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Dilute Bose Gas

Nyl

3
N bosons in the 3d box Ap, = [— %, } .
Hamiltonian on L3(AY):

HNL—_ZAzl'i‘ Z T — Tj),

1<i<j<N

V' > 0, spherically symmetric, compact support.
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Dilute Bose Gas

N bosons in the 3d box Ap, = [— %,
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Hamiltonian on L3(AY):

HNL—_ZAzl'i‘ Z T — Tj),
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V > 0, spherically symmetric, compact support.
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Dilute Bose Gas

We are particularly interested in the case of

+ oo, lz| <a
0, |z| > a
In this case, N

<¢7Zi:1 _A%"/}>
ll+11?

where the infimum is taken over v satisfying the hard sphere condition

ER}S,L = inf
»#0

Y(zy,...,zn) =0 if Fi#j: |z, —zj] <a
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Dilute Bose Gas

Let ]
<—A+§V)f:o
f—1for |z| = +o0

Then

fla)=1-

ﬁ outside the range of V'
43

with a scattering length of V.
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Dilute Bose Gas

Let 1
(-a+gv)r=0
f—1for |z| = +o0

Then

flz)=1- ‘—| outside the range of V

43

with

~ if V = V" then

f@=0  |<a

flx)=1—% |z|>a

Tal

hence the scattering length coincides with the radius of the interaction.
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Dilute Bose Gas

Let 1
(-a+gv)r=0
f—1for |z| = +o0

Then

flz)=1- ‘—| outside the range of V

43

with

~ if V = V" then

f@=0  |<a

flx)=1—% |z|>a

Tal

hence the scattering length coincides with the radius of the interaction.

We consider the
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Lee-Huang-Yang Formula

In [Bogolubov '47] and more explicitly in [Lee,Huang,Yang '57] it was predicted
that in the dilute limit

. Eni = 5
e(p) =  m =5 =dma 1+15f pa® + o(+/ pa®)
N/L3=p
Only dependence on V through its scattering length.
Lower bound:

[Lieb, Yngvason '98],. .. [Fournais, Solovej '20+'21], ... (general V, also hard core)

Upper bound:
[Dyson '57], ...[Yau, Yin '09], [B., Cenatiempo, Schlein '21], ...(V € L?)
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Lee-Huang-Yang Formula

In [Bogolubov '47] and more explicitly in [Lee,Huang,Yang '57] it was predicted
that in the dilute limit

. Eni = 5
e(p) =  m =5 =dma 1+15f pa® + o(+/ pa®)
N/L3=p
Only dependence on V through its scattering length.
Lower bound:

[Lieb, Yngvason '98],. .. [Fournais, Solovej '20+'21], ... (general V, also hard core)

Upper bound:
[Dyson '57], ...[Yau, Yin '09], [B., Cenatiempo, Schlein '21], ...(V € L?)

~~ upper bound for hard sphere still open.
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An upper bound for hard-core bosons

Currently best available upper bound for hard sphere bosons:

Theorem [B., Cenatiempo, Giuliani, Olgiati, Pasqualetti, Schlein '23]

There exists C' > 0 such that

lim % < 4mpa [1 + C(pa3)1/2]
N,L—o00: N -
N/L3=p

» it captures the correct order but NOT the right constant
» we use a Bijl-Dingle-Jastrow factor similarly as in [Dyson '57]

» no box-method, differently from [Yau, Yin '09], [B., Cenatiempo, Schlein '21]

v

fine cancellations among numerator and denominator
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The Bijl-Dingle-Jastrow factor [Bijl ‘40, Dingle ‘49, Jastrow ‘55]

We look for a suitable trial state
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The Bijl-Dingle-Jastrow factor [Bijl ‘40, Dingle ‘49, Jastrow ‘55]

We look for a suitable trial state

In the non-interacting case the (not normalized) ground state is
V= z1,...,zn) = p¥" (21,...,2n) Bose-Einstein condensation
with ¢o(z) = 1 condensate wave function.

For dilute interacting Bose gas condensation is expected BUT ) % go(?N
(a product state doesn't respect the hard sphere condition)

The trial state in [B., Cenatiempo, Schlein '21] is not well suited for hard sphere
(Bogoliubov approach)
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The Bijl-Dingle-Jastrow factor [Bijl ‘40, Dingle ‘49, Jastrow ‘55]

~~+ We have to describe correlations:

Y(z, ... H fe(zi — zj), Bijl-Dingle-Jastrow factor

i<J

with 0 < f, < 1 solution of

—Afe = Xefexe
fe(x) =0 if |z| <a, a<(t<L
Orfo(z) =0 if [z| =¢

normalized so that fy(z) =1 if |z| = £.
Then,

rv=22(1+0(5)). 0<1-siw) < O rgxe(@)

ug ()
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The Bijl-Dingle-Jastrow factor [Bijl ‘40, Dingle ‘49, Jastrow ‘55]

We try to expand the Bijl-Dingle-Jastrow factor:

