Giovanna Marcelli

Adiabatic evolution of low-temperature many-body quantum systems

joint work with R. L. Greenblatt, M. Lange and M. Porta

Commun. Math. Phys. (2024)

Università degli studi di Palermo - 2nd international AMS-UMI joint meeting - 25/07/2024

Outline

■ Introduction: adiabatic theorems for quantum systems.

Outline

■ Introduction: adiabatic theorems for quantum systems.

Setting: interacting fermionic lattice systems.
 Dynamics: initial state in thermal equilibrium then a weak and slowly-varying time-dependent perturbation is introduced.

Outline

■ *Introduction*: adiabatic theorems for quantum systems.

Setting: interacting fermionic lattice systems.
 Dynamics: initial state in thermal equilibrium then a weak and slowly-varying time-dependent perturbation is introduced.

Main result: convergent expansion for expectation values of local observables, at small temperature. Corollary: adiabatic theorem.

Let ℋ(ηt) be a time-dependent Hamiltonian, where 0 < η ≪ 1 is the adiabatic parameter and ηt ∈ [−1, 0]. Let s := ηt be the slow scaled time.

Let ℋ(ηt) be a time-dependent Hamiltonian, where 0 < η ≪ 1 is the adiabatic parameter and ηt ∈ [−1, 0]. Let s := ηt be the slow scaled time.

Suppose that there exists a family of spectral projections s → P(s) satisfying the gap condition.
 For simplicity, for every s suppose that H(s) has an eigenvalue E(s) such that

$$\operatorname{dist}(E(s), \sigma(\mathcal{H}(s)) \setminus \{E(s)\}) = g > 0$$
 for all $s \in [-1, 0]$

Let ℋ(ηt) be a time-dependent Hamiltonian, where 0 < η ≪ 1 is the adiabatic parameter and ηt ∈ [−1, 0]. Let s := ηt be the slow scaled time.

Suppose that there exists a family of spectral projections s → P(s) satisfying the gap condition.
 For simplicity, for every s suppose that H(s) has an eigenvalue E(s) such that

 $\operatorname{dist}(E(s), \sigma(\mathcal{H}(s)) \setminus \{E(s)\}) = g > 0 \text{ for all } s \in [-1, 0]$

• AT: Any initial state $\phi(-1)$ in **Ran** P(-1) evolves under the Schrödinger evolution into a state $\psi(s)$ that is localised in **Ran** P(s) up to error of order η .

■ [Born–Fock 1928, Kato 1950] AT implies that there exists C_0 independent of η :

$$\left\| P(s)^{\perp} \psi(s) \right\| = \| (\mathbb{1} - P(s))\psi(s) \| \le C_0 \eta$$
 (1)

for all $s \in [-1, 0]$, where C_0 depends linearly in $\|\dot{\mathcal{H}}(s)\| < \infty$.

Eigen-Fock 1928, Kato 1950] AT implies that there exists C_0 independent of η :

$$\left\| P(s)^{\perp} \psi(s) \right\| = \| (\mathbb{1} - P(s))\psi(s) \| \le C_0 \eta$$
(1)

for all $s \in [-1, 0]$, where C_0 depends linearly in $\|\dot{\mathcal{H}}(s)\| < \infty$. In a quantum spin or fermionic lattice system on $\Gamma_L = \mathbb{Z}^d / (L\mathbb{Z}^d)$, one gets:

$$\left\|\dot{\mathcal{H}}(s)\right\| = \left\|\sum_{X \subseteq \Gamma_L} \dot{\Phi}_X(s)\right\| \propto L^d \implies (1) \text{ is useless for large } L \text{ at fixed } \eta.$$

■ [Born–Fock 1928, Kato 1950] AT implies that there exists C_0 independent of η :

$$\left\| P(s)^{\perp} \psi(s) \right\| = \| (\mathbb{1} - P(s)) \psi(s) \| \le C_0 \eta$$
 (1)

for all $s \in [-1, 0]$, where C_0 depends linearly in $\|\dot{\mathcal{H}}(s)\| < \infty$. In a quantum spin or fermionic lattice system on $\Gamma_L = \mathbb{Z}^d / (L\mathbb{Z}^d)$, one gets:

$$\left\|\dot{\mathcal{H}}(s)\right\| = \left\|\sum_{X \subseteq \Gamma_L} \dot{\Phi}_X(s)\right\| \propto L^d \implies (1) \text{ is useless for large } L \text{ at fixed } \eta.$$

• [Bachmann-De Roeck-Fraas, CMP '18] In spin lattice system let O_X be a local operator, then there exists C_1 independent of η and the system size L:

 $|\langle \psi(s)|\, O_X\psi(s)\rangle - \langle \phi(s)|\, O_X\phi(s)\rangle| \leq C_1\eta \quad \text{for all } s\in [-1,0].$

■ [Born–Fock 1928, Kato 1950] AT implies that there exists C_0 independent of η :

$$\left\| P(s)^{\perp} \psi(s) \right\| = \| (\mathbb{1} - P(s)) \psi(s) \| \le C_0 \eta$$
 (1)

for all $s \in [-1, 0]$, where C_0 depends linearly in $\|\dot{\mathcal{H}}(s)\| < \infty$. In a quantum spin or fermionic lattice system on $\Gamma_L = \mathbb{Z}^d / (L\mathbb{Z}^d)$, one gets:

$$\left\|\dot{\mathcal{H}}(s)\right\| = \left\|\sum_{X \subseteq \Gamma_L} \dot{\Phi}_X(s)\right\| \propto L^d \implies (1) \text{ is useless for large } L \text{ at fixed } \eta.$$

• [Bachmann–De Roeck–Fraas, CMP '18] In spin lattice system let O_X be a local operator, then there exists C_1 independent of η and the system size L:

 $|\langle \psi(s)|\, O_X\psi(s)\rangle - \langle \phi(s)|\, O_X\phi(s)\rangle| \leq C_1\eta \quad \text{for all } s\in [-1,0].$

For fermionic lattice system, similar result in [Monaco–Teufel RMP '19, Henheik, Teufel FM Σ '20] for finite/infinite volume. In the setting one-body (infinitely extended) continuum system an analogous result in [Elgart–Schlein CPAM '04, Marcelli LMP '22].

