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Outline
Introduction: adiabatic theorems for quantum systems.

Setting: interacting fermionic lattice systems.
Dynamics: initial state in thermal equilibrium then a weak and slowly‐varying
time‐dependent perturbation is introduced.

Main result: convergent expansion for expectation values of local observables, at small
temperature. Corollary: adiabatic theorem.
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Adiabatic Theorem (AT)
Letℋ(𝜂𝑡) be a time‐dependent Hamiltonian, where 0 < 𝜂 ≪ 1 is the adiabatic parameter
and 𝜂𝑡 ∈ [−1, 0].
Let 𝑠 ∶= 𝜂𝑡 be the slow scaled time.

Suppose that there exists a family of spectral projections 𝑠 ↦ 𝑃(𝑠) satisfying the gap
condition.
For simplicity, for every 𝑠 suppose thatℋ(𝑠) has an eigenvalue 𝐸(𝑠) such that

dist(𝐸(𝑠), 𝜎(ℋ(𝑠)) \ {𝐸(𝑠)}) = 𝑔 > 0 for all 𝑠 ∈ [−1, 0]

AT: Any initial state 𝜙(−1) in Ran 𝑃(−1) evolves under the Schrödinger evolution into
a state 𝜓(𝑠) that is localised in Ran 𝑃(𝑠) up to error of order 𝜂.



Adiabatic Theorem (AT)
Letℋ(𝜂𝑡) be a time‐dependent Hamiltonian, where 0 < 𝜂 ≪ 1 is the adiabatic parameter
and 𝜂𝑡 ∈ [−1, 0].
Let 𝑠 ∶= 𝜂𝑡 be the slow scaled time.

Suppose that there exists a family of spectral projections 𝑠 ↦ 𝑃(𝑠) satisfying the gap
condition.
For simplicity, for every 𝑠 suppose thatℋ(𝑠) has an eigenvalue 𝐸(𝑠) such that

dist(𝐸(𝑠), 𝜎(ℋ(𝑠)) \ {𝐸(𝑠)}) = 𝑔 > 0 for all 𝑠 ∈ [−1, 0]

AT: Any initial state 𝜙(−1) in Ran 𝑃(−1) evolves under the Schrödinger evolution into
a state 𝜓(𝑠) that is localised in Ran 𝑃(𝑠) up to error of order 𝜂.



Adiabatic Theorem (AT)
Letℋ(𝜂𝑡) be a time‐dependent Hamiltonian, where 0 < 𝜂 ≪ 1 is the adiabatic parameter
and 𝜂𝑡 ∈ [−1, 0].
Let 𝑠 ∶= 𝜂𝑡 be the slow scaled time.

Suppose that there exists a family of spectral projections 𝑠 ↦ 𝑃(𝑠) satisfying the gap
condition.
For simplicity, for every 𝑠 suppose thatℋ(𝑠) has an eigenvalue 𝐸(𝑠) such that

dist(𝐸(𝑠), 𝜎(ℋ(𝑠)) \ {𝐸(𝑠)}) = 𝑔 > 0 for all 𝑠 ∈ [−1, 0]

AT: Any initial state 𝜙(−1) in Ran 𝑃(−1) evolves under the Schrödinger evolution into
a state 𝜓(𝑠) that is localised in Ran 𝑃(𝑠) up to error of order 𝜂.



Adiabatic Theorem (AT)
[Born–Fock 1928, Kato 1950] AT implies that there exists 𝐶0 independent of 𝜂:

∥𝑃 (𝑠)⟂𝜓(𝑠)∥ = ‖(𝟙 − 𝑃(𝑠))𝜓(𝑠)‖ ≤ 𝐶0𝜂 (1)

for all 𝑠 ∈ [−1, 0], where 𝐶0 depends linearly in ∥ℋ̇(𝑠)∥ < ∞.

In a quantum spin or fermionic lattice system on Γ𝐿 = ℤ𝑑/(𝐿ℤ𝑑), one gets:
∥ℋ̇(𝑠)∥ = ∥∑𝑋⊆Γ𝐿

Φ̇𝑋(𝑠)∥ ∝ 𝐿𝑑 ⟹ (1) is useless for large 𝐿 at fixed 𝜂.