] 72— syt = [ T 11 wetou - o)
/ /

i<j i<j
= |AL|Y _N2|AL|<N*1>/W(x)dx+...
=|ALN [1 — Npal® +]

~ for any £ > a, the expansion diverges.
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The Bijl-Dingle-Jastrow factor [Bijl ‘40, Dingle ‘49, Jastrow ‘55]

Nevertheless we can expand in one variable:

Hfg i — xy)dx = Hl—ugxl—x] er i — x5)
/ /]

1<j 2<i<y
/1—211@9:1—3:] er T — ;)
2<i<y
= |AL|1 — Cpal® +. / H fi(zi —z;)das ... dey
<1 i<y
~» converges assuming pal? < 1. We choose ( = ¢(pa) '/?, ¢ < 1.
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Computation of the energy

We set fij = fe(xl = :cj) and Xij = X[(ﬂ?i = .23]').
We compute

N

—A m \V4 n v"m
—Amkazg Z fk wa 2 f,fA ' f;n

117

i<j m#k i<j n,m#k o J b 1<J
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Computation of the energy

We set fij = fg(xl — :cj) and Xij = X[(ﬂ?i — J?j).

We compute

N N _Af N
—Ag, Hflj = Z —=Jkm l_IflJ + three body term

i<j mn JEB ges
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Computation of the energy

We set fij = fg(xl = :cj) and Xij = X[(ﬂ?i = J?j).

We compute

N
—Ag, H fij = Z Af] i l_IflJ + three body term

i<j m#k i<j

Using the scattering equation

(¥, Z A ) = Z /2/\/\/ m Hf”der three body term

k<m i<j
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Computation of the energy

We set fij = fg(xl = .Z‘j) and Xij = X@(ﬂ?i = J?j).

We compute

Al Afz .
Az, H fij = Z Hfij + three body term

i<j m#k i<j

Using the scattering equation

(¥, Z A ) = Z /2/\« Xkm Hf”dx+ three body term

k<m i<j

we obtain

N N
(¥, Z —Ag, ) ~ N2), /X12 Hff] dx + three body term
k=1

i<J
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An upper bound for hard-core bosons - Sketch of the proof

Expanding in the first variable and setting w;; = u¢(z; — x;).
Let M € N even

N
/X12Hfi2j

1<j

2
S/X12f122 172”111 — ot Z Uljy - - - Ulgpg H fij

i1 J1<--<jm 2<i<j<N
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An upper bound for hard-core bosons - Sketch of the proof

Expanding in the first variable and setting u;; = u¢(x; — x;).
Let M € N even

N
/XlQHf'?j

i<j
2 2
S/Xlzfm 1 § Utj; — o0 § ULjy - - - Uljpg Il b
71 j1<-<jm 2<i<j<N
M
N —2
m 2) 2
= E (-1) 1( m X12f12 U13 . .. Ulmy || e
1
m1=0 2<i<j<N
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An upper bound for hard-core bosons - Sketch of the proof

Expanding in the first variable and setting u;; = u¢(x; — x;).
Let M € N even

N
/X12Hfi2j

i<j
2 2
S/Xlzfm 1 § Utj; — 0 g Uljy - - Uljpg Il b
j1 j1<---<Jim 2<i<j<N
M
N —2
m 2) 2
= E (-1) 1( m X12f12 U13 . .. Ulmy || e
1
m1=0 2<i<j<N

Expand second variable:

7 = N -2\ "
/X”Hﬁf : Z(_l)m< m > >y

1<j m1=0

mo=0

2
X E /X12f12u13H'ul,m1+2”l,n o U2, I I i
N

3<j1< - <fmy 3<i<j<N
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Upper bound for hard-core bosons - Sketch of the proof

We distinguish 3 types of terms:

i) Tree terms, still entangled with Jastrow:

N3>\€/X12f122u13 I £ax

3<i<j<N

i) Terms with loops, like

N?’)\e/X12f122U13u23 I r5ax

3<i<j<N
iii) Tree terms, disentangled from Jastrow:
NQAz/X12f122 H ff? dX

3<i<j<N
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Upper bound for hard-core bosons - Sketch of the proof

We distinguish 3 types of terms:

i) Tree terms, still entangled with Jastrow:

2 2
N3>\Z/X12f12'uf13 H ij dx
3<i<j<N
~~ these terms must be further expanded

i) Terms with loops, like
2 2
N?’)\e/X12f12U13U23 H i dx
3<i<j<N
~> these terms give contributions of the LHY order
iii) Tree terms, disentangled from Jastrow:
2 2 2
N )\Z/X12f12 H fij dx
3<i<j<N
~~these terms cancel with the denominator
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Beyond the Bijl-Dingle-Jastrow state

Partial expansion of the Bijl-Dingle-Jastrow state converges if
€< (pa)~t/?
BUT to match the LHY term we expect correlations are needed up to

> (pa)~'/?
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Beyond the Bijl-Dingle-Jastrow state

Partial expansion of the Bijl-Dingle-Jastrow state converges if

€< (pa)~t/?

