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The Setting

® N interacting spin 1/2 fermions in a box Ar, := [-L/2, L/2]®, with
periodic boundary conditions.

ZA%JF Z Viwi —;), b:=AVL*(AL;C?)

i<j=1
» N, = # particles with spin o € {f,]}, N = N+ + N,.

> V is the ‘periodization’ on Ay, of a potential Vs on R? positive,
radial, compactly supported and in LZ.
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® We are interested in the thermodynamic limit:

e(pr,py) = lim er(pr,py)

N,L—c0
p=N/L3=const.

® We focus on the dilute regime (pa® — 0)



Huang-Yang Conjecture (1957)

Huang-Yang conjecture (1957)
In physical units such that =1, m = 1/2, if p; = p; = p/2, then as p — 0

4(11 — 2log 2) (3 )4/3 .

3 2 B
e(pt, py) = £(37°)3 p¥ + 2map” + o

35m2

a*p"? + o(p"?).

[1] Huang, Yang, Quantum-Mechanical Many-Body Problem with Hard-Sphere Interaction, Phys. Rev. (1957).
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o o eikix o 1

® The 2nd and the 3rd corrections depend on the scattering length a,
which describes the effective range of the interaction:

sra= [doV@f(@),  -Af+5VE=0,  lm f@)=1

|z|—o00

~ correlations play a role.

[1] Huang, Yang, Quantum-Mechanical Many-Body Problem with Hard-Sphere Interaction, Phys. Rev. (1957).



Correlation Energy

— Minimize the energy over anty-symmetric product states:

ik, -x 1
e'fi . o 3
kil < kgt ~ o2,

Prrc = \/%det(f’:ii)(xj))lﬁi,jSN’ ’:; (x) = V3o
_ _ 32203 5\r3 . O 3 3
Errc = (Prrc, HnPrrc) = 5(677)3 (pf +p )L + V(0) prpy L” + O(L7p
~——
>8ma

[The FFG state allows us to have the right leading order term (kinetic
contribution), but is not enough to describe correlations between particles|
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[The FFG state allows us to have the right leading order term (kinetic

contribution), but is not enough to describe correlations between particles|

® Main challenge: to study the correlation energy

Eeowe = Ex — ERF
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Main Results

Theorem 1 [E.L. G., Journal of Functional Analysis (2023)]

Suppose the interaction potential V is positive, radial, compactly
supported and smooth, then as p — 0,

3 5 5 7
e(pr,py) < 5(67T )5 (pi +p}) +8maprpy + Cp¥,
where a is the scattering length of the potential V. Moreover, as p — 0

5
+p}) + 8maprpy — Cp**
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® The first two order corrections were derived by Lieb-Seiringer-Solovej (Phys.
Rev. A (2005)). Alternative proof by Falconi-G.-Hainzl-Porta (Ann. Henri
Poincaré (2021))

® Positive temperature case by Seiringer (Comm. Math. Phys. 2006)
Recently Lauritsen (Ann. Henri Poincaré (2024)) obtained an almost
optimal upper bound (O(p7/37%)) for hard-core interactions via Cluster

expansion methods.



Main Results — In Preparation

Theorem 2 [E.L. G., C. Hainzl, P.T. Nam, R. Seiringer|

Suppose the interaction potential V is positive, radial, compactly
supported and L, then if py = py = p/2, we have as p — 0

3. 2.2 5 5 4(11 —2log2) / 3 \*/3 o257/ 7
e(PT;Pi)Sg(&T )3p3 +2map +T v +0( 3)7

where a is the scattering length of the potential V.
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Theorem 3 [E.L. G.]

Suppose the interaction potential V' is positive, radial, compactly
supported and L*, then if pr = py = p/2, we have as p — 0

5 5 7
e(pripy) 2 7(67r )3 (p 3 +pP) +8maprp, — Cp3,

where a is the scattering length of the potential V.

® Theorem 2 holds in a more general setting, i.e., pr # py, with

4(11 — 2log 2) 43 5 1
T 3522 \ax aP/ “’*aP F(PL/PT)—“P F(pt/py)



Main Ideas of the Strategy of the Proofs

— Minimize the energy over anty-symmetric product states:
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— Describe the effective correlation energy (Feorr = En — Errg) via
quasi-bosonic creation/annihilation operators:

bp,o = prmaa bp,ro = Gptrolre || <kp <[p+7], bpo = (bp.os)”
K

Hi(‘;frr ~ % Z Z Akbz,abk,o' + % Z Bk(bk7Tb—k1l + bikibzﬁ)a
o k k
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— Conjugate HE, via a quasi-bosonic Bogoliubov transformation
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~ through the conjugation we diagonalize the HET, and re-normalize the
interaction potential (V ~ V)
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Main Ideas of the Strategy of the Proofs

R 1_
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Main Ideas of the Strategy of the Proofs

for p3=7 < |p|

x T) = exp (% Zp G(p)bprb_p | — h.c.),
~ 1_
* Ty = exp (% Zp,'r‘ﬂ"’ M (p)bp,’r’Tb—p,T”J, - h.C.), for ‘p| /S p3 7

with A -
oy V(p) = Velp) . _ 8ra
#p) = o 0 () = 2[pl2+2p- (r—r)
~~ After T1Ts, we have
3. 232, %8 &
e(pr, pu) ~ = (677)3 (pf + pff) + 8maprpy
2 _ L)
=P+ =pl2 =12 |p]?

. (87ra)2 Z
2L3 Ir + pl?
7'68},7"68?
r+p¢B;‘,7"7p¢B#
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Thank you for the attention!