[Bachmann–De Roeck–Fraas, CMP ’18] In spin lattice system let 𝑂𝑋 be a local operator,
then there exists 𝐶1 independent of 𝜂 and the system size 𝐿:

|⟨𝜓(𝑠)| 𝑂𝑋𝜓(𝑠)⟩ − ⟨𝜙(𝑠)| 𝑂𝑋𝜙(𝑠)⟩| ≤ 𝐶1𝜂 for all 𝑠 ∈ [−1, 0].
For fermionic lattice system, similar result in [Monaco–Teufel RMP ’19, Henheik, Teufel
FMΣ ’20] for finite/infinite volume. In the setting one‐body (infinitely extended) contin‐
uum system an analogous result in [Elgart–Schlein CPAM ’04, Marcelli LMP ’22].
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Main question
(Standard) Adiabatic theorem can be applied whenever one considers 𝑇 = 0: Initial state
is in the range of the projection on the ground state of many‐body gapped Hamiltonian
(or Fermi projection of one‐body gapped Hamiltonian).

Considerℋ(𝜂𝑡). Let 𝜌𝛽,𝜇,𝐿 = e−𝛽(ℋ−𝜇𝒩)

Tr(e−𝛽(ℋ−𝜇𝒩)) be the equilibriumGibbs state ofℋ ≡ ℋ(−1)
where 𝛽 = 1/𝑇 .
The state 𝜌(𝑡) of the system is determined by the Cauchy problem:

{ i d
d𝑡𝜌(𝑡) = [ℋ(𝜂𝑡), 𝜌(𝑡)]

𝜌(−1/𝜂) = 𝜌𝛽,𝜇,𝐿.

Let ⟨ ⋅ ⟩𝜂𝑡 be the instantaneous Gibbs state of ℋ(𝜂𝑡).
Main question: Under which conditions it holds true that

∣Tr 𝑂𝑋𝜌(𝑡) − ⟨𝑂𝑋⟩𝜂𝑡∣ is small as 𝜂 → 0+ uniformly in 𝐿.

In particular, 𝑇 → 0+ after 𝐿 → ∞.
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Setting
We consider interacting fermions on Γ𝐿 ∶= ℤ𝑑/(𝐿ℤ𝑑), including 𝑀 ∈ ℕ internal degree
of freedom: the total configuration space Λ𝐿 ∶= Γ𝐿 × {1, … , 𝑀} .

We denote by ℱ𝐿 the usual fermionic Fock space on ℓ2(Λ𝐿), and introduce standard
fermionic creation/annihilation operators:

{𝑎−
𝑥 , 𝑎+

𝑦 } = 𝛿𝑥,𝑦𝟙 and {𝑎−
𝑥 , 𝑎−

𝑦 } = 0 = {𝑎+
𝑥 , 𝑎+

𝑦 } for any 𝑥, 𝑦 ∈ Λ𝐿.

Given 𝑋 ⊂ Λ𝐿, let 𝒜𝑋 be the polynomials over ℂ constructed with 𝑎−
𝑥 , 𝑎+

𝑥 with 𝑥 ∈ 𝑋.
An operator 𝑂𝑋 ∈ 𝒜𝑋 is said a local operator.
Any 𝒪 ∈ 𝒜Λ𝐿

can be represented as 𝒪 = ∑𝑋⊆Λ𝐿
𝒪𝑋 where 𝒪𝑋 ∈ 𝒜𝑋.

Let the number operator𝒩 ∶= ∑𝑥∈Λ𝐿
𝑎+

𝑥 𝑎−
𝑥 ∈ 𝒜Λ𝐿

, 𝒜𝒩
𝑋 ∶= {𝑂 ∈ 𝒜𝑋 ∣ [𝑂, 𝒩] = 0}.
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Setting
We say that 𝒪 ∈ 𝒜Λ𝐿

is a finite‐range operator if there exist

(i) 𝑅 > 0 independent of 𝐿 such that 𝒪𝑋 = 0 if diam(𝑋) > 𝑅

(ii) 𝑆 > 0 independent of 𝐿 such that ‖𝒪𝑋‖ ≤ 𝑆.

We consider finite‐range and self‐adjoint Hamiltonian over Λ𝐿:

ℋ = ∑𝑋⊆Λ𝐿
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𝑥

where 𝐻 , 𝑣 are finite‐range functions and 𝜆 ∈ ℝ.

