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INTRODUCTION

» consider N non-interacting BOSONS in A, = R®/LZ* with Hamiltonian
N
fi
HI\;?E = Z 7Ax,-a
i=1

acting in a dense subspace of L2(A)) = ®" L*(A)

> the spectrum o(H};) consists of finite sums of the form

Z ”p‘P‘Q

pEN*
for np € NJA™ = 2T"Z3 with orthonormal product eigenstates

pr Qs+ s Ppy;

built up from plane waves x — @p(x) = L=3/2e*, for p € A*

» the normalized ground state vector i)y with energy E,f\ff = 0 equals

v =g, o= L7 € L’(AL)
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in particular, if one measures O ® 1 ® --- ® 1 in the ground state ¥y, for
O = 0" € B(L2(Af)) and for some fixed 1 < k < N, then

(Wn, 0®1® - ® 1yn) = (05", 0p5)
expectations of observables are thus fully determined by o € L?(A;): we
say that the system exhibits BOSE-EINSTEIN CONDENSATION (BEC)

BEC has been verified experimentally in 1995, leading to the Nobel Prize
in Physics for Eric Cornell, Carl Wieman and Wolfgang Ketterle

a fundamental question in mathematical physics is thus to understand the
spectrum and BEC for INTERACTING MODELS with energy

Z Dot > V(- x)
1<i<j<N

a natural problem is to consider the thermodynamic limit in which the
density p = N/L3 is small, but fixed and the particle number N — oo
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» if we naively view the interaction as a perturbation, we may expect

Eve (8" Huagf™) p / V(0)
A

e e

N N 2 2

» this ignores PARTICLE CORRELATIONS and turns out to be wrong,
overestimating the energy - the correct formula at low density is

E
=NL s Arap, (1)

where a denotes the SCATTERING LENGTH OF V/, characterized by

1. 2 2 .
= —inf 2|VF V|f | fix)=1
a= g-in {/( VR VIFR), lim £() }
» a heuristic idea that suggests (1) at low density is that

N(N — 1) 87a

En,. = #(pairs of particles) x Ep | ~ 5 e ~ 4rapN
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for 1y € L2(A}) define its ONE-PARTICLE DENSITY A,/,(\,l) through

fy,(vl)(x,y) :/ dxz...dewN(x;xz,...,xN)EN(y;XQ,...,xN)
AN-

L

= (tra,.. v [¥n) (W) (x,¥)
so that, assuming |[¥n|| = 1, we have that
’y,(vl) e B(L*(A)), 0< 7,(\,1) <1, tr'y,(\,l) =1
we say that (¢Yn)yen EXHIBITS COMPLETE BEC INTO o € L?(AL) if
l Doy =1 & i 0 _ =
Jim (0,7 ) Jimtr [y — o) (]| = 0
proving that the ground state ¢y exhibits Bose-Einstein condensation is a
CHALLENGING OPEN PROBLEM IN MATHEMATICAL PHYSICS
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since a proof of BEC in the thermodynamic limit is currently out of reach,
it is natural to study STRONGLY DILUTED SYSTEMS where p = py N2
set L =Ly=N"" k>0, and study rescaled system in A = R3/Z> with

HNfz Ag+ > NTHV(NT(x — ),

1<i<j<N

by scaling, the scattering length of Viy = N*~2*V/(N*" ") is equal to
a/N'"" and, similarly, the solution fy of the zero energy scattering
equation for Vy is obtained by scaling as fiy(.) = f(N'".), where
(—2A+ V)f =0, 5 I||m f(x)y=1
x| —o0

the thermodynamic limit corresponds to k = % (at density p = 1) while the
choice k = 0 describes the well-known Gross-Piraevskil (GP) LIMIT

notice that in the Gross-Pitaevskii regime, the total kinetic and potential
energies are typically both of the sAME ORDER O(N)

in the GP regime, if V is sufficiently small, e.g. in the sense that a < 1,
one can use simple PERTURBATIVE ARGUMENTS to derive BEC
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THEOREM (B.-BROOKS-CARACI-OLDENBURG ’24)

Let V € L}(R®) be pointwise non-negative, radially symmetric and of compact
support. Moreover, let 1 € [0, %), wo = 1jp € L>(A) and denote by 1 the

normalized ground state of Hy with one-particle density 'y,(\,l) . Then

. 1
N|I_>moo<900,’yl(v)ﬁﬂo> =1.

