form of density evolution:
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Real-time TDDFT: time-dependent dipole moment

Matrix form of density evolution:

2 = [H(). )]

Can monitor charge transfer by looking at change in dipole moment

W (moving avg., window = 1 fs)
T s o et S SRS S —— RTTOHF === LR-TDHF (5;) .|
S é R ——n — TDCIS == CIS (S;) .

System 1
System 1, (CHy);N{(CH=CH)H

- e
Problems with ‘:‘;': An}ﬁ{'t HH! 1l Ly AU ','" ‘fA'
TDHF/TDDFT r Y
time-dependent System 2, (CH;);NICH=CH),H

charge transfer
due to adiabatic

approximation P “l J |5y15t|em3| “ Ml" “‘
','r.' ‘ t"l "' Hf L N !lll'ﬂ'”“" |
System 3, (CH,),;N(CH=CH)H | | (
10 20 0
time (fs)

Ranka, Isborn. “Size-dependent Errors in Real-Time Density 5
Propagation,” J. Chem. Phys, 158, 174102 (2023)



From real time to LR matrix formulation

Matrix form of density evolution: linear response
81) approximation Expand H
pand H(t) , P(t) to
(,% [H(t) P(t)] first order in field

Group terms and /
divide out g Lot

Matrix formulation for LR-TDDFT

X = 10 X Tamm-Dancotf
B* A'{c 0 — approximation
(ignore B matrix)
Ay b = 0;0.(€, — €) + (taljb) + Galf AX = wX
B, » = (ialb)) + (ialf,.|bj)
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Relationship between TDHF and TDDFT

The orbital energies are quite different.
linear response

HF » TDHF The band gap 1s usually much larger with
~ HF than DFT.
ClI
HE m CIS Aﬁ/ ovy" Qv
Uy " VS.Uyxc ap VS. ap
linear response

DFT » TDDFT The key difference for charge-transfer
m states comes from this derivative term,
formalism  TDA = which represents the change in the

Dreuw, Head-Gordon Fock/Kohn-Sham matrix due to the

Chemical Reviews, 105, 4009, 2005

change in the density
DOI: 10.1021/¢r0505627

Exact exchange in the ground state leads to the correct Coulombic 1/r interaction between electron and hole
(excitonic interaction) in the TDDFT/TDHF equations

Note: CIS also has a charge-transfer error, getting these states too high in energy,
see Subotnik, . Chem. Phys. 2011, 135, 071104



Why is there a charge-transfer error for TDDFT but not TDHF?

The density dependent part of a general Fock matrix element F,, for a closed-shell system is

Fp = 2 Pys[2(uv|Ao) — (ui|vo)] (uv|do) = f drydr, ¢, (r)e,(r)

1
T Pa(2)es(r2)
Ao T2|
Coulomb (J) exchange (K)

|T1 -

When deriving the linear response TDHF/TDDFT equations in particle-hole space (whete we solve the matrix / Casida equations),
the term we want is

dF; This is how exact

Where 7, j are occupied orbitals, and 4,4 are the virtual (unoccupied) orbitals _
dPjp exchange gives the

9 correct Coulombic
Fi, = z Py [2(ia|/10) — (i/llClG)] W F;, = Z ij [z(ian) — (ij|ab)] interaction between the
Ao jb -
jb

electron and hole.

For the case where j=i and b=a, we get a Coulomb term from what was the exchange term: [2(ialia)

. , , o N This last term is the stabilizing
This is what we have in the A matrix for TDHE: A;q jj, = (g4 — ei)6ij6ab + 2(ia|jb) — (ij|ab) 1 /r interaction for the electron

and hole, which is missing from

TDDFT




What kinds of transitions does TDDFT get correct?

The answer dep ends on the functional.... Some people think that you can get any excitation energy
heaved OF CREMICAL ( you want, by simply choosing the appropriate functional.

This is because (usually) increasing the amount of exact
exchange in the functional will lead to higher excitation
energies.

Although we ideally want a functional that will be accurate
for all excitations, we might settle for one that has errors,
but treats various kinds of excitations equally well / equally
poortly. Then, we might still be able to:

* Get the correct ordering of states
RARTREE WARLD * Compare various kinds of chromophores

* Accurately take into account environmental effects

Perdew, Ruzsinszky, Constantin, Sun, Csonka
J. Chem. Theory Comp., 2009, 5, 902
DOI: 10.1021/ct800531s



How accurate is TDDFT for excitation energies?
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Laurent and Jacquemin
International Journal of Quantum Chemistry 2013, 113, 2019



How accurate is TDDFT for excitation energies?

comparing 463 theoretical best estimates in QUEST database
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* Tamm-Dancoff approximation is preferred over full TDDFT for excitations because of its improved
accuracy (esp. for triplet excitations) versus cost trade-off

e TDDFT/TDA with the best functionals yields RMSEs of 0.25-0.3 eV for excitation energies, which is a little
better than the CIS(D) wave function method at a significantly lower computational cost.