Let 𝑂𝑋 ∈ 𝒜𝑋. Grand‐canonical Gibbs state:

⟨𝑂𝑋⟩𝛽,𝜇,𝐿 ∶= Trℱ𝐿
(𝑂𝑋 𝜌𝛽,𝜇,𝐿) with 𝜌𝛽,𝜇,𝐿 ∶= e−𝛽(ℋ−𝜇𝒩)

Trℱ𝐿 (e−𝛽(ℋ−𝜇𝒩)) .
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Driving the system out of equilibrium
We introduce for 𝑡 ≤ 0

ℋ(𝜂𝑡) = ℋ + 𝜀 𝑔(𝜂𝑡) 𝒫 with 𝜀 ∈ ℝ and 𝜂 > 0 ,

‐𝒫 is finite‐range and self‐adjoint operator in 𝒜𝒩
Λ𝐿
,

‐for simplicity 𝑔(𝑡) = e𝑡 (the function 𝑔 can be chosen in a suitable switch function class).

Evolution of the state: the density matrix of the system is determined by

i d
d𝑡𝜌(𝑡) = [ℋ(𝜂𝑡), 𝜌(𝑡)] and 𝜌(−∞) = 𝜌𝛽,𝜇,𝐿.

We are interested in the expectation value of local observables:

Tr (𝑂𝑋 𝜌(𝑡)) ≡ Tr (𝑂𝑋 𝜌𝜀,𝜂,𝛽,𝜇,𝐿(𝑡)) .

Order of limits: the adiabatic regime 𝜂 → 0+ and 𝜀 small uniformly in 𝜂, uniformly in the
system size 𝐿. Comparison with the instantaneous Gibbs state ofℋ(𝜂𝑡).
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Perturbation theory for quantum dynamics
Let the Heisenberg evolution be:

ℝ ∋ 𝑡 ↦ 𝜏𝑡 (𝑂) ∶= eiℋ𝑡 𝑂 e−iℋ𝑡 for any 𝑂 ∈ 𝒜Λ𝐿
.

The Duhamel expansion for quantum dynamics via interaction picture:

Tr 𝑂𝑋𝜌(𝑡) = Tr 𝑂𝑋𝜌𝛽,𝜇,𝐿

+ ∑
𝑛≥1

(−i𝜀)𝑛 ∫
symplex

𝑑𝑠 e𝜂(𝑠1+⋯+𝑠𝑛)⟨[⋯ [𝜏𝑡(𝑂𝑋), 𝜏𝑠1
(𝒫)] ⋯ 𝜏𝑠𝑛

(𝒫)]⟩𝛽,𝜇,𝐿

where symplex means −∞ ≤ 𝑠𝑛 ≤ ⋯ ≤ 𝑠1 ≤ 𝑡 ≤ 0.

Using the unitarity of the dynamics a very rough bound for the 𝑛‐th term is:

𝐶𝑛 |𝜀|𝑛
𝜂𝑛

|Λ𝐿|𝑛
𝑛! .

Thus, for 𝐿 < ∞ and 𝜂 > 0 the series is absolutely convergent. But it is useless for large
𝐿 and small 𝜂.
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Perturbation theory for equilibrium states
Let the Euclidean evolution be:

ℝ ∋ 𝑡 ↦ 𝛾𝑡 (𝑂) ∶= e𝑡(ℋ−𝜇𝒩) 𝑂 e−𝑡(ℋ−𝜇𝒩) for any 𝑂 ∈ 𝒜Λ𝐿
.

The 𝑛‐th order cumulant/connected correlation function is defined as:

⟨𝑂1; 𝑂2; … ; 𝑂𝑛⟩𝛽,𝜇,𝐿

= 𝜕𝑛

𝜕𝜆1𝜕𝜆2 ⋯ 𝜆𝑛
log

⎧{
⎨{⎩

1 + ∑
∅≠𝐼⊆{1,2,…,𝑛}

Π𝑖∈𝐼𝜆𝑖 ⟨Π𝑖∈𝐼𝑂𝑖⟩𝛽,𝜇,𝐿

⎫}
⎬}⎭

∣
𝜆𝑖=0

.