> first proof of BEC by [Lieb-Seiringer '02], valid for x € [0, 1)

> [Fournais '21] proves BEC up to « € [0, 2 + €), extending ideas previously
developed in [Brietzke-Fournais-Solovej '20, Fournais-Solovej '20]; detailed
review in [Fournais-Girardot-Junge-Morin-Olivieri '23]

» [Lieb-Seiringer '02], [Fournais '21] employ LOCALIZATION ARGUMENTS to
reduce the analysis to systems with GP scaling and small scattering length

> [Adhikari-B.-Schlein '21] provides alternative proof for x € [0, ) avoiding
localization, but extending operator expansion methods developed in
[B--Schlein '19], [Boccato-B.-Cenatiempo-Schlein '18, '19, '20]

» in [BBCO '24] our goal is to simplify the proof of [Adhikari-B.-Schlein '21]
and to clarify its structure, combining previous ideas with [BROOKS 23]
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» [Adhikari-B.-Schlein '21] is BASED ON THE HEURISTICS that

o~ C [T e = I (-a—a")es"

1<i<j<N 1<i<j<N
ij N
~ c(l— 3 (1—f,§f>)+...)gag9
1<i<j<N
1 % N
~ Cexp (_ 5 Z Nr ap+raq*rapaq) 90(()8
p,q,reN*
~e g

where f,\(,ij) = f(N'""(xi — x7)), nr = (1/*\fl\l)(r) and

1 * *
B, = 5 E Mr ptrdq—rapaq — h.C.
p,q,rEN*:
[r|>N%p],lq| <N

» recall that, by the scattering equation, (1 — fy) solves

(—2A+ Ww)(1—1fv) = W
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one can then derive a suitable coercivity bound on
eBn Hne™ B = =Hy — [HN7 7]] +3 [[HN7 7]] B ]

and use that e*B1 A, eTB7 is comparable to Ny = > ps0 3

the main effect of e®7(-)e ™57 is to renormalize the potential for |p| < N°:
V(p/N'™) = Vien(p) = VF(p/N'"") ~ 8ra
if & > 0 is small enough, one then finds 0 < ¢ < 1 so that
e Hye Bn > CZ Ip|? apap + 2N Z \Zen(r)a;Jr,a;,,apaq—Fo(N)

pen* p,q,rEA*:
[r|<N®

> 4raN'™™ 4 cNy — CN™P* 4 o(N)
QUESTION: the crucial renormalizations are essentially due to commutators
linear in By, - is there a simpler proof without operator expansions?

QUESTION: how explain the emergence of Vie, in a more structural way?
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IDEAS FROM THE PROOF: TwoO-BoDy CASE

» consider the two-body Hamiltonian that acts on L2(A?) by

Ho= Dy — Dy + Vv =—Dy — Dy + N° V(N "(x1 — x2))

8ma

and let us recall a simple proof of the fact that inf o(H2) ~ 77

» key observation: BEC is trivial in this case, in the sense that

4 (2, Nt 2) < info(H2) < (po @ o, Haipo ® o) < Nicr

» given this a priori information, let's compare H2 to a Schrodinger operator
with eigenstate ¢ ® ¢o based on the SCHUR COMPLEMENT FORMULA

> setting M = |0 ® o) {wo ® wo| and My =1 — I, one finds that
H2 = (1 +77*)( - A)q - A)Q + I_IL VrenrlL + rlH VNnH)(l + ’I’]),
where 17 and Vien are defined by

