Kubo's Formula for Disordered Systems

Martin Fraas (UC Davis)

Wojciech De Roeck (KU Leuven), Alex Elgart (Virginia Tech)

Palermo, July 2024

Outline

- 1. Introduction
- 2. Local Structures of Wonderland
- 3. Locabatic Theorem and Kubo Formula

Setting

We consider Hamiltonian on $I^2(\mathbb{Z}^d)$,

$$H(t) = H + \beta W(t)$$

Main Example:

- $lacktriangledown H = \Delta + V_{\omega}$ is magnetic Laplacian with disorder
- ▶ W(t) = g(t)V is a time-dependent perturbation, g(t) is a compactly supported switch function.

Linear Response Theory

Linear response theory aims to justify Ohm's law

$$\langle \mathsf{J} \rangle = \sigma \mathsf{V},$$

and to give a microscopic formula for the conductance σ .

Framework of Linear Response

- V(t) = g(t)V(x) with V(x) electric potential of unit voltage
- At $t = -\infty$, state ρ is equilibrium state of H
- Solve $\dot{\rho}_t = -i[H(t), \rho_t], \quad H(t) = H + \beta e^{\epsilon t} V(x)$
- ▶ Measure the current J at time t = 0

Then the measured conductance is

$$\sigma_m(\epsilon, \beta) = \beta^{-1} \text{Tr}(\rho_0 J).$$

In experiments $\epsilon/\beta < 10^{-9}$.

Kubo's formula

Kubo's formula [Kubo '57] for conductance is

$$\sigma = \lim_{\epsilon \to 0} \lim_{\beta \to 0} \sigma_m(\epsilon, \beta) = \lim_{\epsilon \to 0} i \int_{-\infty}^0 e^{\epsilon t} \mathrm{Tr}(\rho[e^{iHt} J e^{-iHt}, V]) dt.$$

The problem of linear response [Simon '84] Show that the joint limit

$$\lim_{\epsilon < <\beta \to 0} \sigma_m(\epsilon, \beta)$$

exists and equal σ or provide an alternative explanation for the validity of Kubo's formula.

Kubo's formula

Kubo's formula [Kubo '57] for conductance is

$$\sigma = \lim_{\epsilon \to 0} \lim_{\beta \to 0} \sigma_m(\epsilon, \beta) = \lim_{\epsilon \to 0} i \int_{-\infty}^0 e^{\epsilon t} \mathrm{Tr}(\rho[e^{iHt} J e^{-iHt}, V]) dt.$$

The problem of linear response [Simon '84]

Show that the joint limit

$$\lim_{\epsilon < <\beta \to 0} \sigma_m(\epsilon, \beta)$$

exists and equal σ or provide an alternative explanation for the validity of Kubo's formula.

Question

Is there a microscopic proof of Kubo formula not related to quantum Hall effect?

Kubo's formula for Hall conductance

In d=2, Hall conductance, σ_H , is a ratio of current J in direction x_1 to applied electric field in direction x_2 .

Let Λ_n be the characteristic function of the set $\{x_n \geq 0\}$, n = 1, 2.

- $J=i[H,\Lambda_1],$
- $ightharpoonup V = \Lambda_2$,
- At zero temperature $\rho = P_F := \chi_{< E_F}(H)$, with Fermi energy E_F in the mobility gap.

The Kubo's formula is then given by [Aizenman-Graf 89']

$$\sigma_H = i \operatorname{Tr}(P_F[[P_F, \Lambda_1], [P_F, \Lambda_2]]) \in \mathbb{Z}/(2\pi).$$

History

No disorder: If E_F belongs to a gap then limits $\epsilon \to 0$, $\beta \to 0$ commute, i.e.

$$\sigma_H = \lim_{\beta \to 0} \lim_{\epsilon \to 0} \sigma_m(\epsilon, \beta).$$

[Avron, Seiler, Yaffe, Bachmann, De Roeck, Fraas , Teufel, Marcelli, ...]

With disorder:

- ▶ For ϵ fixed and $\beta \to 0$, $\sigma_m \to \sigma_H$ [Bouclet, Germinet, Klein, Schenker '05]
- ▶ For $\beta = \epsilon$ and complete localization $\sigma_m \rightarrow \sigma_H = 0$.[Nakano, Kaminaga '99]

How to prove Kubo with a gap

1. By adiabatic theorem, solving $\dot{\rho}_t = -i[H(t), \rho_t]$, gives

$$\rho_t = P_F(t) + O(\epsilon), \quad P_F(t) := \chi_{\langle E_F(H(t)) \rangle}.$$

2. By first order perturbation theory, $H(t) = H + \beta g(t)\Lambda_2$,

$$P_F(0) = P_F + \beta A d_H^{-1} (P_F \Lambda_2 (1 - P_F) + (1 - P_F) \Lambda_2 P_F) + O(\beta^2).$$

3. By a bit of algebra,

$$\operatorname{Tr}(\rho_0 i[H, \Lambda_1]) = \beta \operatorname{Tr}(P_F[[P_F, \Lambda_1], [P_F, \Lambda_2]]) + O(\beta^2) + O(\epsilon).$$

It remains to be able to bound the errors.