The instantaneous Gibbs state of the perturbed Hamiltonianℋ(𝜂𝑡):

⟨𝑂𝑋⟩𝜂𝑡 = Tr 𝑂𝑋𝑒−𝛽(ℋ(𝜂𝑡)−𝜇𝒩)

Tr 𝑒−𝛽(ℋ(𝜂𝑡)−𝜇𝒩) .
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Perturbation theory for equilibrium states
Cumulant expansion around the Gibbs state of the unperturbed Hamiltonianℋ:

⟨𝑂𝑋⟩𝜂𝑡 = Tr 𝑂𝑋𝜌𝛽,𝜇,𝐿

+ ∑
𝑛≥1

(−𝜀e𝜂𝑡)𝑛

𝑛! ∫
[0,𝛽]𝑛

𝑑𝑠 ⟨T𝛾𝑠1
(𝒫) ; 𝛾𝑠2

(𝒫) ; ⋯ ; 𝛾𝑠𝑛
(𝒫) ; 𝑂𝑋⟩𝛽,𝜇,𝐿.

For a relevant class of models:

∫
[0,𝛽]𝑛

𝑑𝑠 ∣⟨T𝛾𝑠1
(𝒫) ; 𝛾𝑠2

(𝒫) ; ⋯ ; 𝛾𝑠𝑛
(𝒫) ; 𝑂𝑋⟩𝛽,𝜇,𝐿∣ ≤ 𝔠𝑛𝑛!

for a constant 𝔠 that might depend on 𝛽 but is uniform in L.

Is there a relation between these two PTs?
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Assumptions
Let ℋ(𝜂𝑡) = ℋ + 𝜀e𝜂𝑡𝒫 with ℋ, 𝒫 finite‐range, self‐adjoint in 𝒜𝒩

Λ𝐿
.

Assume the Integrability of time‐ordered cumulants:
For 𝒪(𝑖) finite‐range operators,

∫
[0,𝛽]𝑛

𝑑𝑡(1 + |𝑡|𝛽) ∑
𝑋𝑖⊆Λ𝐿

∣⟨T𝛾𝑡1
(𝒪(1)

𝑋1
); ⋯ ; 𝛾𝑡𝑛

(𝒪(𝑛)
𝑋𝑛

); 𝒪(𝑛+1)
𝑋 ⟩𝛽,𝜇,𝐿∣ ≤ 𝔠𝑛𝑛!

with |𝑡|𝛽 = ∑𝑛
𝑖=1 min𝑚∈ℤ |𝑡𝑖 − 𝑚𝛽| and 𝔠 = 𝔠(𝛽).

Remark: This assumption holds true for many‐body perturbations of quadratic Hamilto‐
nians by cluster expansion [Brydges–Battle–Federbush formula & Gawedzki–Kupiainen–
Lesniewski bound], as for example:

ℋ = ∑
𝑥,𝑦∈Λ𝐿

𝑎+
𝑥 𝐻(𝑥, 𝑦)𝑎−

𝑦 + 𝜆 ∑
𝑥,𝑦∈Λ𝐿

𝑎+
𝑥 𝑎+

𝑦 𝑣(𝑥, 𝑦)𝑎−
𝑦 𝑎−

𝑥

with |𝜆| < 𝜆0 small independent of 𝐿, both 𝐻 and 𝑣 finite‐range. If 𝐻 is gapped, and 𝜇
is in the gap, the constants 𝜆0, 𝔠 are independent of 𝛽.



Assumptions
Let ℋ(𝜂𝑡) = ℋ + 𝜀e𝜂𝑡𝒫 with ℋ, 𝒫 finite‐range, self‐adjoint in 𝒜𝒩

Λ𝐿
.

Assume the Integrability of time‐ordered cumulants:
For 𝒪(𝑖) finite‐range operators,

∫
[0,𝛽]𝑛

𝑑𝑡(1 + |𝑡|𝛽) ∑
𝑋𝑖⊆Λ𝐿

∣⟨T𝛾𝑡1
(𝒪(1)

𝑋1
); ⋯ ; 𝛾𝑡𝑛

(𝒪(𝑛)
𝑋𝑛

); 𝒪(𝑛+1)
𝑋 ⟩𝛽,𝜇,𝐿∣ ≤ 𝔠𝑛𝑛!

with |𝑡|𝛽 = ∑𝑛
𝑖=1 min𝑚∈ℤ |𝑡𝑖 − 𝑚𝛽| and 𝔠 = 𝔠(𝛽).