1 = My (HHH2HH)7IHH VI,
Vien = Wy — VNnH(nH/H2nH)7lnH Vi
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» anticipating that approximately
na (=28 + V) 7" W) (1 — %) = (1= £) (N — x)),
it is not hard to prove that

8ma
Nl—h:

(00 ® w0, Vientpo ® @o) = (o & wo, V(1 — 1)po ® o) ~
» combined with the identity 2 = ajao + ANy in L2(A?) and the fact that
(1 + 77*)I_IL \/renrlL(l + 77) = I-I|_ Vrenl'IL,

we obtain the lower bound

dma . . 8ma
Ho > W(aoaoaoao —apao +o(1)) = Nisw

» NOTE: using basic properties of 7 = O(1/N'~*), a matching upper bound
on the ground state energy can be obtained using the trial state

(1+7) "0 ® o
1T +n)" o @ woll
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IDEAS FROM THE PROOF: N-BoDY CASE

| 2

consider now the N-particle setting in L2(A") with Hamiltonian
{7 1— * *
Hn = Z ‘r‘ arar+ N Z V(r/N N)aPJrraqfraPaq
refn* p,q,reN*

QUESTION: how mimic the two-body proof and what is a good substitute
for the a priori information on BEC (which we would like to prove)?

setting N> e = ZIP\>NQ apap, notice by Markov that
(o, Nsnathy) < N2 Z 1Pl (n, abapon) < CNEFR—2e
pEN*

in other words, the a priori information on BEC can be replaced by the
weaker information that (¢, Nsyatpy) = o(N), FOR EVERY o > 5

such a priori information, and generalizations thereof to observables like

N KNsye  for K= Z |r|?a; ar,

reny

is the main tool in [Adhikari-B.-Schlein '21] to control the errors
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» based on the weaker a priori information, we can lower bound

Ww=2A0A4 +A,+(1+ 77*)( — Ay — Ay + T VienlL + HHVNHH)(]- +n)
> (_Axl - AXQ)’I’] + ﬂ*(—Axl - AX2) + 77*( — Ay — Axg)n + M Vien L,

» here, I, projects onto the low-momentum space

span(px ® ¢t k, 1 € P)  for  PL={peA":|p| <N}

» this implies the simple N-BODY LOWER BOUND

Hy = Z | ‘ Cf C’+7 Z <90P+f®50q—r7 Vren(pp®90q>a;+ra;7rapaq_RN
reny P,q,reN*:
Psq,p+r,q—repPL
for an explicit, self-adjoint error term Ry and where
x
¢ =ar+ Z (Ppta—r @ Or,NPp @ Pq)apiq—rapaq
(p.q)eP?
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» similarly as in the two-body case, one can prove that

1

2 Z <90P+r ® Pg—rs Vienpp ® ‘aOQ> Ap+rd q rdpdq
p,q,rEN*:

P,q,p+r,q—reP,

> draN"™ — CN*Nspye — CNFT3

» on the other hand, recalling that K = Zre/\j |r|?a} a,, we lower bound

Z IrlPcie > Z cc > Z a‘a, — CN" LNy,

rent Irl<Ne rent:lr<Ne
» controlling KNspe as in [Adhikari-B.-Schlein '21] essentially by
KNsye = O(N'"7) x O(N*"72%)
and combining this with similar bounds on Ry implies for SMALL ~ that

Hy > 47K'U.N1+K =+ CN+ + O(N)
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» finally, let us point out that

¢ =ar+ Z (@pra—r @ r,MPp ® Pq)apiq—rapagq
(p,q)EP?

