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Introduction

I consider N non-interacting bosons in ΛL = R3/LZ3 with Hamiltonian

H free
N,L =

N∑
i=1

−∆xi ,

acting in a dense subspace of L2
s (ΛN

L ) =
⊗N

sym L2(ΛL)

I the spectrum σ(H free
N,L) consists of finite sums of the form∑

p∈Λ∗

np|p|2

for np ∈ N,Λ∗ = 2π
L
Z3 with orthonormal product eigenstates

ϕp1 ⊗s · · · ⊗s ϕpN ,

built up from plane waves x 7→ ϕp(x) = L−3/2e ipx , for p ∈ Λ∗

I the normalized ground state vector ψN with energy E free
N,L = 0 equals

ψN = ϕ⊗N
0 , ϕ0 = L−3/2 ∈ L2(ΛL)
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I in particular, if one measures O ⊗ 1⊗ · · · ⊗ 1 in the ground state ψN , for
O = O∗ ∈ B(L2

s (Λk
L)) and for some fixed 1 ≤ k ≤ N, then

〈ψN ,O ⊗ 1⊗ · · · ⊗ 1ψN〉 = 〈ϕ⊗k
0 ,Oϕ⊗k

0 〉

I expectations of observables are thus fully determined by ϕ0 ∈ L2(ΛL): we
say that the system exhibits Bose-Einstein condensation (BEC)

I BEC has been verified experimentally in 1995, leading to the Nobel Prize
in Physics for Eric Cornell, Carl Wieman and Wolfgang Ketterle

I a fundamental question in mathematical physics is thus to understand the
spectrum and BEC for interacting models with energy

HN,L =
N∑
i=1

−∆xi +
∑

1≤i<j≤N

V (xi − xj)

I a natural problem is to consider the thermodynamic limit in which the
density ρ = N/L3 is small, but fixed and the particle number N →∞
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I if we naively view the interaction as a perturbation, we may expect

EN,L

N
≈ 〈ϕ

⊗N
0 ,HN,Lϕ

⊗N
0 〉

N
≈ ρ

2

∫
Λ

V =
V̂ (0)

2
ρ

I this ignores particle correlations and turns out to be wrong,
overestimating the energy - the correct formula at low density is

EN,L

N
≈ 4πaρ, (1)

where a denotes the scattering length of V , characterized by

a =
1

8π
inf

{∫
R3

(
2|∇f |2 + V |f |2

)
, lim
|x|→∞

f (x) = 1

}
I a heuristic idea that suggests (1) at low density is that

EN,L ≈ #(pairs of particles)× E2,L ≈
N(N − 1)

2

8πa

L3
≈ 4πaρN
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I for ψN ∈ L2
s (ΛN

L ) define its one-particle density γ
(1)
N through

γ
(1)
N (x , y) =

∫
ΛN−1
L

dx2 . . . dxN ψN(x ; x2, . . . , xN)ψN(y ; x2, . . . , xN)

=
(
tr2,...,N |ψN〉〈ψN |

)
(x , y)

so that, assuming ‖ψN‖ = 1, we have that

γ
(1)
N ∈ B(L2(ΛL)), 0 ≤ γ(1)

N ≤ 1, tr γ
(1)
N = 1

I we say that (ψN)N∈N exhibits complete BEC into ϕ ∈ L2(ΛL) if

lim
N→∞

〈ϕ, γ(1)
N ϕ〉 = 1 ↔ lim

N→∞
tr
∣∣γ(1)

N − |ϕ〉〈ϕ|
∣∣ = 0

I proving that the ground state ψN exhibits Bose-Einstein condensation is a
challenging open problem in mathematical physics
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I since a proof of BEC in the thermodynamic limit is currently out of reach,

it is natural to study strongly diluted systems where ρ = ρN
N→∞→ 0

I set L = LN = N1−κ, κ ≥ 0, and study rescaled system in Λ = R3/Z3 with

HN =
N∑
i=1

−∆xi +
∑

1≤i<j≤N

N2−2κV
(
N1−κ(xi − xj)