Remark: This assumption holds true for many‐body perturbations of quadratic Hamilto‐
nians by cluster expansion [Brydges–Battle–Federbush formula & Gawedzki–Kupiainen–
Lesniewski bound], as for example:

ℋ = ∑
𝑥,𝑦∈Λ𝐿

𝑎+
𝑥 𝐻(𝑥, 𝑦)𝑎−

𝑦 + 𝜆 ∑
𝑥,𝑦∈Λ𝐿

𝑎+
𝑥 𝑎+

𝑦 𝑣(𝑥, 𝑦)𝑎−
𝑦 𝑎−

𝑥

with |𝜆| < 𝜆0 small independent of 𝐿, both 𝐻 and 𝑣 finite‐range. If 𝐻 is gapped, and 𝜇
is in the gap, the constants 𝜆0, 𝔠 are independent of 𝛽.



Main result

Theorem (R. L. Greenblatt, M. Lange, G. M., M. Porta)
Under the previous assumptions, there exists 𝜀0 ≡ 𝜀0(𝔠) such that for every |𝜀| < 𝜀0:
1. We have that

Tr (𝑂𝑋𝜌(𝑡)) = ⟨𝑂𝑋⟩𝛽,𝜇,𝐿 + ∑
𝑛≥1

(−𝜀)𝑛

𝑛! 𝐼 (𝑛)
𝛽,𝜇,𝐿(𝜂, 𝑡) + 𝑅𝛽,𝜇,𝐿(𝜀, 𝜂, 𝑡) ,

where

𝐼 (𝑛)
𝛽,𝜇,𝐿(𝜂, 𝑡) =∫

[0,𝛽]𝑛
𝑑𝑠 [

𝑛
∏
𝑗=1

e𝜂𝛽(𝑡−𝑖𝑠𝑗)]⟨T𝛾𝑠1
(𝒫); 𝛾𝑠2

(𝒫); ⋯ ; 𝛾𝑠𝑛
(𝒫); 𝑂𝑋⟩𝛽,𝜇,𝐿

with 𝜂𝛽 ∈ 2𝜋
𝛽 ℕ, 0 < 𝜂𝛽 − 𝜂 ≤ 2𝜋

𝛽 ,

∣𝐼 (𝑛)
𝛽,𝜇,𝐿(𝜂, 𝑡)∣ ≤ 𝔠𝑛𝑛! and ∣𝑅𝛽,𝜇,𝐿(𝜀, 𝜂, 𝑡)∣ ≤ 𝐾 |𝜀|

𝜂𝑑+2𝛽 .



Main result

2. Let ⟨ ⋅ ⟩𝜂𝑡 be the instantaneous Gibbs state ofℋ(𝜂𝑡). Then

∣ Tr (𝑂𝑋𝜌(𝑡)) − ⟨𝑂𝑋⟩𝜂𝑡∣ ≤ 𝐾|𝜀|
𝜂𝑑+2𝛽 + 𝐶1|𝜀| (𝜂 + 1

𝛽 ) + 𝐶2|𝜀|
𝛽𝜂 .

Remark:
‐if ℋ is a many‐body perturbation of a non‐interacting gapped Hamiltonian (of the types
considered before) then 𝔠 is actually independent of 𝛽. Hence, for this latter class of models
𝜀0 is independent of 𝐿, 𝜂 and 𝛽.
‐To make sure that the remainder term 𝑅𝛽,𝜇,𝐿(𝜀, 𝜂, 𝑡) is small, one needs to choose 𝛽 large
enough so that

|𝜀|
𝜂𝑑+2𝛽 ≪ 1 ⟺ Small temperature condition.

Thank you very much!
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Sketch of the proof

For simplicity consider 𝑔(𝜂𝑡) = e𝜂𝑡, thus let 𝑔𝛽,𝜂(𝑡) = e𝜂𝛽𝑡 with 𝜂𝛽 ∈ 2𝜋
𝛽 ℕ.