• (Standard) Adiabatic theorem can be applied whenever one considers T = 0: Initial state is in the range of the projection on the ground state of many-body gapped Hamiltonian (or Fermi projection of one-body gapped Hamiltonian).

• (Standard) Adiabatic theorem can be applied whenever one considers T = 0: Initial state is in the range of the projection on the ground state of many-body gapped Hamiltonian (or Fermi projection of one-body gapped Hamiltonian).

• Consider $\mathcal{H}(\eta t)$. Let $\rho_{\beta,\mu,L} = \frac{e^{-\beta(\mathcal{H}-\mu\mathcal{N})}}{\operatorname{Tr}(e^{-\beta(\mathcal{H}-\mu\mathcal{N})})}$ be the equilibrium Gibbs state of $\mathcal{H} \equiv \mathcal{H}(-1)$ where $\beta = 1/T$. The state $\rho(t)$ of the system is determined by the Cauchy problem:

$$\left\{ \begin{array}{l} \mathbf{i} \frac{\mathbf{d}}{\mathbf{d}t} \rho(t) = \left[\mathcal{H}(\eta t), \rho(t) \right] \\ \rho(-1/\eta) = \rho_{\beta,\mu,L}. \end{array} \right.$$

- (Standard) Adiabatic theorem can be applied whenever one considers T = 0: Initial state is in the range of the projection on the ground state of many-body gapped Hamiltonian (or Fermi projection of one-body gapped Hamiltonian).
- Consider $\mathcal{H}(\eta t)$. Let $\rho_{\beta,\mu,L} = \frac{e^{-\beta(\mathcal{H}-\mu\mathcal{N})}}{\operatorname{Tr}(e^{-\beta(\mathcal{H}-\mu\mathcal{N})})}$ be the equilibrium Gibbs state of $\mathcal{H} \equiv \mathcal{H}(-1)$ where $\beta = 1/T$. The state $\rho(t)$ of the system is determined by the Cauchy problem:

$$\begin{split} \mathbf{i} \frac{\mathbf{d}}{\mathbf{d}t} \rho(t) &= [\mathcal{H}(\eta t), \rho(t)] \\ \rho(-1/\eta) &= \rho_{\beta,\mu,L}. \end{split}$$

Let $\langle \cdot \rangle_{\eta t}$ be the instantaneous Gibbs state of $\mathcal{H}(\eta t)$.

• (Standard) Adiabatic theorem can be applied whenever one considers T = 0: Initial state is in the range of the projection on the ground state of many-body gapped Hamiltonian (or Fermi projection of one-body gapped Hamiltonian).

• Consider $\mathcal{H}(\eta t)$. Let $\rho_{\beta,\mu,L} = \frac{e^{-\beta(\mathcal{H}-\mu\mathcal{N})}}{\operatorname{Tr}(e^{-\beta(\mathcal{H}-\mu\mathcal{N})})}$ be the equilibrium Gibbs state of $\mathcal{H} \equiv \mathcal{H}(-1)$ where $\beta = 1/T$. The state $\rho(t)$ of the system is determined by the Cauchy problem:

$$\begin{split} \mathbf{i} \frac{\mathbf{d}}{\mathbf{d}t} \rho(t) &= [\mathcal{H}(\eta t), \rho(t)] \\ \rho(-1/\eta) &= \rho_{\beta,\mu,L}. \end{split}$$

Let $\langle \cdot \rangle_{\eta t}$ be the instantaneous Gibbs state of $\mathcal{H}(\eta t)$. **Main question**: Under which conditions it holds true that

 $\left|\operatorname{Tr} O_X \rho(t) - \langle O_X \rangle_{\eta t}\right|$ is small as $\eta \to 0^+$ uniformly in L.

• (Standard) Adiabatic theorem can be applied whenever one considers T = 0: Initial state is in the range of the projection on the ground state of many-body gapped Hamiltonian (or Fermi projection of one-body gapped Hamiltonian).

• Consider $\mathcal{H}(\eta t)$. Let $\rho_{\beta,\mu,L} = \frac{e^{-\beta(\mathcal{H}-\mu\mathcal{N})}}{\operatorname{Tr}(e^{-\beta(\mathcal{H}-\mu\mathcal{N})})}$ be the equilibrium Gibbs state of $\mathcal{H} \equiv \mathcal{H}(-1)$ where $\beta = 1/T$. The state $\rho(t)$ of the system is determined by the Cauchy problem:

$$\begin{split} \mathbf{i} \frac{\mathbf{d}}{\mathbf{d}t} \rho(t) &= [\mathcal{H}(\eta t), \rho(t)] \\ \rho(-1/\eta) &= \rho_{\beta,\mu,L}. \end{split}$$

Let $\langle \cdot \rangle_{\eta t}$ be the instantaneous Gibbs state of $\mathcal{H}(\eta t)$. **Main question**: Under which conditions it holds true that

 $\left|\operatorname{Tr} O_X \rho(t) - \langle O_X \rangle_{\eta t} \right|$ is small as $\eta \to 0^+$ uniformly in L.

In particular, $T \to 0^+$ after $L \to \infty$.

• We consider interacting fermions on $\Gamma_L := \mathbb{Z}^d/(L\mathbb{Z}^d)$, including $M \in \mathbb{N}$ internal degree of freedom: the total configuration space $\Lambda_L := \Gamma_L \times \{1, \dots, M\}$.