)
,

I by scaling, the scattering length of VN = N2−2κV (N1−κ.) is equal to
a/N1−κ and, similarly, the solution fN of the zero energy scattering
equation for VN is obtained by scaling as fN(.) = f (N1−κ.), where

(−2∆ + V )f = 0, lim
|x|→∞

f (x) = 1

I the thermodynamic limit corresponds to κ = 2
3

(at density ρ = 1) while the
choice κ = 0 describes the well-known Gross-Pitaevskii (GP) limit

I notice that in the Gross-Pitaevskii regime, the total kinetic and potential
energies are typically both of the same order O(N)

I in the GP regime, if V is sufficiently small, e.g. in the sense that a� 1,
one can use simple perturbative arguments to derive BEC
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Theorem (B.-Brooks-Caraci-Oldenburg ’24)

Let V ∈ L1(R3) be pointwise non-negative, radially symmetric and of compact
support. Moreover, let κ ∈ [0, 1

20
), ϕ0 = 1|Λ ∈ L2(Λ) and denote by ψN the

normalized ground state of HN with one-particle density γ
(1)
N . Then

lim
N→∞

〈ϕ0, γ
(1)
N ϕ0〉 = 1.

I first proof of BEC by [Lieb-Seiringer ’02], valid for κ ∈ [0, 1
10

)

I [Fournais ’21] proves BEC up to κ ∈ [0, 2
5

+ ε), extending ideas previously
developed in [Brietzke-Fournais-Solovej ’20, Fournais-Solovej ’20]; detailed
review in [Fournais-Girardot-Junge-Morin-Olivieri ’23]

I [Lieb-Seiringer ’02], [Fournais ’21] employ localization arguments to
reduce the analysis to systems with GP scaling and small scattering length

I [Adhikari-B.-Schlein ’21] provides alternative proof for κ ∈ [0, 1
43

) avoiding
localization, but extending operator expansion methods developed in
[B.-Schlein ’19], [Boccato-B.-Cenatiempo-Schlein ’18, ’19, ’20]

I in [BBCO ’24] our goal is to simplify the proof of [Adhikari-B.-Schlein ’21]
and to clarify its structure, combining previous ideas with [Brooks ’23]
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I [Adhikari-B.-Schlein ’21] is based on the heuristics that

ψN ≈ C
∏

1≤i<j≤N

f
(ij)
N ϕ⊗N

0 =
∏

1≤i<j≤N

(
1− (1− f

(ij)
N )

)
ϕ⊗N

0

≈ C
(

1−
∑

1≤i<j≤N

(1− f
(ij)
N ) + . . .

)
ϕ⊗N

0

≈ C exp

(
− 1

2

∑
p,q,r∈Λ∗

ηr a
∗
p+ra

∗
q−rapaq

)
ϕ⊗N

0

≈ e−Bηϕ⊗N
0 ,

where f
(ij)
N = f (N1−κ(xi − xj)), ηr = ̂(1− fN)(r) and

Bη =
1

2

∑
p,q,r∈Λ∗:

|r|>Nα;|p|,|q|≤Nα

ηr a
∗
p+ra

∗
q−rapaq − h.c.

I recall that, by the scattering equation, (1− fN) solves(
− 2∆ + VN

)
(1− fN) = VN
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I one can then derive a suitable coercivity bound on

eBηHNe
−Bη = HN − [HN ,Bη] +

1

2

[
[HN ,Bη],Bη

]
+ . . .

and use that e±BηN+e
∓Bη is comparable to N+ =

∑
p 6=0 a

∗
pap

I the main effect of eBη ( · )e−Bη is to renormalize the potential for |p| ≤ Nα:

V̂ (p/N1−κ) 7→ V̂ren(p) = V̂f (p/N1−κ) ≈ 8πa

I if κ > 0 is small enough, one then finds 0 < c < 1 so that

eBηHNe
−Bη ≥ c

∑
p∈Λ∗

|p|2a∗pap +
Nκ

2N

∑
p,q,r∈Λ∗:
|r|≤Nα

V̂ren(r)a∗p+ra
∗
q−rapaq + o(N)

≥ 4πaN1+κ + cN+ − CNκ+3α + o(N)

I question: the crucial renormalizations are essentially due to commutators
linear in Bη - is there a simpler proof without operator expansions?

