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Università di Pisa

July 26th 2024

Joint meeting AMS-UMI, Palermo



Interacting Many-Body Systems

Many-body quantum mechanics:

Small scale: large number of particles described microscopically by the

Schrödinger equation.

Large scale: we observe emergent phenomena, such as phase transitions,

universality, nonlinear effects, macroscopic patterns, collective behavior.

The challenge

Derive effective theories from first principles of quantum mechanics,

describing the emergent physics in terms of few degrees of freedom.
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The Bose gas: a Many-Body Quantum Problem

Emergence of Bose-Einstein condensation in gas of bosonic particles at very

low temperature.

Objects of study: BEC, excitation spectrum in scaling limits, free energy at

the critical temperature

3



Zero temperature systems



Many-body bosonic system: noninteracting case

Consider N noninteracting bosons in a box Λ = [−L/2, L/2]3 described by

HN = −
N∑
i=1

∆xi

acting on
(
L2(Λ)⊗ · · · ⊗ L2(Λ)︸ ︷︷ ︸

N

)
sym

∼= L2
s (ΛN).

Bosonic statistics: permutation-symmetric wavefunctions ψ ∈ L2
s (ΛN)

ψ(x1, . . . , xi , . . . , xj , . . . , xN) = ψ(x1, . . . , xj , . . . , xi , . . . , xN)

Bose-Einstein condensation1:

ψ(x1, . . . , xN) = ϕ0(x1)ϕ0(x2) . . . ϕ0(xN)

1Bose. Z. Phys. 26 (1924)

Einstein. Sitzungsber. Preuss. Akad. Wiss. (1924)
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The interacting Bose gas

N interacting bosonic particles in a box Λ = [−L/2, L/2]3

HN = −
N∑
i=1

∆xi +
N∑
i<j

V (xi − xj)

acting on ψ ∈ L2
s (ΛN): symmetric tensor product

(
L2(Λ)⊗ · · · ⊗ L2(Λ)︸ ︷︷ ︸

N

)
sym

ψ is not factorized anymore!

ψ(x1, . . . , xN) 6= ϕ0(x1)ϕ0(x2) . . . ϕ0(xN)

Correlations

Interactions introduce correlations:

the many-body wave function ψ is far from a product (it is a linear

combination of elementary tensors).

We need an efficient way to understand this.

5



Model for a dilute Bose gas: the Gross-Pitaevskii regime

N bosons in a box Λ = [−L/2, L/2]3, described by

HN = −
N∑
i=1

∆xi +
N∑
i<j

N2V (N(xi − xj)).

acting on L2
s (ΛN).

Λ

L=1

aN−1

Dilute system: strong and short-range

interactions for N →∞:

Range of the interaction = N−1

Mean interparticle distance = N−1/3

It is a rescaling of lengths: L ∼ N, ρ ∼ 1/N2. Simultaneous large volume

and low density limit. (A spectral gap is introduced)
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Ground state properties

We are interested in

Ground state energy

EN = min
ψ∈L2

s (ΛN ),
‖ψ‖2=1

〈ψ,HNψ〉

The ground state vector solves the eigenvalue problem (time independent

Schrödinger equation)

HNψN = ENψN

The spectrum σ(HN): excitation energies
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Bose-Einstein Condensation

Consider the ground state vector ψN .

One-particle reduced density matrix (quantum marginal) associated to ψN :

γψN := Tr2,...,N |ψN〉〈ψN |

γψN (x , y) =

∫
dx2 . . . dxNψN(x , x2, . . . , xN)ψ̄N(y , x2, . . . , xN)

Definition: Bose-Einstein condensation

The one-particle reduced density matrix γψN has a macroscopic eigenvalue.

Theorem
Let V ∈ L3(R3) positive, spherically symmetric and compactly supported.

Then

1− 〈ϕ0, γψN
ϕ0〉 ≤

C

N

ϕ0 = 1 (for periodic b.c.) and represents the condensate wave function.

The number of excitations over the condensate is bounded uniformly in N
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Ground state energy and excitation spectrum 2

Theorem

Let V ∈ L3(R3) positive, spherically symmetric and compactly supported.