- We consider interacting fermions on $\Gamma_L := \mathbb{Z}^d/(L\mathbb{Z}^d)$, including $M \in \mathbb{N}$ internal degree of freedom: the total configuration space $\Lambda_L := \Gamma_L \times \{1, \dots, M\}$.
- We denote by \mathcal{F}_L the usual fermionic Fock space on $\ell^2(\Lambda_L)$, and introduce standard fermionic creation/annihilation operators:

$$\{a_x^-,a_y^+\}=\delta_{x,y}\mathbb{1} \quad \text{ and } \quad \{a_x^-,a_y^-\}=0=\{a_x^+,a_y^+\} \qquad \text{ for any } x,y\in\Lambda_L.$$

- We consider interacting fermions on $\Gamma_L := \mathbb{Z}^d/(L\mathbb{Z}^d)$, including $M \in \mathbb{N}$ internal degree of freedom: the total configuration space $\Lambda_L := \Gamma_L \times \{1, \dots, M\}$.
- We denote by \mathcal{F}_L the usual fermionic Fock space on $\ell^2(\Lambda_L)$, and introduce standard fermionic creation/annihilation operators:

$$\{a_x^-,a_y^+\}=\delta_{x,y}\mathbb{1} \quad \text{ and } \quad \{a_x^-,a_y^-\}=0=\{a_x^+,a_y^+\} \qquad \text{ for any } x,y\in\Lambda_L.$$

Given $X \subset \Lambda_L$, let \mathcal{A}_X be the polynomials over \mathbb{C} constructed with a_x^-, a_x^+ with $x \in X$. An operator $O_X \in \mathcal{A}_X$ is said a local operator.

- We consider interacting fermions on $\Gamma_L := \mathbb{Z}^d/(L\mathbb{Z}^d)$, including $M \in \mathbb{N}$ internal degree of freedom: the total configuration space $\Lambda_L := \Gamma_L \times \{1, \dots, M\}$.
- We denote by \mathcal{F}_L the usual fermionic Fock space on $\ell^2(\Lambda_L)$, and introduce standard fermionic creation/annihilation operators:

$$\{a_x^-,a_y^+\}=\delta_{x,y}\mathbb{1} \quad \text{ and } \quad \{a_x^-,a_y^-\}=0=\{a_x^+,a_y^+\} \qquad \text{ for any } x,y\in\Lambda_L.$$

Given $X \subset \Lambda_L$, let \mathcal{A}_X be the polynomials over \mathbb{C} constructed with a_x^-, a_x^+ with $x \in X$. An operator $\mathcal{O}_X \in \mathcal{A}_X$ is said a local operator. Any $\mathcal{O} \in \mathcal{A}_{\Lambda_L}$ can be represented as $\mathcal{O} = \sum_{X \subset \Lambda_L} \mathcal{O}_X$ where $\mathcal{O}_X \in \mathcal{A}_X$.

- We consider interacting fermions on $\Gamma_L := \mathbb{Z}^d/(L\mathbb{Z}^d)$, including $M \in \mathbb{N}$ internal degree of freedom: the total configuration space $\Lambda_L := \Gamma_L \times \{1, \dots, M\}$.
- We denote by \mathcal{F}_L the usual fermionic Fock space on $\ell^2(\Lambda_L)$, and introduce standard fermionic creation/annihilation operators:

$$\{a_x^-, a_y^+\} = \delta_{x,y} \mathbb{1} \quad \text{ and } \quad \{a_x^-, a_y^-\} = 0 = \{a_x^+, a_y^+\} \qquad \text{ for any } x, y \in \Lambda_L.$$

Given $X \subset \Lambda_L$, let \mathcal{A}_X be the polynomials over \mathbb{C} constructed with a_x^-, a_x^+ with $x \in X$. An operator $\mathcal{O}_X \in \mathcal{A}_X$ is said a local operator. Any $\mathcal{O} \in \mathcal{A}_{\Lambda_L}$ can be represented as $\mathcal{O} = \sum_{X \subset \Lambda_L} \mathcal{O}_X$ where $\mathcal{O}_X \in \mathcal{A}_X$.

• Let the number operator $\mathcal{N} := \sum_{x \in \Lambda_L} a_x^+ a_x^- \in \mathcal{A}_{\Lambda_L}, \qquad \mathcal{A}_X^{\mathcal{N}} := \{ O \in \mathcal{A}_X \, \big| \, [O, \mathcal{N}] = 0 \}.$

- We say that $\mathcal{O} \in \mathcal{A}_{\Lambda_L}$ is a *finite-range* operator if there exist
 - (i) R > 0 independent of L such that $\mathcal{O}_X = 0$ if diam(X) > R
 - (ii) S > 0 independent of L such that $\|\mathcal{O}_X\| \leq S$.

We say that O ∈ A_{Λ_L} is a *finite-range* operator if there exist
 (i) R > 0 independent of L such that O_X = 0 if diam(X) > R
 (ii) S > 0 independent of L such that ||O_X|| ≤ S.

• We consider finite-range and self-adjoint Hamiltonian over Λ_L :

$$\mathcal{H} = \textstyle{\sum_{X \subseteq \Lambda_L} \mathcal{H}_X} \qquad \text{with } \mathcal{H}_X \in \mathcal{A}_X^{\mathcal{N}}.$$

We say that O ∈ A_{Λ_L} is a *finite-range* operator if there exist
 (i) R > 0 independent of L such that O_X = 0 if diam(X) > R
 (ii) S > 0 independent of L such that ||O_X|| < S.

• We consider finite-range and self-adjoint Hamiltonian over Λ_L :

$$\mathcal{H} = \sum_{X \subseteq \Lambda_L} \mathcal{H}_X \qquad \text{with } \mathcal{H}_X \in \mathcal{A}_X^{\mathcal{N}}.$$

Prototypical example:

$$\mathcal{H} = \sum_{x,y \in \Lambda_L} a_x^+ H(x,y) a_y^- + \lambda \sum_{x,y \in \Lambda_L} a_x^+ a_y^+ v(x,y) a_y^- a_x^-$$

where H, v are finite-range functions and $\lambda \in \mathbb{R}$.