I question: how explain the emergence of Vren in a more structural way?
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Ideas from the Proof: Two-Body Case

I consider the two-body Hamiltonian that acts on L2
s (Λ2) by

H2 = −∆x1 −∆x2 + VN = −∆x1 −∆x2 + N2−2κV (N1−κ(x1 − x2))

and let us recall a simple proof of the fact that inf σ(H2) ≈ 8πa
N1−κ

I key observation: BEC is trivial in this case, in the sense that

4π2〈ζ2,N+ζ2〉 ≤ inf σ(H2) ≤ 〈ϕ0 ⊗ ϕ0,H2ϕ0 ⊗ ϕ0〉 ≤
C

N1−κ

I given this a priori information, let’s compare H2 to a Schrödinger operator
with eigenstate ϕ0 ⊗ ϕ0 based on the Schur complement formula

I setting ΠL = |ϕ0 ⊗ ϕ0〉〈ϕ0 ⊗ ϕ0| and ΠH = 1− ΠL, one finds that

H2 = (1 + η∗)
(
−∆x1 −∆x2 + ΠLVrenΠL + ΠHVNΠH

)
(1 + η),

where η and Vren are defined by

η = ΠH

(
ΠHH2ΠH

)−1
ΠHVNΠL,

Vren = VN − VNΠH

(
ΠHH2ΠH

)−1
ΠHVN
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I anticipating that approximately

η ≈
(
(−2∆ + VN)−1VN

)
(x1 − x2) ≈ (1− f )

(
N1−κ(x1 − x2)

)
,

it is not hard to prove that

〈ϕ0 ⊗ ϕ0,Vrenϕ0 ⊗ ϕ0〉 = 〈ϕ0 ⊗ ϕ0,VN(1− η)ϕ0 ⊗ ϕ0〉 ≈
8πa

N1−κ

I combined with the identity 2 = a∗0a0 +N+ in L2
s (Λ2) and the fact that

(1 + η∗)ΠLVrenΠL(1 + η) = ΠLVrenΠL,

we obtain the lower bound

H2 ≥
4πa

N1−κ

(
a∗0a0a

∗
0a0 − a∗0a0 + o(1)

)
≈ 8πa

N1−κ

I note: using basic properties of η = O(1/N1−κ), a matching upper bound
on the ground state energy can be obtained using the trial state

(1 + η)−1ϕ0 ⊗ ϕ0

‖(1 + η)−1ϕ0 ⊗ ϕ0‖
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Ideas from the Proof: N-Body Case

I consider now the N-particle setting in L2
s (ΛN) with Hamiltonian

HN =
∑
r∈Λ∗

|r |2a∗r ar +
Nκ

2N

∑
p,q,r∈Λ∗

V̂ (r/N1−κ)a∗p+ra
∗
q−rapaq

I question: how mimic the two-body proof and what is a good substitute
for the a priori information on BEC (which we would like to prove)?

I setting N>Nα =
∑
|p|>Nα a∗pap, notice by Markov that

〈ψN ,N>NαψN〉 ≤ N−2α
∑
p∈Λ∗

|p|2〈ψN , a
∗
papψN〉 ≤ CN1+κ−2α

I in other words, the a priori information on BEC can be replaced by the
weaker information that 〈ψN ,N>NαψN〉 = o(N), for every α > κ

2

I such a priori information, and generalizations thereof to observables like

N−1KN>Nα for K =
∑
r∈Λ∗

+

|r |2a∗r ar ,

is the main tool in [Adhikari-B.-Schlein ’21] to control the errors
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I based on the weaker a priori information, we can lower bound