Then we have

EN = 4πa(N − 1) + eΛa
2

− 1

2

∑
p∈Λ∗+

[
p2 + 8πa−

√
|p|4 + 16πap2 − (8πa)2

2p2

]
+O(N−1/4)

where Λ∗+ = 2πZ3\{0} and eΛ ' 10.0912.

The spectrum σ(HN − EN) below a threshold ζ is given by∑
p∈Λ∗+

np
√
|p|4 + 16πap2 +O(N−1/4(1 + ζ3))

with np ∈ N and np 6= 0 for finitely many p ∈ Λ∗+ only (np is the number of

excited states with momentum p).

2Boccato, Brennecke, Cenatiempo, Schlein. Acta Mathematica 222 (2019)

9



Main idea of the proof

Idea: transform the interacting N-body Hamiltonian into N decoupled

one-body Hamiltonians.

We construct 4 unitaries U1 U2 U3 U4 =: U on different energy scales so that

U∗HN U ' EN + HB

The many-body Hamiltonian in second quantization is a quartic operator:

HN =
∑
p∈Λ∗+

p2a∗pap +
1

2N

∑
p,u,v∈Λ∗

V̂ (p/N) a∗u+pa
∗
v−pauav

The effective Hamiltonian HB instead is a one-body operator, i.e., quadratic in

second quantization

HB =
∑
p∈Λ∗+

√
|p|4 + 16πap2a∗pap

Main idea of the proof: nonlinear theory

U3 extracts the contribution of terms higher than quadratic and renormalizes the

quadratic part of the Hamiltonian. It implements a nonlinear transformation of

creation and annihilation operators.
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Approximation of eigenvectors

If ψN denotes a ground state vector of HN , and θ1, θ2 are the first two

eigenvalues of HN ∥∥ψN − e iωUΩ
∥∥2 ≤ C

θ2 − θ1
N−1/4

for a phase ω ∈ [0; 2π)

11



Positive temperature systems



Positive temperature systems: the critical temperature

We need to consider temperature effects to be able to describe the phase

transition.

Free energy with inverse temperature β:

F (N,Λ, β) = − 1

β
ln
(
Tr e−βHN

)
.

Analysis within the quasi-free approximation3

Proof of condensation obtained in the Gross-Pitaevskii regime4

Remark: at the critical temperature, number of excited particles is order N

3Napiórkowski, Reuvers, Solovej. Comm. Math. Phys. 360 (2018)
4Deuchert, Seiringer. Arch. Ration. Mech. Anal. 236 (2020) 12



Grand canonical free energy

Set of states

SN = {Γ ∈ B(F) | Γ ≥ 0, trΓ = 1, tr[NΓ] = N},

Free energy functional

F(Γ) = tr[HNΓ]− 1

β
S(Γ) with S(Γ) = −tr[Γ ln(Γ)]

Free energy

F (β,N, L) = min
Γ∈SN

F(Γ) = − 1

β
ln
(
tr[e−β(HN−µN )]

)
+ µN.

Chemical potential µ chosen so that the minimizer (Gibbs state)

G =
e−β(HN−µN )

tr[e−β(HN−µN )]

satisfies Tr[NG ] = N.
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Noninteracting Bose gas at positive temperature

N noninteracting bosons in a box Λ = [−L/2, L/2]3

HN = −
N∑
i=1

∆xi acting on L2
s (ΛN)

For large N, the asymptotic behavior of N0, the number of particles in the

condensate, is

N0(N,Λ, β)

N
'
[

1− βc
β

]
+

with βc =
1

4π

(
N

L3ζ(3/2)

)−2/3

Phase transition:

for β = κβc , κ ∈ (1,∞), then N0 ∼ N[1− 1/κ]

for β = κβc , κ ∈ (0, 1), then N0 ∼ 1

The grand canonical free energy is

F0(N,Λ, β) =
1

β

∑
p∈Λ∗

ln
(

1− e−β(p2−µ0)
)

+ µ0N = FBEC
0 + F+

0

(by scaling F0(N,Λ, β) ∼ 1
β5/2 ∼ N5/3)
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Upper bound to the free energy,5 interacting bosons

Theorem (B., Deuchert, Stocker, 2024)

Let V ∈ L3(R3) be positive, compactly supported, spherically symmetric.