We say that O ∈ A_{Λ_L} is a *finite-range* operator if there exist
 (i) R > 0 independent of L such that O_X = 0 if diam(X) > R
 (ii) S > 0 independent of L such that ||O_X|| < S.

• We consider finite-range and self-adjoint Hamiltonian over Λ_L :

$$\mathcal{H} = \sum_{X \subseteq \Lambda_L} \mathcal{H}_X \qquad \text{with } \mathcal{H}_X \in \mathcal{A}_X^{\mathcal{N}}.$$

Prototypical example:

$$\mathcal{H} = \sum_{x,y \in \Lambda_L} a_x^+ H(x,y) a_y^- + \lambda \sum_{x,y \in \Lambda_L} a_x^+ a_y^+ v(x,y) a_y^- a_x^-$$

where H, v are finite-range functions and $\lambda \in \mathbb{R}$.

• Let $O_X \in \mathcal{A}_X$. Grand-canonical Gibbs state: $\langle O_X \rangle_{\beta,\mu,L} := \operatorname{Tr}_{\mathcal{F}_L} \left(O_X \rho_{\beta,\mu,L} \right) \text{ with } \rho_{\beta,\mu,L} := \frac{\mathrm{e}^{-\beta(\mathcal{H}-\mu\mathcal{N})}}{\operatorname{Tr}_{\mathcal{F}_L}(\mathrm{e}^{-\beta(\mathcal{H}-\mu\mathcal{N})})}.$

• We introduce for $t \leq 0$

 $\mathcal{H}(\eta t) = \mathcal{H} + \varepsilon \, g(\eta t) \, \mathcal{P} \quad \text{with } \varepsilon \in \mathbb{R} \text{ and } \eta > 0 \,,$

 $-\mathcal{P}$ is finite-range and self-adjoint operator in $\mathcal{A}^{\mathcal{N}}_{\Lambda_r}$,

-for simplicity $g(t) = \mathbf{e}^t$ (the function g can be chosen in a suitable switch function class).

• We introduce for $t \leq 0$

 $\mathcal{H}(\eta t) = \mathcal{H} + \varepsilon \, g(\eta t) \, \mathcal{P} \quad \text{with} \, \varepsilon \in \mathbb{R} \text{ and } \eta > 0 \,,$

 $-\mathcal{P}$ is finite-range and self-adjoint operator in $\mathcal{A}_{\Lambda_L}^{\mathcal{N}}$, -for simplicity $g(t) = \mathbf{e}^t$ (the function g can be chosen in a suitable switch function class).

Evolution of the state: the density matrix of the system is determined by

 $\mathbf{i} \frac{\mathbf{d}}{\mathbf{d}t} \rho(t) = [\mathcal{H}(\eta t), \rho(t)] \qquad \text{and} \qquad \rho(-\infty) = \rho_{\beta,\mu,L}.$

• We introduce for $t \leq 0$

 $\mathcal{H}(\eta t) = \mathcal{H} + \varepsilon \, g(\eta t) \, \mathcal{P} \quad \text{with} \, \varepsilon \in \mathbb{R} \text{ and } \eta > 0 \,,$

 $-\mathcal{P}$ is finite-range and self-adjoint operator in $\mathcal{A}_{\Lambda_L}^{\mathcal{N}}$, -for simplicity $g(t) = \mathbf{e}^t$ (the function g can be chosen in a suitable switch function class).

• Evolution of the state: the density matrix of the system is determined by $i \frac{d}{dt} \rho(t) = [\mathcal{H}(\eta t), \rho(t)]$ and $\rho(-\infty) = \rho_{\beta,\mu,L}$.

• We are interested in the expectation value of local observables:

$$\mathrm{Tr}\left(O_X\,\rho(t)\right)\equiv\mathrm{Tr}\left(O_X\,\rho_{\varepsilon,\eta,\beta,\mu,L}(t)\right).$$

• We introduce for $t \leq 0$

 $\mathcal{H}(\eta t) = \mathcal{H} + \varepsilon \, g(\eta t) \, \mathcal{P} \quad \text{with } \varepsilon \in \mathbb{R} \text{ and } \eta > 0 \,,$

 $-\mathcal{P}$ is finite-range and self-adjoint operator in $\mathcal{A}_{\Lambda_L}^{\mathcal{N}}$, -for simplicity $g(t) = \mathbf{e}^t$ (the function g can be chosen in a suitable switch function class).

• Evolution of the state: the density matrix of the system is determined by $\mathbf{i} \frac{\mathbf{d}}{\mathbf{d}t} \rho(t) = [\mathcal{H}(\eta t), \rho(t)]$ and $\rho(-\infty) = \rho_{\beta,\mu,L}$.

• We are interested in the expectation value of local observables:

$$\mathrm{Tr}\left(O_X\,\rho(t)\right) \equiv \mathrm{Tr}\left(O_X\,\rho_{\varepsilon,\eta,\beta,\mu,L}(t)\right).$$

Order of limits: the adiabatic regime $\eta \to 0^+$ and ε small uniformly in η , uniformly in the system size L.

• We introduce for $t \leq 0$

 $\mathcal{H}(\eta t) = \mathcal{H} + \varepsilon \, g(\eta t) \, \mathcal{P} \quad \text{with } \varepsilon \in \mathbb{R} \text{ and } \eta > 0 \,,$

 $-\mathcal{P}$ is finite-range and self-adjoint operator in $\mathcal{A}_{\Lambda_L}^{\mathcal{N}}$, -for simplicity $g(t) = \mathbf{e}^t$ (the function g can be chosen in a suitable switch function class).

• Evolution of the state: the density matrix of the system is determined by $i \frac{d}{dt} \rho(t) = [\mathcal{H}(\eta t), \rho(t)]$ and $\rho(-\infty) = \rho_{\beta,\mu,L}$.