BUT to match the LHY term we expect correlations are needed up to
0> (pa)~/?
Possible way out: trial state of the form

Y(x1,...,ZN) = er i —x5)  &(x1,...,2N)
—_——

i<J
| —
hard sphere cond. &
correlation at short scale

correlation at large scale

~» very difficult to use cancellations in the thermodynamic limit.
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Beyond the Bijl-Dingle-Jastrow state

Trial states of this form on the other hand have been successfully used in

> [B., Cenatiempo, Olgiati, Pasqualetti, Schlein ‘23] dealing with the
ultra dilute Gross-Pitaevskii regime.
It corresponds to consider a box of side length L ~ (pa)
Then,

~1/2
b

Npat? = (pas)fl/zpaﬁ2 <1
if a < £ < (pa)~/?(pa®)!/*
~~ the Bijl-Dingle-Jastrow factor can be fully expanded

» [Fournais, Girardot, Junge, Morin, Olivieri ‘24] dealing with the
thermodynamic limit in 2d
~ also in this case (by box-method) the Bijl-Dingle-Jastrow factor
can be fully expanded
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Thank you for your attention!






An upper bound for hard-core bosons - Sketch of the proof

Proceeding in this way we get

hc

< 4map [1 + C(Cpat*)™

C\\Q

M
Z (Cpal®)~ 2

Choosing
0 =c(pa)™'? st. Cpal® <

N =

and
M > 1+ logy(pa®) ™"/

we conclude.



Choice of ¢

¢ =UrnePe® 0
where
Un: LE(AY) — ]-'EN = @2’:0 L3 (A)®s™ factors out the condensate
and allows to focus on orthogonal excitations
B,, and B, are generalized Bogoliubov transformations:
Ba =3 conzs W (bpbp — bpb_p),
the kernel n is the Fourier transform of 7= —N(1 — g),
g being the solution of

—V(fiVg) + Aexefig = Aoxen fig & < x| <o
g(CL‘) =1 |1‘| =Y o = O(l)
81"9 |33| =Yy

~ g(x) = f;:((;)), and A, as A¢ with the replacement ¢ — /4.




Second order upper bound for smooth potentials

For regular potentials the problem has been solved

Forum Math. Sigma, 9 (2021)
Let V € L3*(R?) non-negative, radially symmetric, with compact
support in Br(0).
Then,

128 3,1
< drap|1+ —==_./ 3} Cpitt
e(p) < Trap{ +15\/;r pa3| +Cp

for some C' > 0 and for p small enough.




Second order upper bound for smooth potentials

For regular potentials the problem has been solved

Forum Math. Sigma, 9 (2021)
Let V' « L°(R") non-negative, radially symmetric, with compact
support in Br(0).
Then,

128 3,1
<dmap|l+ ——=+/ 3} Cp2t10
e(p) < Trap{ +15\/;r pa3| +Cp

for some C' > 0 and for p small enough.

> an upper bound for smooth potential was already obtained in [Yau,Yin '09]

» hard-core interaction is still open



Bogolubov-like trial state

The trial state is written in the

Let ab,p € 25Z° the creation/annihilation operators, Q € F = ®nx0L3(A})
the vaccum vector.

Inspired by [Bogolubov '47], we consider
BeAwa
where

W = exp(V'Na§ — vV Nao), Weyl operator

1 .
B= 5 Z npaya’, — h.c., Bogolubov transformation
eﬂzs
Z nrap_,_,«a_rap h.c., cubic operator

p re2rz3



Bogolubov-like trial state

The trial state is written in the

Let ab,p € 25Z° the creation/annihilation operators, Q € F = ®nx0L3(A})
the vaccum vector.

Inspired by [Bogolubov '47], we consider
A
where

W = exp(V'Na§ — vV Nao), Weyl operator

E npaya’, — h.c., Bogolubov transformation
2w 73
pe2rz
E nrap_,_,«a_rap h.c., cubic operator
p re2rz3

Similar trial state already used in [Boccato,Brennecke,Cenatiempo,Schlein '19,'20]
dealing with Gross-Pitaevskii regime.

and suitable in the
cubic operator allows to treat the thermodynamic limit.



Bogolubov-like trial state

Note that, setting 77(z) = —N(1 — f¢),

1 fe(: — )06 ~H<1+N17 j))@?N

i<J i<j

1 .
~ (1+Nzn(1‘i—wj)+...>tp?1v



Bogolubov-like trial state

Note that, setting 77(z) = —N(1 — f¢),

[ e — o™ ~ ] (1 + %ﬁ(wi - mj))@?N

i<j i<j
1 .
~ (14 S =)+ )Y
i<j
1 _ ®N
o (1 3 Zﬁp%a—p + )900
P
1 - QN
~ exp (5 Z:npapa,l7 h.c )<p0
p

since we expect condensation we approximate



Bogolubov-like trial state

hence, eBWQ approximate the Jastrow factor.

~ Big advantage:

to deal with the thermodynamic limit also the exponential of a cubic
operator is needed ~~ more difficult to handle

the trial state eZeAWQ does not respect the hard-core condition

~
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