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Setting

We consider Hamiltonian on /2(Z9),

H(t) = H+ BW(t)

Main Example:

» H = A+ V, is magnetic Laplacian with disorder

> W(t) = g(t)V is a time-dependent perturbation, g(t) is a
compactly supported switch function.
1

g(t)




Linear Response Theory

Linear response theory aims to justify Ohm'’s law
(J) =0V,
and to give a microscopic formula for the conductance o.

Framework of Linear Response
> W(t) = g(t)V(x) with V(x) electric potential of unit voltage
> At t = —o0, state p is equilibrium state of H
» Solve pr = —i[H(t), pt], H(t) = H+ e V(x)
> Measure the current J at time t =0

Then the measured conductance is

am(e, B) = B~ Tr(poJ).

In experiments ¢/3 < 1072,



Kubo's formula

Kubo's formula [Kubo '57] for conductance is

0 . .
o= lim I|moam(e B) = Ilmol/ et Tr(p[eMt Je= ™t V) dt

e—0 B— — o0

The problem of linear response [Simon '84]
Show that the joint limit

lim  om(e, B)

e<<B—0

exists and equal o or provide an alternative explanation for the
validity of Kubo's formula.



Kubo's formula

Kubo's formula [Kubo '57] for conductance is

0 . .
o= lim I|moam(e B) = Ilmol/ et Tr(p[eMt Je= ™t V) dt

e—0 B— — o0

The problem of linear response [Simon '84]
Show that the joint limit

lim  om(e, B)

e<<B—0

exists and equal o or provide an alternative explanation for the
validity of Kubo's formula.

Question
Is there a microscopic proof of Kubo formula not related to
quantum Hall effect?



Kubo's formula for Hall conductance

In d = 2, Hall conductance, oy,
is a ratio of current J in direc-
tion x; to applied electric field in
direction x».

Let A, be the characteristic function of the set {x, > 0}, n=1,2.
> J=i[H, A,
> V=»NA,

» At zero temperature p = Pr := xX<g.(H), with Fermi energy
Ef in the mobility gap.
The Kubo's formula is then given by [Aizenman-Graf 89']

oy = iTl"(PF[[PF,/\l], [PF, /\2]]) S Z/(27T).



History

No disorder: If Ef belongs to a gap then limitse — 0, 5 — 0
commute, i.e.

oy = lim lim am(e, B).
[Avron, Seiler, Yaffe, Bachmann, De Roeck, Fraas , Teufel,

Marcelli, ...]
With disorder:

» For € fixed and 8 — 0, 0, — oy [Bouclet, Germinet, Klein,
Schenker '05]

» For B = € and complete localization o, — o = 0.[Nakano,
Kaminaga '99]



How to prove Kubo with a gap

1. By adiabatic theorem, solving pr = —i[H(t), pt], gives
pt = Pe(t) + O(€), Pe(t) == x<£e-(H(t)).
2. By first order perturbation theory, H(t) = H + Bg(t)A2,

Pe(0) = Pr + BAdu Y(PeNa(1 — Pg) + (1 — PE)A2PE) + O(5?).

3. By a bit of algebra,
Tr(poi[H, M]) = BTx(PE[[Pr, M], [Pe, A2]) + O(5%) + O(e).

It remains to be able to bound the errors.



Assumptions and technicalities

For © € Z9, H® is the restriction of H to ©. Assumptions:

» H,V finite range, g(t) smooth compactly supported. H®, H®
independent if dist(©, ®) > range;

» Fractional moment for an interval Jj,c of spectrum. There
exists g > 0, such that for all © and x,y € ©,

sup E [|(He —E— in)*l(x,y)ﬂ < qu*dx*}’l@.
Ee-lloc

Redefine conductance by averaging:

1/e
om(B,€) := B e A Tr (J(pe — p)) dt.



The result

Theorem (De Roeck, Elgart, Fraas 23')

Suppose that EF € Jioc. Then there exist p > 0 such that for all 3
small enough,

Eloy —om| < e_ﬂ_pn7

provided ¢ = e P,



Naive ldea

Let U; be the solution of i0;U; = H(et)U;. If
UtP-lIoc UTT - PJIoc(t) ~ 07

then

H(et) = (1 = Py (8)H(et)(1 = Py (t))

is gapped and we can proceed as before.



Part 2: Local Structures of Wonderland



Welcome to Wonderland

H(B) = H + Bx{o}

exhibits almost sure singular con-
tinuous spectrum for a Gs-dense
set of ('s.

Remarks:
» The spectral transitions are due to resonant hybridization,

» Dynamical localization breaks, propagation is logarithmic [del
Rio, Jitomirskaya, Last, Simon 94],

» This picture is expected to be generic, beyond rank one
perturbation.



Eigenstate Hybridization

Two far away eigenstates of H close in energy

VANRVAN

Hybridize as we add the perturbation tV supported on right:

X

E E

without overlap with overlap



Local Structures of Wonderland

:
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Local Structures of Wonderland theorem

Theorem (Local Structures)

Pick a large enough scale |, and let T be a torus of size L = eVl
Suppose that 3 < I7P1. Then with probability > 1 — e V1, H™(s)
has a local structure T, for energies in J = (E — [=9/9 E + [~4/9),

Moreover, each H™ has interval J, C J of energies of size
8 = cI=9/9 separated by a gap of size A = [~91/2|=9/q jn J.



Part 3: Locabatic Theorem and Kubo Formula



Theorem (Local adiabatic theorem)

Fix N € N. Suppose ¢ > e V! and B < I7P1. Then for { large
enough, there exists a smooth family of orthogonal projections
Q(s) with the following properties:

L [[Q(s). H(s)]]| < Cn (e + e7V);
2. [|P<g-es(H()Q(S)] +11Q(s) P -6s(H ()] <
Cu (ea™t+emeV7);

3. Let Q.(s) the solution of ieQ.(s) = [Qc(s), HT(s)],
Q.(0) = 9(0), we have

1 1
HQE(S) - Q(S)H S CN <€N <AN + (52N+1> + e_“/z) .

Furthermore, for s = 0 and s = 1, the inequalities in (i) and (i)
hold without the terms proportional to €.



Sketch of Proof

> Qy(s) = X+, PJ,Y(H,TV(S))X?:Y evolves adiabatically within it's
local structure 7.

> Q(s) = >_, Qy(s) evolves adiabatically within U, 7,. Let Qs
be the superadiabatic projection of order N.

» Then Hamiltonian H(s) = QsH(s)Qs has a gap of order § at
EF and we take

Q(t) = X< (A(1)).



Proof of Kubo formula

1. By the adiabatic theorem
pr = Q(t) + O(e™V").

and Pr(0) = Q(0) + R.
2. Show that R does not contribute.
3. Show that for Q@ = Q(-1),

Tr(Pel[Pe, M, [Pr, Aol]) = Tx(QIIQ, Al [Q, Ao])+O(e V")



Thank you