• We are interested in the expectation value of local observables:

$$\mathrm{Tr}\left(O_X\,\rho(t)\right) \equiv \mathrm{Tr}\left(O_X\,\rho_{\varepsilon,\eta,\beta,\mu,L}(t)\right).$$

Order of limits: the adiabatic regime $\eta \to 0^+$ and ε small uniformly in η , uniformly in the system size L. Comparison with the instantaneous Gibbs state of $\mathcal{H}(\eta t)$.

Perturbation theory for quantum dynamics

■ Let the Heisenberg evolution be:

$$\mathbb{R} \ni t \mapsto \tau_t \left(O \right) := \mathbf{e}^{\mathbf{i} \mathcal{H} t} \, O \, \mathbf{e}^{-\mathbf{i} \mathcal{H} t} \quad \text{for any } O \in \mathcal{A}_{\Lambda_L}.$$

Perturbation theory for quantum dynamics

■ Let the Heisenberg evolution be:

$$\mathbb{R} \ni t \mapsto \tau_t(O) := \mathbf{e}^{\mathbf{i}\mathcal{H}t} O \mathbf{e}^{-\mathbf{i}\mathcal{H}t} \quad \text{for any } O \in \mathcal{A}_{\Lambda_L}.$$

■ The Duhamel expansion for quantum dynamics via interaction picture:

$$\begin{split} &\operatorname{Tr} O_X \rho(t) = \operatorname{Tr} O_X \rho_{\beta,\mu,L} \\ &+ \sum_{n \geq 1} (-\mathrm{i}\varepsilon)^n \int_{\mathrm{symplex}} d\underline{s} \, \mathrm{e}^{\eta(s_1 + \dots + s_n)} \langle [\cdots [\tau_t(O_X), \tau_{s_1}(\mathcal{P})] \cdots \tau_{s_n}(\mathcal{P})] \rangle_{\beta,\mu,L} \end{split}$$

where symplex means $-\infty \leq s_n \leq \cdots \leq s_1 \leq t \leq 0$.

Perturbation theory for quantum dynamics

Let the Heisenberg evolution be:

$$\mathbb{R} \ni t \mapsto \tau_t \left(O \right) := \mathbf{e}^{\mathbf{i}\mathcal{H}t} O \mathbf{e}^{-\mathbf{i}\mathcal{H}t} \quad \text{for any } O \in \mathcal{A}_{\Lambda_L}.$$

The Duhamel expansion for quantum dynamics via interaction picture:

$$\begin{split} &\operatorname{Tr} O_X \rho(t) = \operatorname{Tr} O_X \rho_{\beta,\mu,L} \\ &+ \sum_{n \geq 1} (-\mathrm{i}\varepsilon)^n \int_{\mathrm{symplex}} d\underline{s} \, \mathrm{e}^{\eta(s_1 + \dots + s_n)} \langle [\cdots [\tau_t(O_X), \tau_{s_1}(\mathcal{P})] \cdots \tau_{s_n}(\mathcal{P})] \rangle_{\beta,\mu,L} \end{split}$$

where symplex means $-\infty \leq s_n \leq \cdots \leq s_1 \leq t \leq 0$.

• Using the unitarity of the dynamics a very rough bound for the n-th term is:

$$C^n \frac{\left|\varepsilon\right|^n}{\eta^n} \frac{\left|\Lambda_L\right|^n}{n!}.$$

Thus, for $L < \infty$ and $\eta > 0$ the series is absolutely convergent. But it is useless for large L and small η .

Let the Euclidean evolution be:

$$\mathbb{R} \ni t \mapsto \gamma_t(O) := \mathbf{e}^{t(\mathcal{H} - \mu\mathcal{N})} O \, \mathbf{e}^{-t(\mathcal{H} - \mu\mathcal{N})} \quad \text{for any } O \in \mathcal{A}_{\Lambda_L}.$$

Let the Euclidean evolution be:

$$\mathbb{R} \ni t \mapsto \gamma_t\left(O\right) := \mathbf{e}^{t\left(\mathcal{H} - \mu \mathcal{N}\right)} O \, \mathbf{e}^{-t\left(\mathcal{H} - \mu \mathcal{N}\right)} \quad \text{for any } O \in \mathcal{A}_{\Lambda_L}.$$

■ The *n*-th order cumulant/connected correlation function is defined as:

$$\begin{split} \langle O_1; O_2; \dots; O_n \rangle_{\beta,\mu,L} \\ &= \frac{\partial^n}{\partial \lambda_1 \partial \lambda_2 \cdots \lambda_n} \log \left\{ 1 + \sum_{\emptyset \neq I \subseteq \{1,2,\dots,n\}} \Pi_{i \in I} \lambda_i \left\langle \Pi_{i \in I} O_i \right\rangle_{\beta,\mu,L} \right\} \bigg|_{\lambda_i = 0}. \end{split}$$

Let the Euclidean evolution be:

$$\mathbb{R} \ni t \mapsto \gamma_t\left(O\right) := \mathbf{e}^{t\left(\mathcal{H} - \mu \mathcal{N}\right)} O \, \mathbf{e}^{-t\left(\mathcal{H} - \mu \mathcal{N}\right)} \quad \text{for any } O \in \mathcal{A}_{\Lambda_L}.$$

■ The *n*-th order cumulant/connected correlation function is defined as:

$$\begin{split} \langle O_1; O_2; \dots; O_n \rangle_{\beta,\mu,L} \\ &= \frac{\partial^n}{\partial \lambda_1 \partial \lambda_2 \cdots \lambda_n} \log \left\{ 1 + \sum_{\emptyset \neq I \subseteq \{1,2,\dots,n\}} \Pi_{i \in I} \lambda_i \left\langle \Pi_{i \in I} O_i \right\rangle_{\beta,\mu,L} \right\} \bigg|_{\lambda_i = 0} \end{split}$$

The instantaneous Gibbs state of the perturbed Hamiltonian $\mathcal{H}(\eta t)$:

$$\langle O_X \rangle_{\eta t} = \frac{{\rm Tr}\, O_X e^{-\beta(\mathcal{H}(\eta t) - \mu \mathcal{N})}}{{\rm Tr}\, e^{-\beta(\mathcal{H}(\eta t) - \mu \mathcal{N})}} \; .$$