Liang, Feng, Hait,
Head-Gordon

J. Chem. Theory
Comput. 2022, 18,
3460



What kinds of transitions does TDDFT have problems modeling?

Those with double excitation character (e.g
polyenes). This could be fixed using a
frequency dependent functional, i.e. going
beyond the adiabatic approximation. Also
leads to incorrect topology of potential energy

surfaces.

Starcke, Wormit, Schirmer, Dreuw
Chemical Physics, 329. 39, 2006
https://doi.org/10.1016/j.chemphys.2006.07.020,

https://chemiezauber.de/index.php/inhalt/q2/farbmittel-und-textilien/struktut-von-
farbstoffmolekuelen/lichtabsorption-von-organischen-verbindungen/410-chromophore

80

T : ' | .—yv‘ |
70 + -
2'Ay X
-0
& 80t . |
= :1:“- 2
| u
Q - 1 .
© ¢
- —
e 40}
@
@
‘§ 30 *-
© 20} -
.o-,-*..—.-.-.. -
,r-.'-,*‘.a——-.ﬂ o
0 - : |
2 3 - , 6 |

Number of C=C double bonds

N nel H
Fis |
NN et - H

R > Cc
/ \C/ \C/
B N N P " | ' 4%
b W M

NI NN NN NN hey

N NN NN NN NN NN we
NN ITN TN TN N IO N N S PN SN o



http://www.sciencedirect.com/science/journal/03010104
http://www.sciencedirect.com/science/journal/03010104/329/1
https://doi.org/10.1016/j.chemphys.2006.07.020

What kinds of transitions does TDDFT have problems modeling?
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* Those with double excitation character
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What is a charge-transfer transition?

Charge-transfer complex

From Wikipedia, the free encyclopedia

A charge-transfer complex (CT complex) or electron-donor-acceptor complex is an association of two or
more molecules, or of different parts of one large molecule, in which a fraction of electronic charge is transferred
between the molecular entities. The resulting electrostatic attraction provides a stabilizing force for the molecular
complex. The source molecule from which the charge is transferred is called the electron donor and the receiving
species is called the electron acceptor.

May be on the same molecule (donor group and acceptor group) or between molecules
Small overlap between donor and acceptor densities (movement of electron across space)
Often associated with a large change in dipole moment

The Coulombic attraction between the excited electron and hole should be smaller than for a valence transition



Examples of charge-transfer transitions

- conjugatlon
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Zhao, Chen, Sun, Liu, Li, Gao, Han, Yang, Sun
Chem. Eur. J., 14, 6935, 2008
DOI: 10.1002/chem.200701868

CT transitions important for:
* organic electronics

* solar cell materials
% ¢ * chromophores in solution
Acceptor
i ;
‘ Do
. ‘
- " 2.
4 9 ’
20 ]
> 958
g §
= ,#.. a8
: G S . .wﬁ-’ = :
1| o A ¥
L .
. % 3
2 .‘,s'lm‘,f'\ 2 :‘.1‘(0.3'9.
0 [}
1804 20 2% %0 %0 "©o

Leong , Foster, Wong, Spoerke, Van Gough, Deaton, Allendorf
. Mater. Chem. A, 2014, 2, 3389-3398
DOI: 10.1039/C3TA14328G



https://dx.doi.org/10.1039/2050-7496/2013
https://dx.doi.org/10.1039/C3TA14328G

What should the excitation energy be?

charge-transfer oxcired stare
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Temmpe'd , |ri _ ral

& T eleccran
L - 'l':" transfer

. g — &, — (ii|aa)

J"'+' l a |

3 0%

(wvlio) = j drydr, 9, () ey () 02(r) 0y (1)
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Dreuw, Head-Gordon,
J. Am. Chem. Soc. 2004, 126, 4007

DOI: 10.1021/ja039556n



Which is smaller: the optical gap (the excitation energy) or
the band gap?

Electron-hole Coulombic electrostatic
attraction (aka exciton binding energy) leads to

; 1 a smaller optical gap.

electron from the hole.

P —o—
E _ -'l— IE Important for organic molecules, which
. opt have a small dielectric constant, leading
O I to excitonic states.
- - Not as important for conductors,
— — which generally screen the excited

Kronik, Stein, Refaely-Abramson, and Baer
J. Chem. Theory Comput. 2012, 8, 1515—1531
dx.doi.org/10.1021/ct2009363



Do hybrid functionals fix the TDDFT charge transfer error?

