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Dilute Bose Gas

N bosons in the 3d box ΛL =
[
− L

2 ,
L
2

]3
.

Hamiltonian on L2
S(ΛNL ):

HN,L = −
N∑
i=1

∆xi +
∑

1≤i<j≤N

V (xi − xj),

V ≥ 0, spherically symmetric, compact support.

We are interested in the ground state energy per particle
in the thermodynamic limit:

e(ρ) = lim
N,L→+∞
N/L3=ρ

EN,L
N

, EN,L = inf
ψ 6=0

〈ψ,HN,Lψ〉
‖ψ‖2
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Dilute Bose Gas

We are particularly interested in the case of hard sphere interaction:

V (x) = V hs(x) =

{
+∞, |x| ≤ a

0, |x| > a

In this case,

Ehs
N,L = inf

ψ 6=0

〈ψ,
∑N

i=1−∆xiψ〉
‖ψ‖2

where the infimum is taken over ψ satisfying the hard sphere condition

ψ(x1, . . . , xN ) = 0 if ∃ i 6= j : |xi − xj | < a
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Dilute Bose Gas

Let 
(
−∆ + 1

2V
)
f = 0

f → 1 for |x| → +∞

Then
f(x) = 1− a

|x| outside the range of V

with a scattering length of V .

 if V = V hs then {
f(x) = 0 |x| ≤ a
f(x) = 1− a

|x| |x| > a

hence the scattering length coincides with the radius of the interaction.

We consider the dilute regime: ρa3 � 1
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Lee-Huang-Yang Formula

In [Bogolubov ’47] and more explicitly in [Lee,Huang,Yang ’57] it was predicted
that in the dilute limit

e(ρ) = lim
N,L→+∞
N/L3=ρ

EN,L
N

= 4πaρ
[

1 + 128
15
√
π

√
ρa3 + o(

√
ρa3)

]
.

Only dependence on V through its scattering length.

Lower bound:
[Lieb, Yngvason ’98],. . . [Fournais, Solovej ’20+’21], . . . (general V , also hard core)

Upper bound:
[Dyson ’57], . . . [Yau, Yin ’09], [B., Cenatiempo, Schlein ’21], . . . (V ∈ L3)

 upper bound for hard sphere still open.
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An upper bound for hard-core bosons

Currently best available upper bound for hard sphere bosons:

Theorem [B., Cenatiempo, Giuliani, Olgiati, Pasqualetti, Schlein ’23]

There exists C > 0 such that

lim
N,L→∞:
N/L3=ρ

Ehc
N,L

N
≤ 4πρa

[
1 + C(ρa3)1/2]

I it captures the correct order but NOT the right constant
I we use a Bijl-Dingle-Jastrow factor similarly as in [Dyson ’57]

I no box-method, differently from [Yau, Yin ’09], [B., Cenatiempo, Schlein ’21]

I fine cancellations among numerator and denominator

G. Basti — Upper bound on the energy of a dilute gas of hard sphere bosons — 25/07/2024 5



The Bijl-Dingle-Jastrow factor [Bijl ‘40, Dingle ‘49, Jastrow ‘55]

We look for a suitable trial state

In the non-interacting case the (not normalized) ground state is

ψV=0(x1, . . . , xN ) = ϕ⊗N0 (x1, . . . , xN ) Bose-Einstein condensation

with ϕ0(x) = 1 condensate wave function.

For dilute interacting Bose gas condensation is expected BUT ψ 6∼ ϕ⊗N0
(a product state doesn’t respect the hard sphere condition)

The trial state in [B., Cenatiempo, Schlein ’21] is not well suited for hard sphere
(Bogoliubov approach)
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The Bijl-Dingle-Jastrow factor [Bijl ‘40, Dingle ‘49, Jastrow ‘55]

 We have to describe correlations:

ψ(x1, . . . xN ) =
∏
i<j

f`(xi − xj), Bijl-Dingle-Jastrow factor

with 0 ≤ f` ≤ 1 solution of
−∆f` = λ`f`χ`

f`(x) = 0 if |x| ≤ a
∂rf`(x) = 0 if |x| = `

, a ≤ ` ≤ L

normalized so that f`(x) = 1 if |x| = `.