VN = ∆x1 + ∆x2 + (1 + η∗)
(
−∆x1 −∆x2 + ΠLVrenΠL + ΠHVNΠH

)
(1 + η)

≥ (−∆x1 −∆x2 ) η + η∗(−∆x1 −∆x2 ) + η∗
(
−∆x1 −∆x2

)
η + ΠLVrenΠL,

I here, ΠL projects onto the low-momentum space

span(ϕk ⊗ ϕl : k, l ∈ PL) for PL =
{
p ∈ Λ∗ : |p| ≤ Nα

}
I this implies the simple N-body lower bound

HN ≥
∑
r∈Λ∗

+

|r |2c∗r cr+
1

2

∑
p,q,r∈Λ∗:

p,q,p+r,q−r∈PL

〈ϕp+r⊗ϕq−r ,Vrenϕp⊗ϕq〉a∗p+ra
∗
q−rapaq−RN

for an explicit, self-adjoint error term RN and where

cr = ar +
∑

(p,q)∈P2
L

〈ϕp+q−r ⊗ ϕr , η ϕp ⊗ ϕq〉a∗p+q−rapaq



13/14

I similarly as in the two-body case, one can prove that

1

2

∑
p,q,r∈Λ∗:

p,q,p+r,q−r∈PL

〈ϕp+r ⊗ ϕq−r ,Vrenϕp ⊗ ϕq〉a∗p+ra
∗
q−rapaq

≥ 4πaN1+κ − CNκN>Nα − CNκ+3α

I on the other hand, recalling that K =
∑

r∈Λ∗
+
|r |2a∗r ar , we lower bound∑

r∈Λ∗
+

|r |2c∗r cr ≥
∑
|r|≤Nα

c∗r cr ≥
∑

r∈Λ∗
+:|r|≤Nα

a∗r ar − CNκ−α−1KN>Nα ,

I controlling KN>Nα as in [Adhikari-B.-Schlein ’21] essentially by

KN>Nα = O
(
N1+κ)× O

(
N1+κ−2α)

and combining this with similar bounds on RN implies for small κ that

HN ≥ 4πaN1+κ + cN+ + o(N)
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I finally, let us point out that

cr = ar +
∑

(p,q)∈P2
L

〈ϕp+q−r ⊗ ϕr , η ϕp ⊗ ϕq〉a∗p+q−rapaq

= ar +
1

2

∑
u,p,q∈Λ∗

〈ϕp+u ⊗ ϕq−u, η ϕp ⊗ ϕq〉
[
ar , a

∗
p+ua

∗
q−uapaq

]
,

so that the identification η ≈ (1− f )(N1−κ(x1 − x2)) in L2
s (Λ2) suggests

eBηcre
−Bη ≈ cr − [ar ,Bη] ≈ ar + [ar ,Bη]− [ar ,Bη] = ar

I in particular, we expect that∑
r∈Λ∗

+

|r |2eBηc∗r cre
−Bη ≈

∑
r∈Λ∗

+

|r |2a∗r ar

and one can derive similarly the emergence of Vren, connecting the key
effects of the conjugation eBη (·)e−Bη to the Schur complement formula

I these structural observations can also be used to give a simple proof e.g.
of the dynamical stability of BEC in the GP regime [B.-Kroschinsky ’24]



1/4

Notation

I the creation and annihilation operators a∗p , aq for p, q ∈ Λ∗ satisfy

[ap, a
∗
q ] = δpq, [ap, aq] = [a∗p , a

∗
q ] = 0

and they act on a suitable, dense subspace of F = C ⊕
⊕∞

n=1 L
2
s (Λn)

I ap is the adjoint of a∗p , whichs acts on ξ ∈ L2
s (Λn−1) as

(a∗pξ)(x1, . . . , xn) = (ϕp ⊗s ξ)(x1, . . . , xn)

=
1√
n

n∑
j=1

ϕp(xj)ξ(x1, . . . , xj−1, xj+1, . . . , xn) ∈ L2
s (Λn)