• Cumulant expansion around the Gibbs state of the unperturbed Hamiltonian \mathcal{H} :

$$\begin{split} \langle O_X \rangle_{\eta t} &= \operatorname{Tr} O_X \rho_{\beta,\mu,L} \\ &+ \sum_{n \geq 1} \frac{\left(-\varepsilon \mathbf{e}^{\eta t}\right)^n}{n!} \int_{[0,\beta]^n} d\underline{s} \left\langle \operatorname{T} \gamma_{s_1}(\mathcal{P}) \, ; \gamma_{s_2}(\mathcal{P}) \, ; \cdots \, ; \gamma_{s_n}(\mathcal{P}) \, ; O_X \right\rangle_{\beta,\mu,L}. \end{split}$$

• Cumulant expansion around the Gibbs state of the unperturbed Hamiltonian \mathcal{H} :

$$\begin{split} \langle O_X \rangle_{\eta t} &= \mathbf{Tr} \, O_X \rho_{\beta,\mu,L} \\ &+ \sum_{n \geq 1} \frac{\left(-\varepsilon \mathbf{e}^{\eta t}\right)^n}{n!} \int_{[0,\beta]^n} d\underline{s} \, \langle \mathbf{T} \gamma_{s_1}(\mathcal{P}) \, ; \gamma_{s_2}(\mathcal{P}) \, ; \cdots \, ; \gamma_{s_n}(\mathcal{P}) \, ; O_X \rangle_{\beta,\mu,L}. \end{split}$$

For a relevant class of models:

$$\int_{[0,\beta]^n} d\underline{s} \, \left| \langle \mathsf{T} \gamma_{s_1}(\mathcal{P}) \, ; \gamma_{s_2}(\mathcal{P}) \, ; \cdots \, ; \gamma_{s_n}(\mathcal{P}) \, ; O_X \rangle_{\beta,\mu,L} \right| \leq \mathfrak{c}^n n!$$

for a constant \mathfrak{c} that might depend on β but is uniform in L.

• Cumulant expansion around the Gibbs state of the unperturbed Hamiltonian \mathcal{H} :

$$\begin{split} \langle O_X \rangle_{\eta t} &= \mathbf{Tr} \, O_X \rho_{\beta,\mu,L} \\ &+ \sum_{n \geq 1} \frac{\left(-\varepsilon \mathbf{e}^{\eta t}\right)^n}{n!} \int_{[0,\beta]^n} d\underline{s} \, \langle \mathbf{T} \gamma_{s_1}(\mathcal{P}) \, ; \gamma_{s_2}(\mathcal{P}) \, ; \cdots \, ; \gamma_{s_n}(\mathcal{P}) \, ; O_X \rangle_{\beta,\mu,L}. \end{split}$$

For a relevant class of models:

$$\int_{[0,\beta]^n} d\underline{s} \, \left| \langle \mathsf{T} \gamma_{s_1}(\mathcal{P})\, ; \gamma_{s_2}(\mathcal{P})\, ; \cdots \, ; \gamma_{s_n}(\mathcal{P})\, ; O_X \rangle_{\beta,\mu,L} \right| \leq \mathfrak{c}^n n!$$

for a constant \mathfrak{c} that might depend on β but is uniform in L.

Is there a relation between these two PTs?

Assumptions

- Let $\mathcal{H}(\eta t) = \mathcal{H} + \varepsilon \mathbf{e}^{\eta t} \mathcal{P}$ with \mathcal{H}, \mathcal{P} finite-range, self-adjoint in $\mathcal{A}_{\Lambda_r}^{\mathcal{N}}$.
- Assume the Integrability of time-ordered cumulants: For $\mathcal{O}^{(i)}$ finite-range operators,

$$\int_{[0,\beta]^n} d\underline{t}(1+|\underline{t}|_\beta) \sum_{X_i \subseteq \Lambda_L} \left| \langle \mathsf{T} \gamma_{t_1}(\mathcal{O}_{X_1}^{(1)}); \cdots; \gamma_{t_n}(\mathcal{O}_{X_n}^{(n)}); \mathcal{O}_X^{(n+1)} \rangle_{\beta,\mu,L} \right| \leq \mathfrak{c}^n n!$$

with
$$|\underline{t}|_{\beta} = \sum_{i=1}^{n} \min_{m \in \mathbb{Z}} |t_i - m\beta|$$
 and $\mathfrak{c} = \mathfrak{c}(\beta)$.

Assumptions

- Let $\mathcal{H}(\eta t) = \mathcal{H} + \varepsilon \mathbf{e}^{\eta t} \mathcal{P}$ with \mathcal{H}, \mathcal{P} finite-range, self-adjoint in $\mathcal{A}_{\Lambda_{I}}^{\mathcal{N}}$.
- Assume the Integrability of time-ordered cumulants: For $\mathcal{O}^{(i)}$ finite-range operators,

$$\int_{[0,\beta]^n} d\underline{t}(1+|\underline{t}|_\beta) \sum_{X_i \subseteq \Lambda_L} \left| \langle \mathsf{T} \gamma_{t_1}(\mathcal{O}_{X_1}^{(1)}); \cdots; \gamma_{t_n}(\mathcal{O}_{X_n}^{(n)}); \mathcal{O}_X^{(n+1)} \rangle_{\beta,\mu,L} \right| \leq \mathfrak{c}^n n!$$

with
$$|\underline{t}|_{\beta} = \sum_{i=1}^{n} \min_{m \in \mathbb{Z}} |t_i - m\beta|$$
 and $\mathfrak{c} = \mathfrak{c}(\beta)$.