Then,
λ` = 3a

`3

(
1 +O

(
a

`

))
, 0 ≤ 1− f2

` (x)︸ ︷︷ ︸
u`(x)

≤ C a

|x|χ`(x)
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The Bijl-Dingle-Jastrow factor [Bijl ‘40, Dingle ‘49, Jastrow ‘55]

We try to expand the Bijl-Dingle-Jastrow factor:∫ N∏
i<j

f2
` (xi − xj)dx =

∫ N∏
i<j

[
1− u`(xi − xj)

]
dx

= |ΛL|N −N2|ΛL|(N−1)
∫
u`(x)dx+ . . .

= |ΛL|N
[
1−Nρa`2 + . . .

]
 for any ` ≥ a, the expansion diverges.
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The Bijl-Dingle-Jastrow factor [Bijl ‘40, Dingle ‘49, Jastrow ‘55]

Nevertheless we can expand in one variable:∫ N∏
i<j

f2
` (xi − xj)dx =

∫ N∏
j=2

[
1− u`(x1 − xj)

] N∏
2≤i<j

f2
` (xi − xj) dx

=
∫ [

1−
N∑
j=2

u`(x1 − xj) + . . .
] N∏

2≤i<j

f2
` (xi − xj) dx

= |ΛL|[1− Cρa`2︸︷︷︸
�1

+ . . . ]
∫ N∏

2≤i<j

f2
` (xi − xj) dx2 . . . dxN

 converges assuming ρa`2 � 1. We choose ` = c(ρa)−1/2, c� 1.
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Computation of the energy

We set fij = f`(xi − xj) and χij = χ`(xi − xj).

We compute

−∆xk

N∏
i<j

fij =
N∑

m 6=k

−∆fkm

fkm

N∏
i<j

fij −
N∑

n,m 6=k

∇fkn

fkn
· ∇fkm

fkm

N∏
i<j

fij

Using the scattering equation

〈ψ,
N∑

k=1
−∆xkψ〉 =

N∑
k<m

∫
2λ`χkm

N∏
i<j

f2
ijdx + three body term

we obtain

〈ψ,
N∑

k=1
−∆xkψ〉 ' N2λ`

∫
χ12

N∏
i<j

f2
ij dx + three body term
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An upper bound for hard-core bosons - Sketch of the proof

Expanding in the first variable and setting uij = u`(xi − xj).
Let M ∈ N even∫

χ12

N∏
i<j

f2
ij

≤
∫
χ12f

2
12

[
1−

∑
j1

u1j1 − · · ·+
∑

j1<···<jM

u1j1 . . . u1jM

] ∏
2≤i<j≤N

f2
ij

=
M∑

m1=0

(−1)m1

(
N − 2
m1

)∫
χ12f

2
12 u13 . . . u1m1

∏
2≤i<j≤N

f2
ij

Expand second variable:∫
χ12

N∏
i<j

f2
ij ≤

M∑
m1=0

(−1)m1

(
N − 2
m1

)M−m1∑
m2=0

(−1)m2

×
∑

3<j1<···<jm2≤N

∫
χ12f

2
12 u13 . . . u1,m1+2u2j1 . . . u2jm2

∏
3≤i<j≤N

f2
ij
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Upper bound for hard-core bosons - Sketch of the proof

We distinguish 3 types of terms:

i) Tree terms, still entangled with Jastrow:

N3λ`

∫
χ12f

2
12u13

∏
3≤i<j≤N

f2
ij dx

 these terms must be further expanded

ii) Terms with loops, like

N3λ`

∫
χ12f

2
12u13u23

∏
3≤i<j≤N

f2
ij dx

 these terms give contributions of the LHY order

iii) Tree terms, disentangled from Jastrow:

N2λ`

∫
χ12f

2
12

∏
3≤i<j≤N

f2
ij dx

 these terms cancel with the denominator
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Beyond the Bijl-Dingle-Jastrow state

Partial expansion of the Bijl-Dingle-Jastrow state converges if

`� (ρa)−1/2

BUT to match the LHY term we expect correlations are needed up to

` > (ρa)−1/2

Possible way out: trial state of the form

ψ(x1, . . . , xN ) =
N∏
i<j

f`(xi − xj)︸ ︷︷ ︸
hard sphere cond. &

correlation at short scale

φ(x1, . . . , xN )︸ ︷︷ ︸
correlation at large scale

 very difficult to use cancellations in the thermodynamic limit.
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Beyond the Bijl-Dingle-Jastrow state

Trial states of this form on the other hand have been successfully used in

I [B., Cenatiempo, Olgiati, Pasqualetti, Schlein ‘23] dealing with the
ultra dilute Gross-Pitaevskii regime.
It corresponds to consider a box of side length L ∼ (ρa)−1/2,

Then,
Nρa`2 = (ρa3)−1/2ρa`2 � 1

if a� `� (ρa)−1/2(ρa3)1/4

 the Bijl-Dingle-Jastrow factor can be fully expanded

I [Fournais, Girardot, Junge, Morin, Olivieri ‘24] dealing with the
thermodynamic limit in 2d
 also in this case (by box-method) the Bijl-Dingle-Jastrow factor

can be fully expanded
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Thank you for your attention!