Note that these hybrid Examples: B3LYP, PBEO, BH&HLYP, M06-2X, MO6-HF

functionals use
GENERALIZED KOHN-SHAM 0

THEORY, in which we - i HF
consider the exact exchange °
contribution as taking into E., = aEDFT 4+ (1 _ a)EHF g 04 I
account electrons that are X X X £ 06k DFT
partially interacting via the R
exact, nonlocal exchange 08 I
interaction. I
0 "
Yo' ( i ) Y] u [-$

It will depend on the % of exact exchange.

Question: Why not use 100% exact exchange?

Answer: The local DFT exchange balances the local DFT correlation
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What is the charge-transfer (CT) error in TDDFT?

50 6.0 7.0
R (Ang)

Dreuw, Weisman, Head-Gordon
J. Chem. Phys. 119, 2943, 2003

doi: http:

dx.doi.org/10.1063/1.1590951

Configuration interaction singles (CIS) has
100% exact exchange
—> gives the correct distance dependence

BH&HLYP (hybrid with 50% exact exchange)

B3LYP (hybrid with 20% exact exchange)
SVWN / LB94

9.0

Similar behavior for LSDA, GGAs
(BLYP, PBE), meta-GGAs

10.0

The TDDFT CT
excitation energy does not
vary as 1/t as would be
expected for a Coulombic
interaction

The CT states are too low in
energy.


http://dx.doi.org/10.1063/1.1590951

How do we get both short-range DFT local exchange and
correct long-range exact exchange?

The Coulomb operator can be separated into short-range and long-range components:

12 12
Short-range Long-range

W is the range-separation parameter

(sometimes also denoted with the symbol p or ),

p determines if the long-range value should be scaled.

Exact exchange can be used at short range or long range

Short range exact exchange is useful for correcting
the band gap of periodic systems.

Long range exact exchange is useful for correcting

the excitation energies that occur over large distances
(Rydberg and charge-transfer).

1 _ 1= ferf(ons) + Berf(wnz)  [eads toa range-separated hybrid (RSH) functional
T2

03 -
| —erf(0.9r)
y

(|() é —

h 6H

Maitra “Charge transfer in TDDFT” J. Phys.: Condens. Matter 2017 29, 423001



Long-range corrected functionals

Using 100% exact exchange at long range yields a ‘long-range corrected (LRC or LC) functional.

These functionals have the correct distance dependence for the energies of charge-
transfer transitions and are very useful for modeling charge-transfer transitions.

1.00
The long-range correction can also be combined with some
percentage of short-range exact exchange qé) 0.75
s 0.
1 11— [a+ Berf(wry,)] N a + Berf(wryy) S
= X
12 12 12 - 0.50 |
3]
Some short-range exact exchange is important for accurate L%S
. . . . 0.25 ¢
ground state properties (ex. Reaction barrier heights) 2 LC—wPBE —
0.00 - _ oB97XD 7 |
0 3 6 9 12 15
f12 [A]
Examples of long-range corrected: LC-wPBE, LC-BLYP, wB97 Also: CAM-B3LYP

Examples of long-range corrected + short range exchange: LC-wPBEh, wB97x (not 100% at long-range)
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An extreme CT problem: molecules in solution

pCT- snapshot

trans-thiophenyl-p-coumarate

5 1 1 1 1 1 1
lowest excitation energy
- O - = CIS
a0 u
& © ©—— o WwPBE/wPBEh

B3LYP
BLYP/PBE

VaY

—p— } :
number of states below 3 eV

100 150 200 250 300
number of QM waters

Need Coulombic stabilization
of electron and hole

Isborn, Mar, Curchod, Tavernelli, Martinez
J. Phys. Chem. B 2013, 117, 12189
dx.doi.org/10.1021/jp4058274

C. M. Isborn



Is there an ‘optimal’ range-separation parameter?