1 o x
=art 2 Z/\* (Pptu ® Pg—u, N Pp ® Pq) [af- ap4 uaqfuapaq]v
u,p,qe

so that the identification n = (1 — f)(N*~"(x1 — x2)) in L2(A?) suggests
eBaneiBn NG — [aﬁ BTI] ~ar+ [3,, B”I] - [af7 BW] =ar

» in particular, we expect that
2 B -B 2
E [rl“e™ ¢ cre™ " = E |r|“ar a
reny reny

and one can derive similarly the emergence of Vin, connecting the key
effects of the conjugation e®7(-)e ™57 to the Schur complement formula

» these structural observations can also be used to give a simple proof e.g.
of the dynamical stability of BEC in the GP regime [B.-Kroschinsky '24]
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NOTATION

> the creation and annihilation operators aj, aq for p,q € A" satisfy
[3p, ag] = Jpq, [3p, ag] = [a,34] = O

and they act on a suitable, dense subspace of F =C & @2, L2(A™)

> a, is the adjoint of a3, whichs acts on ¢ € LZ(A""!) as
(a;é-)(Xl, e ,X,,) = (Sop Rs 5)(X1, e ,Xn)

1 ¢ 2
= T @l € LAY
Jj=1
» in particular, we count the number of particles with momenta p € A* via

N
N = (n, o) = N(n, D lep)(eol, ¥n) = D (Wn, apaptin)

i=1 pEN* pEN*



» similarly, one can express Hy through the a,, a; in form sense as
Hy = 2 % N* Vir/N“ 2", 2
N = Z ‘P‘ apap + N Z (r/ )ap+raq—rapaq
pEN* p,q,reN*
> denote by A} the NUMBER OF EXCITATIONS operator
Ny = Z agap for AL =A"\{0},
PENTY
» then, we observe that proving complete BEC into g is equivalent to

. . 1 . . 1
Jim (o, o) = lim S (b, afaon) = 1 e fim (i, Noyow) = 0

» a natural strategy to prove BEC consists of showing a COERCIVITY BOUND
Hy > 4maN'™ " + cN; + o(N) (2)

and combining this with a matching upper bound on Ey = inf o(Hy)

. 5 5
» NOTE: since! Ey = 4maN™™™ + ciuy N2 + o(N2*), such a strategy and
suitably adjusted variants thereof become harder the larger k > 0

'[Yau-Yin '09, Basti-Cenatiempo-Schlein '21] (upper bound) and [Fournais-Solovej '20 '23,
Haberberger-Hainzl-Nam-Seiringer-Triay '23] (lower bound)
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BEC IN GP FOR SMALL INTERACTIONS:

» based on a simple argument introduced in [Brietzke-Fournais-Solovej '20],
BEC can be proved easily in the GP regime if a 1S SUFFICIENTLY SMALL

» we follow [Nam-Napidrkowski-Ricaud-Triay '22] and recall that fy = f(N.)
(k = 0) is the solution of the zero energy scattering eq. for Vy = N*V/(N.)

(=208 + Vi)fy =0,  fu(x) "271
> setting Po = |¢0) (¢o|, the positivity of Viy implies the operator bound
(1 —Po® PofN(Xl — Xz)) VN(X1 — Xz)(l — fN(Xl — Xz)Po ® Po) >0

» plugging this into the many body Hamiltonian, one finds that

* 1/\ BN 1/\
Hu = 3" (I apan + 5 VE(p/N)b3b" , + 5 VF(p/N)byb- )
pPENT

1 E3 *
v /(2fN YV a3 a3 a0a0,
A

1 .ope .
where b, = N~ Zapao, for p € A*, denote modified creation operators
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> using W(O) = 8ma, ayap > by b, and the general lower bound
Ap(bpbp + bZ,bp) + Bo(bybZ, + byb-p)
> _(A— VA~ B) [bp, b5] + [b—p, bZ ]
- 2 )

we shift Hy by uN for some 0 < p < 47> — 8ma, ASSUMING a TO BE
SMALL ENOUGH, and basic manipulations then imply that

Hy > 4maN + (p — 16ma) Ny + O(1)

» combining this with the upper bound Ey < 4walN 4+ O(1), we conclude
that the ground state 1y exhibits complete BEC into ¢o:

4ralN + O(].) > <”(/)N, H/\ﬂ/)/\/> > 4mralN + C<1/JN,N+1/1N> + O(].)

» NOTE: for £ > 0, the potential energy has size O(N*™) > O(N) which
prohibits the application of similar perturbative arguments
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