Let µ0 and ρ0

(
N,Λ, β

)
be the chemical potential and the expected condensate

density of the ideal Bose gas. For β = κβc with κ ∈ (1,∞) we have

F
(
N,Λ, β

)
≤ F+

0 (N,Λ, β) + 4πaN |Λ|
(
2ρ2 − ρ2

0(N,Λ, β)
)

+
ln(16βaN/|Λ|)

2β

−
1

2β

∑
p∈Λ∗+

[
16πaN%0(β,N, L)

p2
− ln

(
1 +

16πaN%0(β,N, L)

p2

)]
+ o
(
N2/3L−2

)
,

where aN = a/N is the scattering length.

5Boccato, Deuchert, Stocker. SIAM Journal on Mathematical Analysis 56 (2024)
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Remarks

First two terms obtained in the canonical setting6 and in the

thermodynamic limit7

(2β)−1 ln(16βaN/|Λ|) related to particle number fluctuations in the BEC

By restricting to quasi-free states: Bogoliubov free energy functional8

predicts (by substituting
∫
V with 8πa):

f (β, ρ) = f0(β, ρ) + 4πa(2ρ2 − ρ2
0)−16

√
π

3β
(a%0)3/2 + o

(
(a%0)3/2)

For very low temperatures (T ∼ ρa): correction to the Lee-Huang-Yang

formula9

6Deuchert, Seiringer. Arch. Ration. Mech. Anal. 236 (2020)
7Seiringer. Commun. Math. Phys. 279 (2008)

Yin. J. Stat. Phys. 141 (2010)
8Napiórkowski, Reuvers, Solovej. Comm. Math. Phys. 360 (2018)
9Haberberger, Hainzl, Nam, Seiringer, Triay. arXiv:2304.02405 (2023)

Haberberger, Hainzl, Schlein, Triay. arXiv:2405.03378 (2024)

Fournais, Girardot, Junge, Morin, Olivieri, Triay.
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Idea of the proof

We define the quasi-free states with condensate

Γ0 =

∫
C
|z〉〈z | ⊗ GB(z)p(z)dz , with GB(z) =

exp(−βHBog)

Tr[exp(−βHBog)]

HBog is the Bogoliubov Hamiltonian

HBog =
∑
p∈Λ∗+

p2a∗pap+4πaN%0(β,N, L)
∑
p∈Λ∗+

[
2a∗pap + (z/|z|)2a∗pa

∗
−p + (z/|z|)2apa−p

]
|z〉 = eza

∗
0−za0 |Ω〉 is a coherent state and p(z) is a probability distribution on C

p(z) =
exp

(
−β
(
4πaNL

−3|z|4 − µ̃|z|2
))∫

C exp (−β (4πaNL−3|z|4 − µ̃|z|2)) dz

Γ0 however does not describe correlations and justify universality

17



Idea of the proof

We write

Γ0 =
∞∑
α=1

λα|ψα〉〈ψα|

Our trial state is

Γ =
∞∑
α=1

λα|φα〉〈φα|, where φα =
(1 + B)ψα
‖(1 + B)ψα‖

.

where correlations are described by the second-quantized operator

B =
1

2L3

∑
p∈PH, u,v∈PL

ηp a
∗
u+pa

∗
v−pauav

particles with momenta in PL = {|p| ≤ N1/3} are thermal excitations

ηp, for p ∈ PH = {|p| ≥ N1/2}, describes two-body correlations
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Idea of the proof

Correlations are not implemented unitarily. We need to estimate the entropy so

to obtain10

S(Γ) = −tr[Γ ln(Γ)] ≥ S(Γ0)− ln tr

(∑
α′

|φα′〉〈φα′ | Γ

)

and11

S(Γ) ≥
∫
C
S(GB(z))p(z)dz + S(p)− CN−1+δ,

where

S(p) = −
∫
C
p(z) ln(p(z))dz

10Seiringer: The thermodynamic pressure of a dilute Fermi gas, Commun. Math. Phys. 261 (2006)
11Berezin, General concept of quantization, Commun. Math. Phys. 40 (1975)

Lieb, The classical limit of quantum spin systems, Commun. Math. Phys. 31 (1973)
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Lemma (Seiringer, 2006)

Let Γ be a density matrix on some Hilbert space with eigenvalues {λα}α∈N, let

{Pα}α∈N be a family of one-dimensional orthogonal projection (for which

Pα1Pα2 = δα1,α2Pα1 need not necessarily be true), and define Γ̂ =
∑
α λαPα.