Remark: This assumption holds true for many-body perturbations of quadratic Hamiltonians by cluster expansion [Brydges-Battle-Federbush formula & Gawedzki-Kupiainen-Lesniewski bound], as for example:

$$\mathcal{H} = \sum_{x,y \in \Lambda_L} a_x^+ H(x,y) a_y^- + \lambda \sum_{x,y \in \Lambda_L} a_x^+ a_y^+ v(x,y) a_y^- a_x^-$$

with $|\lambda| < \lambda_0$ small independent of *L*, both *H* and *v* finite-range. If *H* is gapped, and μ is in the gap, the constants λ_0 , \mathfrak{c} are independent of β .

Theorem (R. L. Greenblatt, M. Lange, G. M., M. Porta)

Under the previous assumptions, there exists $\varepsilon_0 \equiv \varepsilon_0(\mathfrak{c})$ such that for every $|\varepsilon| < \varepsilon_0$:

1. We have that

$$\mathrm{Tr}\left(O_X\rho(t)\right) = \langle O_X\rangle_{\beta,\mu,L} + \sum_{n\geq 1} \frac{(-\varepsilon)^n}{n!} I^{(n)}_{\beta,\mu,L}(\eta,t) + R_{\beta,\mu,L}(\varepsilon,\eta,t) \;,$$

where

with $\eta_{\beta} \in rac{2\pi}{\beta}\mathbb{N}, \, 0 < \eta_{\beta} - \eta \leq rac{2\pi}{\beta},$

$$\left|I_{\beta,\mu,L}^{(n)}(\eta,t)\right| \leq \mathfrak{c}^n n!$$
 and $\left|R_{\beta,\mu,L}(\varepsilon,\eta,t)\right| \leq K \frac{|\varepsilon|}{\eta^{d+2}\beta}.$

2. Let $\langle \cdot \rangle_{\eta t}$ be the instantaneous Gibbs state of $\mathcal{H}(\eta t)$. Then

$$\left|\operatorname{Tr}\left(O_X\rho(t)\right)-\langle O_X\rangle_{\eta t}\right| \leq \frac{K|\varepsilon|}{\eta^{d+2}\beta} + C_1|\varepsilon|\left(\eta+\frac{1}{\beta}\right) + \frac{C_2|\varepsilon|}{\beta\eta} \;.$$

2. Let $\langle \, \cdot \, \rangle_{\eta t}$ be the instantaneous Gibbs state of $\mathcal{H}(\eta t)$. Then

$$\left|\operatorname{Tr}\left(O_X\rho(t)\right) - \langle O_X\rangle_{\eta t}\right| \leq \frac{K|\varepsilon|}{\eta^{d+2}\beta} + C_1|\varepsilon|\left(\eta + \frac{1}{\beta}\right) + \frac{C_2|\varepsilon|}{\beta\eta}$$

Remark:

-if \mathcal{H} is a many-body perturbation of a non-interacting gapped Hamiltonian (of the types considered before) then \mathfrak{c} is actually independent of β . Hence, for this latter class of models ε_0 is independent of L, η and β .

2. Let $\langle \, \cdot \, \rangle_{\eta t}$ be the instantaneous Gibbs state of $\mathcal{H}(\eta t)$. Then

$$\left|\operatorname{Tr}\left(O_X\rho(t)\right) - \langle O_X\rangle_{\eta t}\right| \leq \frac{K|\varepsilon|}{\eta^{d+2}\beta} + C_1|\varepsilon|\left(\eta + \frac{1}{\beta}\right) + \frac{C_2|\varepsilon|}{\beta\eta}$$

Remark:

-if \mathcal{H} is a many-body perturbation of a non-interacting gapped Hamiltonian (of the types considered before) then \mathfrak{c} is actually independent of β . Hence, for this latter class of models ε_0 is independent of L, η and β .

-To make sure that the remainder term $R_{\beta,\mu,L}(\varepsilon,\eta,t)$ is small, one needs to choose β large enough so that

$$\frac{|\varepsilon|}{\eta^{d+2}\beta} \ll 1 \iff \text{Small temperature condition.}$$

2. Let $\langle \, \cdot \, \rangle_{\eta t}$ be the instantaneous Gibbs state of $\mathcal{H}(\eta t)$. Then

$$\left|\operatorname{Tr}\left(O_X\rho(t)\right) - \langle O_X\rangle_{\eta t}\right| \leq \frac{K|\varepsilon|}{\eta^{d+2}\beta} + C_1|\varepsilon|\left(\eta + \frac{1}{\beta}\right) + \frac{C_2|\varepsilon|}{\beta\eta}$$

Remark:

-if \mathcal{H} is a many-body perturbation of a non-interacting gapped Hamiltonian (of the types considered before) then \mathfrak{c} is actually independent of β . Hence, for this latter class of models ε_0 is independent of L, η and β .

-To make sure that the remainder term $R_{\beta,\mu,L}(\varepsilon,\eta,t)$ is small, one needs to choose β large enough so that

$$\frac{|\varepsilon|}{\eta^{d+2}\beta} \ll 1 \iff$$
 Small temperature condition.

Thank you very much!

For simplicity consider $g(\eta t) = \mathbf{e}^{\eta t}$, thus let $g_{\beta,\eta}(t) = \mathbf{e}^{\eta_{\beta}t}$ with $\eta_{\beta} \in \frac{2\pi}{\beta} \mathbb{N}$.

For simplicity consider $g(\eta t) = \mathbf{e}^{\eta t}$, thus let $g_{\beta,\eta}(t) = \mathbf{e}^{\eta_{\beta}t}$ with $\eta_{\beta} \in \frac{2\pi}{\beta} \mathbb{N}$.

• We replace the perturbed dynamics generated by $\mathcal{H}(\eta t) = \mathcal{H} + \varepsilon g(\eta t)\mathcal{P}$ with the one generated by $\widetilde{\mathcal{H}}_{\beta,\eta}(t) = \mathcal{H} + \varepsilon g_{\beta,\eta}(t)\mathcal{P}$, by making an error $\mathcal{O}\left(\frac{|\varepsilon|}{\eta^{d+2}\beta}\right)$.