I in particular, we count the number of particles with momenta p ∈ Λ∗ via

N = 〈ψN ,

N∑
i=1

1xiψN〉 = N〈ψN ,
∑
p∈Λ∗

|ϕp〉〈ϕp

∣∣
x1
ψN〉 =

∑
p∈Λ∗

〈ψN , a
∗
papψN〉
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I similarly, one can express HN through the ap, a
∗
q in form sense as

HN =
∑
p∈Λ∗

|p|2a∗pap +
Nκ

2N

∑
p,q,r∈Λ∗

V̂ (r/N1−κ)a∗p+ra
∗
q−rapaq

I denote by N+ the number of excitations operator

N+ =
∑
p∈Λ∗

+

a∗pap for Λ∗+ = Λ∗ \ {0},

I then, we observe that proving complete BEC into ϕ0 is equivalent to

lim
N→∞

〈ϕ0, γ
(1)
N ϕ0〉 = lim

N→∞

1

N
〈ψN , a

∗
0a0ψN〉 = 1 ↔ lim

N→∞

1

N
〈ψN ,N+ψN〉 = 0

I a natural strategy to prove BEC consists of showing a coercivity bound

HN ≥ 4πaN1+κ + cN+ + o(N) (2)

and combining this with a matching upper bound on EN = inf σ(HN)

I note: since1 EN = 4πaN1+κ + cLHYN
5
2
κ + o(N

5
2
κ), such a strategy and

suitably adjusted variants thereof become harder the larger κ ≥ 0

1[Yau-Yin ’09, Basti-Cenatiempo-Schlein ’21] (upper bound) and [Fournais-Solovej ’20 ’23,
Haberberger-Hainzl-Nam-Seiringer-Triay ’23] (lower bound)
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BEC in GP for Small Interactions:

I based on a simple argument introduced in [Brietzke-Fournais-Solovej ’20],
BEC can be proved easily in the GP regime if a is sufficiently small

I we follow [Nam-Napiórkowski-Ricaud-Triay ’22] and recall that fN = f (N.)
(κ = 0) is the solution of the zero energy scattering eq. for VN = N2V (N.)

(−2∆ + VN)fN = 0, fN(x)
|x|→∞→ 1

I setting P0 = |ϕ0〉〈ϕ0|, the positivity of VN implies the operator bound(
1− P0 ⊗ P0fN(x1 − x2)

)
VN(x1 − x2)

(
1− fN(x1 − x2)P0 ⊗ P0

)
≥ 0

I plugging this into the many body Hamiltonian, one finds that

HN ≥
∑
p∈Λ∗

+

(
|p|2a∗pap +

1

2
V̂f (p/N)b∗pb

∗
−p +

1

2
V̂f (p/N)bpb−p

)
+

1

2

∫
Λ

(2fN − f 2
N )VN a∗0a

∗
0a0a0,

where b∗p = N−
1
2 a∗pa0, for p ∈ Λ∗, denote modified creation operators
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I using V̂f (0) = 8πa, a∗pap ≥ b∗pbp and the general lower bound

Ap

(
b∗pbp + b∗−pb−p

)
+ Bp

(
b∗pb
∗
−p + bpb−p

)
≥ −

(
A−

√
A2 − B2

) [bp, b
∗
p ] + [b−p, b

∗
−p]

2
,

we shift HN by µN+ for some 0 < µ < 4π2 − 8πa, assuming a to be
small enough, and basic manipulations then imply that

HN ≥ 4πaN +
(
µ− 16πa

)
N+ + O(1)

I combining this with the upper bound EN ≤ 4πaN + O(1), we conclude
that the ground state ψN exhibits complete BEC into ϕ0:

4πaN + O(1) ≥ 〈ψN ,HNψN〉 ≥ 4πaN + c〈ψN ,N+ψN〉+ O(1)

I note: for κ > 0, the potential energy has size O(N1+κ)� O(N) which
prohibits the application of similar perturbative arguments
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