Assumptions and technicalities

For $\Theta \subset \mathbb{Z}^d$, H^{Θ} is the restriction of H to Θ . Assumptions:

- ▶ H, V finite range, g(t) smooth compactly supported. H^{Θ}, H^{Φ} independent if $\operatorname{dist}(\Theta, \Phi) > range$;
- Fractional moment for an interval J_{loc} of spectrum. There exists q > 0, such that for all Θ and $x, y \in \Theta$,

$$\sup_{E \in J_{loc}} \mathbb{E}\left[\left|\left(H^{\Theta} - E - i\eta\right)^{-1}(x,y)\right|^{q}\right] \leq C_{q}e^{-c|x-y|_{\Theta}}.$$

Redefine conductance by averaging:

$$\sigma_m(\beta,\epsilon) := \beta^{-1}\epsilon \int_0^{1/\epsilon} \operatorname{Tr}\left(J(\rho_t - \rho)\right) dt.$$

The result

Theorem (De Roeck, Elgart, Fraas 23')

Suppose that $E_F \in J_{loc}$. Then there exist p > 0 such that for all β small enough,

$$\mathbb{E}|\sigma_H - \sigma_m| \le e^{-\beta^{-p/2}},$$

provided $\epsilon = e^{-\beta^{-p}}$.

Naive Idea

Let U_t be the solution of $i\partial_t U_t = H(\epsilon t)U_t$. If

$$U_t P_{J_{loc}} U_t^* - P_{J_{loc}}(t) \approx 0,$$

then

$$ilde{H}(\epsilon t) = (1 - P_{J_{loc}}(t))H(\epsilon t)(1 - P_{J_{loc}}(t))$$

is gapped and we can proceed as before.

Part 2: Local Structures of Wonderland

Welcome to Wonderland

Wonderland Theorem [del Rio, Makarov, Simon '94, Gordon '94]:

The rank one perturbation family

$$H(\beta) = H + \beta \chi_{\{0\}},$$

exhibits almost sure singular continuous spectrum for a G_{δ} -dense set of β 's.

Remarks:

- The spectral transitions are due to resonant hybridization,
- Dynamical localization breaks, propagation is logarithmic [del Rio, Jitomirskaya, Last, Simon 94'],
- ➤ This picture is expected to be generic, beyond rank one perturbation.

Eigenstate Hybridization

Two far away eigenstates of H close in energy

Hybridize as we add the perturbation tV supported on right:

Local Structures of Wonderland

Local Structures of Wonderland theorem

Theorem (Local Structures)

Pick a large enough scale I, and let \mathbb{T} be a torus of size $\mathcal{L} = e^{\sqrt{I}}$. Suppose that $\beta \leq I^{-p_1}$. Then with probability $> 1 - e^{-\sqrt{I}}$, $H^{\mathbb{T}}(s)$ has a local structure \mathcal{T}_{γ} for energies in $J = (E - I^{-d/q}, E + I^{-d/q})$.

Moreover, each $H^{\mathcal{T}_{\gamma}}$ has interval $J_{\gamma} \subset J$ of energies of size $\delta = c I^{-d/q}$ separated by a gap of size $\Delta = I^{-d-1/2} I^{-d/q}$ in J.

Part 3: Locabatic Theorem and Kubo Formula

Theorem (Local adiabatic theorem)

Fix $N \in \mathbb{N}$. Suppose $\epsilon \geq \mathrm{e}^{-\sqrt{l}}$ and $\beta \leq l^{-p_1}$. Then for ℓ large enough, there exists a smooth family of orthogonal projections $\mathcal{Q}(s)$ with the following properties:

1.
$$\|[\mathcal{Q}(s), H^{\mathbb{T}}(s)]\| \leq C_N \left(\epsilon \Delta^{-1} + e^{-c\sqrt{\ell}}\right);$$

2.
$$\|P_{E+6\delta}(H^{\mathbb{T}}(s))\| \le C_N\left(\epsilon\Delta^{-1} + e^{-c\sqrt{\ell}}\right);$$

3. Let $Q_{\epsilon}(s)$ the solution of $i\epsilon \dot{Q}_{\epsilon}(s) = [Q_{\epsilon}(s), H^{\mathbb{T}}(s)],$ $Q_{\epsilon}(0) = Q(0),$ we have

$$\|\mathcal{Q}_{\epsilon}(s) - \mathcal{Q}(s)\| \leq C_{N} \left(\epsilon^{N} \left(\frac{1}{\Delta^{N}} + \frac{1}{\delta^{2N+1}} \right) + e^{-c\sqrt{\ell}} \right).$$

Furthermore, for s=0 and s=1, the inequalities in (i) and (ii) hold without the terms proportional to ϵ .

Sketch of Proof

- $Q_{\gamma}(s) = \chi_{\widehat{\mathcal{T}}_{\gamma}} P_{J_{\gamma}}(H^{\mathcal{T}_{\gamma}}(s)) \chi_{\widehat{\mathcal{T}}_{\gamma}}$ evolves adiabatically within it's local structure \mathcal{T}_{γ} .
- ▶ $Q(s) = \sum_{\gamma} Q_{\gamma}(s)$ evolves adiabatically within $\cup_{\gamma} \mathcal{T}_{\gamma}$. Let Q_s be the superadiabatic projection of order N.
- lacktriangle Then Hamiltonian $ar{H}(s)=ar{Q}_sH(s)ar{Q}_s$ has a gap of order δ at E_F and we take

$$Q(t) := \chi_{\langle E_F}(\bar{H}(t)).$$

Proof of Kubo formula

1. By the adiabatic theorem

$$\rho_t = \mathcal{Q}(t) + O(e^{-c\sqrt{\ell}}).$$

and
$$P_F(0) = Q(0) + R$$
.

- 2. Show that R does not contribute.
- 3. Show that for Q = Q(-1),

$$\operatorname{Tr}(P_F[[P_F,\Lambda_1],[P_F,\Lambda_2]]) = \operatorname{Tr}(\mathcal{Q}[[\mathcal{Q},\Lambda_1],[\mathcal{Q},\Lambda_2]]) + O(e^{-c\sqrt{\ell}})$$

Thank you