Then we have

S(Γ̂) ≥ S(Γ)− lnTr

(∑
α

PαΓ̂

)
.

11Seiringer: The thermodynamic pressure of a dilute Fermi gas, Commun. Math. Phys. 261 (2006)
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Lemma

Let {G(z)}z∈C be a family of states on a Hilbert space, let p : C→ R be a

probability distribution and define the state

Γ =

∫
C
|z〉〈z | ⊗ G(z)p(z)dz .

Then we have

S(Γ) ≥
∫
C
S(G(z))p(z)dz + S(p) with S(p) = −

∫
C
p(z) ln(p(z))dz .

11Berezin, General concept of quantization, Commun. Math. Phys. 40 (1975)

Lieb, The classical limit of quantum spin systems, Commun. Math. Phys. 31 (1973)
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Ground state energy

Ground state energy

EN = min
ψ∈L2

s (ΛN ),
‖ψ‖2=1

〈ψ,HNψ〉

At leading order (i.e., order N): Gross-Pitaevskii functional

lim
N→∞

EN

N
= min
ϕ∈L2(Λ),
‖ϕ‖2=1

EGP(ϕ)

with

EGP(ϕ) =

∫
dx
[
|∇ϕ(x)|2 + 4πa |ϕ(x)|4

]
The minimizer ϕ0 of EGP(ϕ) represents the condensate wave function.

For periodic boundary conditions: EN = 4πaN + o(N)

Universality: the ground state energy depends on the interaction potential

only through its scattering length (a > 0)

Interactions may connect all particles, but two-particle correlations dominate.
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Bose Gas at the Critical Temperature

To gain information on the phase transition, we study the free energy in the

thermodynamic limit:

f (β, ρ) = lim
N,L→∞
ρ=N/|Λ|

− 1

β|Λ| ln
(
Tre−βHN

)
Within the quasi-free approximation: Bogoliubov Free Energy functional 12,

containing information on the critical temperature of the interacting system.

Beyond the quasi-free approximation: we aim at computing the free energy

from the original many-body problem13. We expect

f (β, ρ) = f0(β, ρ) + 4πa(2ρ2 − ρ2
0)−16

√
π

3β
(a%0)3/2 + o

(
(a%0)3/2)

Useful technique at zero temperature.14

Current projects:

→ Obtain upper and lower bounds for f (β, ρ)

12Napiórkowski, Reuvers, Solovej. Comm. Math. Phys. 360 (2018)
13Seiringer. Commun. Math. Phys. 279 (2008)

Yin. J. Stat. Phys. 141 (2010)
14Basti, Cenatiempo, Schlein. Forum Math. Sigma 9(2021)



Quadratic effective Hamiltonian

Naive approach (Bogoliubov theory, 1947):

Expand around the condensate

Drop terms higher than quadratic → completely solvable problem

HB '
N

2
V̂ (0) +

∑
p∈Λ∗+

[
p2 + V̂ (p/N)

]
a∗pap +

1

2

∑
p∈Λ∗+

V̂ (p/N)(a∗pa
∗
−p + apa−p)

Diagonalize through linear transformation of creation and annihilation operators

(Bogoliubov transformation)

This approach cannot yield the scattering length (at best its first Born approximation).

Main idea of our proof: nonlinear theory

Extract the contribution of terms higher than quadratic → use it to renormalize

the quadratic part of the Hamiltonian through a nonlinear transformation of

creation and annihilation operators.

Successive unitary transformations

e−B(τ)e−Ae−B(η)UHNU
∗eB(η)eAeB(τ) = EN + HB + o(1)

A =
1
√
N

∑
r∈PH ,v∈PL

ηr
[

sinh(ηv )b∗r+vb
∗
−rb
∗
−v + cosh(ηv )b∗r+vb

∗
−rbv − h.c.

]
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Idea of the proof

- Quasi-free states with condensate (HB is the Bogoliubov Hamiltonian!)