An upper bound for hard-core bosons - Sketch of the proof

Proceeding in this way we get

Ehc
N,L

N
≤ 4πaρ

[
1 + C(Cρa`2)M−1 + C

a

`

M∑
j=2

(Cρa`2)j−2]

Choosing
` = c(ρa)−1/2 s.t. Cρa`2 ≤ 1

2
and

M ≥ 1 + log2(ρa3)−1/2

we conclude.



Choice of φ

φ = U∗Ne
BηeBτΩ

where

I UN : L2
S(ΛN )→ F≤N+ =

⊕N

n=0 L
2
⊥(Λ)⊗Sn factors out the condensate

and allows to focus on orthogonal excitations
I Bη and Bτ are generalized Bogoliubov transformations:
Bα = 1

2
∑

p∈2πZ3 αp(b∗pb∗−p − bpb−p),
I the kernel η is the Fourier transform of η̌ = −N(1− g),
g being the solution of
−∇(f2

`∇g) + λ`χ`f
2
` g = λ`0χ`0f

2
` g

a
N
≤ |x| ≤ `0

g(x) = 1 |x| = `0

∂rg |x| = `0

`0 = O(1).

 g(x) = f`0 (x)
f`(x) , and λ`0 as λ` with the replacement `→ `0.



Second order upper bound for smooth potentials

For regular potentials the problem has been solved

Theorem (B., Cenatiempo, Schlein) Forum Math. Sigma, 9 (2021)

Let V ∈ L3(R3) non-negative, radially symmetric, with compact
support in BR(0).
Then,

e(ρ) ≤ 4πaρ
[
1 + 128

15
√
π

√
ρa3
]

+ Cρ
3
2 + 1

10

for some C > 0 and for ρ small enough.

I an upper bound for smooth potential was already obtained in [Yau,Yin ’09]

I hard-core interaction is still open
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Bogolubov-like trial state

The trial state is written in the grand-canonical setting.
Let a]p, p ∈ 2π

L3 Z3 the creation/annihilation operators, Ω ∈ F = ⊕n≥0L
2
s(ΛnL)

the vaccum vector.
Inspired by [Bogolubov ’47], we consider

eBeAWΩ

where

W = exp(
√
Na∗0 −

√
Na0), Weyl operator

B = 1
2
∑

p∈ 2π
L

Z3

ηpa
∗
pa
∗
−p − h.c., Bogolubov transformation

A = 1√
N

∑
p,r∈ 2π

L
Z3

ηra
∗
p+ra

∗
−rap − h.c., cubic operator

Similar trial state already used in [Boccato,Brennecke,Cenatiempo,Schlein ’19,’20]
dealing with Gross-Pitaevskii regime.
Localization argument and suitable restrictions on the allowed momenta in the
cubic operator allows to treat the thermodynamic limit.
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Bogolubov-like trial state

Note that, setting η̌(x) = −N(1− f`),∏
i<j

f`(xi − xj)ϕ⊗N0 ∼
∏
i<j

(
1 + 1

N
η̌(xi − xj)

)
ϕ⊗N0

∼
(

1 + 1
N

∑
i<j

η̌(xi − xj) + . . .
)
ϕ⊗N0

∼
(

1 + 1
2
∑
p

ηpa
∗
pa
∗
−p

a0√
N

a0√
N

+ . . .
)
ϕ⊗N0

∼ exp
(1

2
∑
p

ηpa
∗
pa
∗
−p − h.c.

)
ϕ⊗N0

since we expect condensation we approximate a]0 ∼
√
N



Bogolubov-like trial state
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Bogolubov-like trial state

I hence, eBWΩ approximate the Jastrow factor.
 Big advantage: computations are easy

I to deal with the thermodynamic limit also the exponential of a cubic
operator is needed  more difficult to handle

I the trial state eBeAWΩ does not respect the hard-core condition
 hard-core case is still open
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