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The Setting

• N interacting spin 1/2 fermions in a box ΛL := [−L/2, L/2]3, with
periodic boundary conditions.

HN = −
N∑
i=1

∆xi +
N∑

i<j=1

V (xi − xj), h := ∧NL2(ΛL;C2)

▶ Nσ = # particles with spin σ ∈ {↑, ↓}, N = N↑ +N↓.

▶ V is the ‘periodization’ on ΛL of a potential V∞ on R3 positive,
radial, compactly supported and in L2.

• The ground state energy density is (ρσ = Nσ/L
3, ρ = ρ↑ + ρ↓)

eL(ρ↑, ρ↓) =
EL(N↑,N↓)

L3 = inf
ψ∈h(N↑,N↓)

⟨ψ,HNψ⟩
⟨ψ,ψ⟩

• We are interested in the thermodynamic limit:

e(ρ↑, ρ↓) = lim
N,L→∞

ρ=N/L3=const.

eL(ρ↑, ρ↓)

• We focus on the dilute regime (ρa3 → 0)
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Huang-Yang Conjecture (1957)

Huang-Yang conjecture (1957)

In physical units such that ℏ = 1, m = 1/2, if ρ↑ = ρ↓ = ρ/2, then as ρ → 0

e(ρ↑, ρ↓) =
3

5
(3π2)

2
3 ρ

5
3 + 2πaρ2 +

4(11− 2 log 2)

35π2

(
3

4π

)4/3

a2ρ7/3 + o(ρ7/3).

• The first term ∝ ρ
5
3 is a purely kinetic term (Free Fermi Gas)

• The second and the third order corrections depend on the interaction
via the scattering length a, which describes the effective range of the
interaction:

8πa =

∫
dxV (x)f(x), −∆f +

1

2
V f = 0, lim

|x|→∞
f(x) = 1

Remark: V̂ (0) > 8πa ⇝ correlations play a role (next slide).

[1] Huang, Yang, Quantum-Mechanical Many-Body Problem with Hard-Sphere Interaction, Phys. Rev. (1957).
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(
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)
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1
3
σi

Bσi
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F ∼ ρ
1
3
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Correlation Energy

→ Minimize the energy over anty-symmetric product states:

ΦFFG = 1√
N !

det
(
fσiki )(xj)

)
1≤i,j≤N , fσiki (x) =

eiki·x√
L3

, |ki| ≤ kσiF ∼ ρ
1
3
σi

EFFG = ⟨ΦFFG, HNΦFFG⟩ = 3
5
(6π2)

2
3 (ρ

5
3
↑ + ρ

5
3
↓ )L

3 + V̂ (0)︸ ︷︷ ︸
>8πa

ρ↑ρ↓L
3 +O(L3ρ

8
3 )

⋆ [The FFG state allows us to have the right leading order term (kinetic
contribution), but is not enough to describe correlations between particles]

• Main challenge: to study the correlation energy

Ecorr = EN − EHF
N
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Main Results

Theorem 1 [E.L. G., Journal of Functional Analysis (2023)]

Suppose the interaction potential V is positive, radial, compactly
supported and smooth, then as ρ → 0,

e(ρ↑, ρ↓) ≤
3

5
(6π2)

2
3 (ρ

5
3
↑ + ρ

5
3
↓ ) + 8πaρ↑ρ↓ + Cρ

7
3 ,

where a is the scattering length of the potential V . Moreover, as ρ → 0

e(ρ↑, ρ↓) ≥
3

5
(6π2)

2
3 (ρ

5
3
↑ + ρ

5
3
↓ ) + 8πaρ↑ρ↓ − Cρ2+

1
5 .

• The first two order corrections were derived by Lieb-Seiringer-Solovej (Phys.

Rev. A (2005)). Alternative proof by Falconi-G.-Hainzl-Porta (Ann. Henri

Poincaré (2021))
• Positive temperature case by Seiringer (Comm. Math. Phys. 2006)
• Recently Lauritsen (Ann. Henri Poincaré (2024)) obtained an almost

optimal upper bound (O(ρ7/3−ε)) for hard-core interactions via Cluster

expansion methods.
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Main Results – In Preparation

Theorem 2 [E.L. G., C. Hainzl, P.T. Nam, R. Seiringer]
Suppose the interaction potential V is positive, radial, compactly
supported and L2, then if ρ↑ = ρ↓ = ρ/2, we have as ρ → 0

e(ρ↑, ρ↓) ≤
3

5
(3π

2
)
2
3 ρ

5
3 + 2πaρ

2
+

4(11 − 2 log 2)

35π2

(
3

4π

)4/3

a
2
ρ
7/3

+ o
(
ρ

7
3

)
,

where a is the scattering length of the potential V .