For simplicity consider $g(\eta t) = \mathbf{e}^{\eta t}$, thus let $g_{\beta,\eta}(t) = \mathbf{e}^{\eta_{\beta}t}$ with $\eta_{\beta} \in \frac{2\pi}{\beta} \mathbb{N}$.

• We replace the perturbed dynamics generated by $\mathcal{H}(\eta t) = \mathcal{H} + \varepsilon g(\eta t)\mathcal{P}$ with the one generated by $\widetilde{\mathcal{H}}_{\beta,\eta}(t) = \mathcal{H} + \varepsilon g_{\beta,\eta}(t)\mathcal{P}$, by making an error $\mathcal{O}\left(\frac{|\varepsilon|}{\eta^{d+2}\beta}\right)$.

■ We write down the Duhamel expansion:

Each term in the Duhamel expansion is "Wick rotated" (complex deformation):

$$\begin{split} &\int_{-\infty \leq s_n \leq \ldots \leq s_1 \leq t} d\underline{s} \, \Big[\prod_{j=1}^n g_{\beta,\eta}(s_j) \Big] \langle [\cdots [\tau_t(O), \tau_{s_1}(\mathcal{P})], \cdots, \tau_{s_n}(\mathcal{P})] \rangle_{\beta,\mu,L} \\ &= \frac{(-\mathbf{i})^n}{n!} \int_{[0,\beta]^n} d\underline{s} \, \Big[\prod_{j=1}^n g_{\beta,\eta}(t-is_j) \Big] \langle \mathsf{T}\gamma_{s_1}(\mathcal{P}); \cdots; \gamma_{s_n}(\mathcal{P}); O \rangle_{\beta,\mu,L}. \end{split}$$

Let us show this equality at first order:

$$\begin{split} &\lim_{T\to\infty}\int_{-T}^{t}ds\,g_{\beta,\eta}(s)\langle[\tau_{t}(O),\tau_{s}(\mathcal{P})]\rangle_{\beta,\mu,L} = \\ &\lim_{T\to\infty}\int_{-T}^{t}ds\,g_{\beta,\eta}(s)\Big\{\langle\tau_{s-\mathbf{i}\beta}(\mathcal{P})\tau_{t}(O)\rangle_{\beta,\mu,L} - \langle\tau_{s}(\mathcal{P})\tau_{t}(O)\rangle_{\beta,\mu,L}\Big\} = \\ &\lim_{T\to\infty}\Big\{\int_{-T}^{t}ds\,g_{\beta,\eta}(s-\mathbf{i}\beta)\langle\tau_{s-\mathbf{i}\beta}(\mathcal{P})\tau_{t}(O)\rangle_{\beta,\mu,L} \\ &-\int_{-T}^{t}ds\,g_{\beta,\eta}(s)\langle\tau_{s}(\mathcal{P})\tau_{t}(O)\rangle_{\beta,\mu,L}\Big\} = \\ &-\mathbf{i}\int_{0}^{\beta}ds\,g_{\beta,\eta}(t-\mathbf{i}s)\langle\tau_{t-\mathbf{i}s}(\mathcal{P})\tau_{t}(O)\rangle_{\beta,\mu,L} = \\ &-\mathbf{i}\int_{0}^{\beta}ds\,g_{\beta,\eta}(t-\mathbf{i}s)\langle\gamma_{s}(\mathcal{P})O\rangle_{\beta,\mu,L} = -\mathbf{i}\int_{0}^{\beta}ds\,g_{\beta,\eta}(t-\mathbf{i}s)\langle\mathbf{T}\gamma_{s}(\mathcal{P});O\rangle_{\beta,\mu,L}. \end{split}$$

$\begin{array}{l} \text{Sketch of the proof}\\ \text{Let }f(z):=g_{\beta,\eta}(z)\langle\tau_z(\mathcal{P})\tau_t(O)\rangle_{\beta,\mu,L}=\mathbf{e}^{\eta_\beta z}\langle\tau_z(\mathcal{P})\tau_t(O)\rangle_{\beta,\mu,L}. \end{array}$

Decay of time-ordered cumulants

If \mathcal{H}_0 and Ψ_{X_i} are quadratic (interaction parameter $\lambda = 0$), the bound follows from Wick's rule and the decay of non-interacting two-point function

$$g_2(t,x;s,y):=\langle {\rm T}\gamma_t(a_x^-)\gamma_s(a_y^+)\rangle^{\lambda=0}_{\beta,\mu,L}.$$

Decay of time-ordered cumulants

If \mathcal{H}_0 and Ψ_{X_i} are quadratic (interaction parameter $\lambda = 0$), the bound follows from Wick's rule and the decay of non-interacting two-point function

$$g_2(t,x;s,y):=\langle {\rm T}\gamma_t(a_x^-)\gamma_s(a_y^+)\rangle^{\lambda=0}_{\beta,\mu,L}.$$

In particular, if H is gapped and μ is in the gap, then \mathfrak{c} is independent of β .

Decay of time-ordered cumulants

If \mathcal{H}_0 and Ψ_{X_i} are quadratic (interaction parameter $\lambda = 0$), the bound follows from Wick's rule and the decay of non-interacting two-point function

$$g_2(t,x;s,y) := \langle \mathsf{T} \gamma_t(a_x^-) \gamma_s(a_y^+) \rangle_{\beta,\mu,L}^{\lambda=0}.$$

In particular, if H is gapped and μ is in the gap, then \mathfrak{c} is independent of β .

■ For finite-range $\Psi_{X_i} \in \mathcal{A}_{X_i}^{\mathcal{N}}$, $\mathcal{H} = \mathcal{H}_0 + \lambda \mathcal{V}$ with \mathcal{H}_0 quadratic and \mathcal{V} quartic or higher even power, the bound (**) follows from cluster expansion [Brydges-Battle-Federbush formula & Gawedzki-Kupiainen-Lesniewski bound].