Γ0 = |W (N
1/2
0 )Ω〉〈W (N

1/2
0 )Ω| ⊗ e−βHB

Tr[e−βHB ]
=
∞∑
α=1

λα|ψα〉〈ψα|

does not describe correlations and justify universality

- A more precise trial state is

Γ =
∞∑
α=1

λα|φα〉〈φα|, where φα =
eBψα
‖eBψα‖

.

where correlations are described by the second-quantized operator

B =
1

2L3

∑
p∈PH, u,v∈PL

ηp a
∗
u+pa

∗
v−pauav

particles with momenta in PL = {|p| ≤ N1/3} are thermal excitations

ηp, for p ∈ PH = {|p| ≥ N1/2}, describes two-body correlations



Scattering length a: look at the two-body scattering process

Interactions may connect all particles, but two-particles correlations dominate.

Consider the two-body problem in the relative coordinates

|x |

f0

V [−∆ +
1

2
V ]f0 = 0

f0(x) = 1 for |x | → ∞

Outside the range of V , f0 is harmonic in the form:

f0(x) = 1− a

|x |
a is the scattering length of V .

To be interpreted as an effective range and strength of V .

Equivalently

a =
1

8π

∫
R3

V (x)f0(x)dx



Ground State Energy and BEC in the Neumann box15

Theorem (B., Seiringer 2022)

1. Let V > 0 be compactly supported, spherically symmetric and bounded. Assume

κ small enough and n`−1 ≤ 1. Then∣∣∣ENeu(n, `)− 4πa
n2

`

∣∣∣ ≤ C
(n
`

+
n2

`2
ln(`)

)
for a constant C > 0.

2. Every low-energy wave function exhibits Bose-Einstein condensation.

Corollary (Thermodynamic Limit)
Let V satisfy the same assumptions as above and λ small enough. Then there exists a

constant C > 0 such that

e(ρ) ≥ 4πaρ
(

1− C(ρa3)1/2 ln(ρ)
)

15C. Boccato, S. Seiringer. Ann. Henri Poincaré 24 (2023)



The Thermodynamic Limit of the Bose gas

Mathematically harder, physically crucial model for the description of phase

transitions: thermodynamic limit.

Difficulty in the thermodynamic limit: absence of an energy gap!

Partition the volume in cells of side-length ` and study a localized problem

Hn,` = −
n∑

i=1

∆i + λ

n∑
i<j

`2V
(
`(xi − xj)

)
acting on L2

s (Λ1), with Λ1 = [−1/2, 1/2].

Λ
n1 n2 n3

L

`
Λ`

` to be chosen as a suitable function of ρ

control of boundary conditions needed

e(ρ) = lim
N,L→∞
ρ=N/|Λ|

E(N, L)

N

For lower bounds, impose Neumann boundary conditions on Λ1

E(N, L) ≥ 1

`2
inf

{nk}:
∑

k nk=N

∑
k

ENeu(nk , `)
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Ground State Energy and BEC in the Neumann box16

Theorem (B., Seiringer 2023)

1. Let V > 0 be compactly supported, spherically symmetric and bounded. Assume

λ small enough and n`−1 ≤ 1. Then∣∣∣ENeu(n, `)− 4πa
n2

`

∣∣∣ ≤ C
(n
`

+
n2

`2
ln(`)

)
for a constant C > 0.

2. Let ψn ∈ L2
s (Λn

1) be a normalized wave function, with

〈ψn,Hn,`ψn〉 ≤ ENeu(n, `) + ζ

for some ζ > 0. Then there exists a constant C > 0 such that

1− 〈ϕ0, γnϕ0〉 ≤ C
( ζ
n

+
1

`

)
where ϕ0(x) = 1 for all x ∈ Λ1.

16Boccato, Seiringer. Ann. Henri Poincaré 24 (2023)
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The Thermodynamic limit

Corollary (Thermodynamic limit)
Let V satisfy the same assumptions as above and λ small enough. Then there exists

a constant C > 0 such that

e(ρ) ≥ 4πaρ
(

1− C(ρa3)1/2 ln(ρ)
)

Remarks:

Result for condensation and ENeu(n, `) is optimal: logarithmic error term is

specific of Neumann boundary conditions

Bound for e(ρ) is not optimal. We take ` ' ρ−1/2; larger lengths ` allow for a

better precision but require a more precise study of Hn,`, with larger n/`

Optimality reached with different localization method, modified kinetic energy18,

leading to the Lee-Huang-Yang formula:

e(ρ) = 4πρa
[
1 + 128

15
√
π

(ρa3)1/2 + o((ρa3)1/2)
]

Reaching the precision of the spectrum allows19 to compute a correction to the

LHY formula for very low temperature (T ≤ ρa(ρa3)−ε)

18Fournais, Solovej. Invent. math. 232 (2021)
19Haberberger, Hainzl, Nam, Seiringer, Triay. Preprint (2023)



Remarks.