Theorem 3 [E.L. G.]
Suppose the interaction potential V is positive, radial, compactly
supported and L1, then if ρ↑ = ρ↓ = ρ/2, we have as ρ → 0

e(ρ↑, ρ↓) ≥
3

5
(6π

2
)
2
3 (ρ

5
3
↑ + ρ

5
3
↓ ) + 8πaρ↑ρ↓ − Cρ

7
3 ,

where a is the scattering length of the potential V .

• Theorem 2 holds in a more general setting, i.e., ρ↑ ̸= ρ↓, with

4(11 − 2 log 2)

35π2

(
3

4π

)4/3

a
2
ρ
7/3 ⇝ a

2
ρ

7
3
↑ F (ρ↓/ρ↑) = a

2
ρ

7
3
↓ F (ρ↑/ρ↓)
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Main Ideas of the Strategy of the Proofs

→ Minimize the energy over anty-symmetric product states:

EFFG = ⟨ΦFFG, HNΦFFG⟩ = 3
5
(6π2)

2
3 (ρ

5
3
↑ + ρ

5
3
↓ )L

3 + V̂ (0)︸ ︷︷ ︸
>8πa

ρ↑ρ↓L
3 +O(L3ρ

8
3 )

→ Describe the effective correlation energy (Ecorr = EN − EFFG) via
quasi-bosonic creation/annihilation operators:

bp,σ :=
∑
r

bp,r,σ, bp,r,σ = âp+r,σâr,σ |r| < kσF < |p+ r|, b∗p,σ = (bp,σ)
∗

Heff
corr ∼ 1

L3

∑
σ

∑
k

Akb
∗
k,σbk,σ + 1

L3

∑
k

Bk(bk,↑b−k,↓ + b∗−k↓b
∗
k,↑),

→ Conjugate Heff
corr via a quasi-bosonic Bogoliubov transformation

T ∼ exp

(
1

2L3

∑
p,r,r′

φ̂r,r′(p)bp,r,↑b−p,r′,↓ − h.c.

)
.

⇝ through the conjugation we diagonalize the Heff
corr and re-normalize the

interaction potential (V ⇝ Vφ)
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Main Ideas of the Strategy of the Proofs

∗ T1 = exp
(

1
L3

∑
p φ̂(p)bp,↑b−p,↓ − h.c.

)
, for ρ

1
3−γ ≲ |p|

∗ T2 = exp
(

1
L3

∑
p,r,r′ η̂r,r′(p)bp,r↑b−p,r′↓ − h.c.

)
, for |p| ≲ ρ

1
3−γ

with

φ̂(p) =
V̂ (p)− V̂ φ(p)

2|p|2 , η̂r,r′(p) =
8πa

2|p|2 + 2p · (r − r′)

⇝ After T1T2, we have

e(ρ↑, ρ↓) ∼
3

5
(6π2)

2
3 (ρ

5
3
↑ + ρ

5
3
↓ ) + 8πaρ↑ρ↓

− (8πa)2

2L3

∑
r∈B↑

F
,r′∈B↓

F

r+p/∈B↑
F
,r′−p/∈B↓

F

(
2

|r + p|2 − |r|2 + |r′ − p|2 − |r′|2 − 1

|p|2

)
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3−γ

with

φ̂(p) =
V̂ (p)− V̂ φ(p)

2|p|2 , η̂r,r′(p) =
8πa

2|p|2 + 2p · (r − r′)

⇝ After T1T2, we have

e(ρ↑, ρ↓) ∼
3

5
(6π2)

2
3 (ρ

5
3
↑ + ρ

5
3
↓ ) + 8πaρ↑ρ↓

− (8πa)2

2L3

∑
r∈B↑

F
,r′∈B↓

F

r+p/∈B↑
F
,r′−p/∈B↓

F

(
2

|r + p|2 − |r|2 + |r′ − p|2 − |r′|2 − 1

|p|2

)
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Thank you for the attention!