Excitation energies for 40 conjugated molecules

0.6
Charge Transfer Excitation Energies, in eV, for Four Donot- 0.5
Tetracyanoethylene Complexes compared to gas phase experiment
TDDFT ~ 04
donor PBE B3LYP BNL (y = 05) BNL (tuned y) experiment @
benzene 16 21 44 38 3.59 o 03
toluene 14 1.8 40 34 3.36
o-xylene 1.0 1.5 3.7 3.0 3.15 0.2
naphthalene 04 0.9 33 2.7 2.60 o
MAE 21 17 0.8 0.1

0.1

Kronik, Stein, Refaely-Abramson, Baer
dx.doi.org/10.1021/ct2009363
J. Chem. Theory Comput., 8, 1515, 2012

0.0

A review: :;:_; g é 5 :f' E JCT: é- —é
Delocalization Error and “Functional Tuning” in Kohn—Sham s s :r: _E_ X o O :
Calculations of Molecular Properties 8 = = - -3
Jochen Autschbach and Monika Srebro 2 : -

Acc. Chem. Res. 2014, 47, 2592—2602

Jacquemin, Moore, Planchat, Adamo, Autschbach
J. Chem. Theory Comput., 10, 1677, 2014



Tuning the range-separation parameter

In an exact theory, the energy of the HOMO i1s equal to the ionization potential

Koopmans’ theorem:

Egomo = —IP

Choose the w that enforces
Koopmans’ theorem (no empirical
parameters!).

Requires additional computational
effort: compute energies for neutral
and cation for various w values.
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Kronik, Stein, Refaely-Abramson, and Baer
dx.doi.org/10.1021/ct2009363 | J. Chem. Theory Comput. 2012, 8, 1515—-1531 0 ! ! , ! ,
PBE HSE  B3LYP M06 wB97X LC-wPBE MO6HF OT-BNL GW EXP

(BSE)

Fundamental and optical gaps for PTCDA and

See also: Cutvature and Frontier Orbital Energies in Density Functional Theory H2TPP, compared to many-body perturbation theory and
Tamar Stein, Jochen Autschbach, Niranjan Govind, Leeot Kronik, and Roi Baer
http://pubs.acs.otg/doi/abs/10.1021/j23015937

experimental values

Andreas Karolewski, Lecor Kronik, and Stephan Kiimmel
The Journal of Chemical Physics 138, 204115 (2013); doi: http://dx.doi.org/10.1063/1.4807325
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Charge-Transfer Excitations: A Challenge for Time-Dependent
Density Functional Theory That Has Been Met

Stephan Kiimmel

Correctly predicting charge-transfer states in complex molecules and mole-

cular materials has been a major challenge for first-principles theory. With the
mmwmammwlnmmmmmmm

ﬁmdnhmdmmddnmuamﬁrndtﬁmhuhmmid-
ered one of the hallmark failures of TDDFT. As charge-transfer states play an

important role in organic solar cells, and generally in many new materials that
are aimed at converting sunlight into other forms of energy, the contribution
of first principles theory to the field of energy relevant materials was seri-
ously limited. However, in the past years this limitation has been overcome.

excitations in molecules reliably. The approach by now has been extended
to describe molecular solids and solvated systems. The predictive power
of TDDFT has thus greatly increased, and computational studies can be
expected to give true guidance in material design.

So far, this article painted the picture of tuned range-separated
hybrid functionals employed in the generalized Kohn-Sham
framework in bright colors. Rightfully so, because for the CT
problem in TDDFT. they provide a viable solution. However,
the picture of tuned functionals would not be complete without
a few shades of gray.

Adv. Energy Mat.
2017, 7, 1700440.



Size-Dependent Exchange Tuning

Create system dependent exchange by tuning the range-separation parameter

less exact
exchange

more exact
exchange
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Korzdotfer, Sears, Sutton, and Brédas
J. Chem. Phys., 135, 204107, 2011
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Optimal tuning predicts less exact
exchange for larger systems




Size-Dependent Exchange Tuning

We wanted good excitation energies for this set of charge transfer chromophores
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Size-Dependent Excitation Energy Accuracy

Does optimal tuning of exchange improve the excitation energies?

.Yes, optimal tuning | LC-BLYP/6-31G*
improves the

Optimally tuned w

excitation energies
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Size-Dependent TDDFT Errors
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Summary

Three big developments have helped to solve the charge-transfer problem in TDDFT:

1. Generalized Kohn-Sham theory allows for orbital dependence and hybrid
functionals

2. Range-separation of the Coulomb operator enables long-range correction

3. Optimal tuning of the range-separation parameter leads to accurate energies,
with some drawbacks

Concerns with optimal tuning
* Not size-consistent
* Has incorrect exact exchange trend with system size compared to experiment!

TDDFT seems to have different errors with systems of different size?



Does tuning im

Excitation energy (eV)

orove Rydberg transitions?
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What kinds of transitions does TDDFT get correct?

7 Valence nent

B alence 1"
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14 small- to medium-sized compounds with 60
valence experimental excited state energies
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Valence transitions are often
predicted within 0.2-0.5 eV
of the correct value
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The Journal of Chemical Physics 2012, 136,
DOI: 10.1063/1.3689445
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FIG. 1. Comparison of density functional mean absolute errors for singlet and triplet excited states.
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