For n = ` = N:

− Condensate depletion rate N−1 as for periodic boundary conditions

− Logarithmic behavior of the error bound for the ground state energy∣∣∣eN,N − 4πaN
∣∣∣ ≤ C

(
1 + ln(N)

)
.

Sharp and specific to the Neumann boundary conditions

κ small needed for properties of the two-body Neumann problem

Bound for e(ρ) is not optimal (optimal in [Fournais Solovej 2021],

different localization method, modified kinetic energy)

We take ` ' ρ−1/2; larger lengths ` allow for a better precision but require

a more precise study of Hn,`, with larger n/`

([Fournais21],

periodic b.c.: [Adhikari,Brennecke,Schlein21],[Brennecke,Caporaletti,Schlein21])

In particular, reaching the precision of the spectrum allows to compute a

correction to the LHY formula for very low temperature (T ≤ ρa(ρa3)−ε)

[Haberberger,Hainzl,Nam,Seiringer,Triay23]



Proof: Control of Neumann Boundary Effects

Many-body analysis: conjugate the Hamiltonian with unitary transformations

e−BUnHn,` U
∗
n e

B

U extracts the contribution of the factorized part of wave functions

U∗n Ω = ϕ⊗n

[Lewin, Nam, Serfaty, Solovej 2014]

eB = exp
[

1
2

∫
Λ1×Λ1

dxdy η(x , y) a∗x a
∗
y − h.c.

]
generalized Bogoliubov

transformation implements correlations

[Boccato, Brennecke, Cenatiempo, Schlein 2018]

With a suitable choice of η(x , y)

en,` ≤ 〈Ω, e−BU∗nHn,` Une
BΩ〉 ≤ Cn,` + Cκ

n

`

with Cn,` = 4πa n2

`

(
1 +O

(
a
`

ln(`/a)
))

Use the energy gap K =
∑

p∈Λ∗1,+
p2a∗pap ≥ π2∑

p∈Λ∗1,+
a∗pap = π2N+ for

proving the lower bound and condensation.



Proof: Control of Neumann Boundary Effects

Neumann boundary conditions: choose η(x , y) ' −n(1− `3f (`x , `y)), f

minimizer of

F [g ] =

∫
Λ`×Λ`

dxdy
[
κV (x − y)|g(x , y)|2 + |∇xg(x , y)|2 + |∇yg(x , y)|2

]
g ∈ H1(Λ` × Λ`) with ‖g‖L2(Λ`×Λ`) = 1

- We need information on the minimizer to be used in the many-body analysis.

Remark. For periodic boundary conditions and for R3 with trapping potential:

the problem naturally decouples in relative coordinates and center of mass and

ηTrap(x , y) ' −n(1− f0(x − y))ϕ2
0(x + y)



Proof: Control of Neumann Boundary Effects

Now:

six-dimensional problem, the

minimizer f not explicitly known

method of image charges to express

Green functions(
−∆x + ε

)
Gε(x , y) = δy (x)

for x , y ∈ Λ` × Λ`

Gε(x , y) = GR6

ε (x−y)+
∑

n∈Z6\{0}

GR6

ε (x−yn)

f (x) =

∫
Ω
dy Gε(x , y)

(
λ` + ε−κV (y)

)
f (y)



Proof: Control of Neumann Boundary Effects

Some properties of the minimizer:

λ` := inf
g∈H1(Λ`×Λ`)
‖g‖2=1

F [g ] =
8πa

`3

(
1 +O

(a
`

ln(`/a)
))

Pointwise estimates

|1− `3f (x , y)| ≤ Cκ
(

1
|x−y|+1

)
|∇x+y f (x , y)| ≤ Cκ`−3

(
d
(
x+y

2

)5/3
+ 1
)−1

,

where d(x) is the distance of x to the boundary of the box Λ`.

(The last estimate is crucial for the control of linear terms.)
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