We replace the perturbed dynamics generated by ℋ(𝜂𝑡) = ℋ + 𝜀𝑔(𝜂𝑡)𝒫 with the one
generated by ℋ̃𝛽,𝜂(𝑡) = ℋ + 𝜀𝑔𝛽,𝜂(𝑡)𝒫, by making an error 𝒪 ( |𝜀|

𝜂𝑑+2𝛽).

We write down the Duhamel expansion:

Trℱ𝐿
𝑂𝑋 ̃𝜌(𝑡) = Trℱ𝐿

𝑂𝑋𝜌𝛽,𝜇,𝐿

+ ∑
𝑛≥1

(−i𝜀)𝑛 ∫
symplex

𝑑𝑠 [
𝑛

∏
𝑗=1

𝑔𝛽,𝜂(𝑠𝑗)]⟨[⋯ [𝜏𝑡(𝑂), 𝜏𝑠1
(𝒫)] ⋯ 𝜏𝑠𝑛

(𝒫)]⟩𝛽,𝜇,𝐿.
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Sketch of the proof

Each term in the Duhamel expansion is “Wick rotated” (complex deformation):

∫
−∞≤𝑠𝑛≤…≤𝑠1≤𝑡

𝑑𝑠 [
𝑛

∏
𝑗=1

𝑔𝛽,𝜂(𝑠𝑗)]⟨[⋯ [𝜏𝑡(𝑂), 𝜏𝑠1
(𝒫)], ⋯ , 𝜏𝑠𝑛

(𝒫)]⟩𝛽,𝜇,𝐿

= (−i)𝑛

𝑛! ∫
[0,𝛽]𝑛

𝑑𝑠 [
𝑛

∏
𝑗=1

𝑔𝛽,𝜂(𝑡 − 𝑖𝑠𝑗)]⟨T𝛾𝑠1
(𝒫); ⋯ ; 𝛾𝑠𝑛

(𝒫); 𝑂⟩𝛽,𝜇,𝐿.



Sketch of the proof
Let us show this equality at first order:

lim
𝑇 →∞

∫
𝑡

−𝑇
𝑑𝑠 𝑔𝛽,𝜂(𝑠)⟨[𝜏𝑡(𝑂), 𝜏𝑠(𝒫)]⟩𝛽,𝜇,𝐿 =

lim
𝑇 →∞

∫
𝑡

−𝑇
𝑑𝑠 𝑔𝛽,𝜂(𝑠){⟨𝜏𝑠−i𝛽(𝒫)𝜏𝑡(𝑂)⟩𝛽,𝜇,𝐿 − ⟨𝜏𝑠(𝒫)𝜏𝑡(𝑂)⟩𝛽,𝜇,𝐿} =

lim
𝑇 →∞

{ ∫
𝑡

−𝑇
𝑑𝑠 𝑔𝛽,𝜂(𝑠 − i𝛽)⟨𝜏𝑠−i𝛽(𝒫)𝜏𝑡(𝑂)⟩𝛽,𝜇,𝐿

− ∫
𝑡

−𝑇
𝑑𝑠 𝑔𝛽,𝜂(𝑠)⟨𝜏𝑠(𝒫)𝜏𝑡(𝑂)⟩𝛽,𝜇,𝐿} =

− i ∫
𝛽

0
𝑑𝑠 𝑔𝛽,𝜂(𝑡 − i𝑠)⟨𝜏𝑡−i𝑠(𝒫)𝜏𝑡(𝑂)⟩𝛽,𝜇,𝐿 =

− i ∫
𝛽

0
𝑑𝑠 𝑔𝛽,𝜂(𝑡 − i𝑠)⟨𝛾𝑠(𝒫)𝑂⟩𝛽,𝜇,𝐿 = −i ∫

𝛽

0
𝑑𝑠 𝑔𝛽,𝜂(𝑡 − i𝑠)⟨T𝛾𝑠(𝒫); 𝑂⟩𝛽,𝜇,𝐿.



Sketch of the proof
Let 𝑓(𝑧) ∶= 𝑔𝛽,𝜂(𝑧)⟨𝜏𝑧(𝒫)𝜏𝑡(𝑂)⟩𝛽,𝜇,𝐿 = e𝜂𝛽𝑧⟨𝜏𝑧(𝒫)𝜏𝑡(𝑂)⟩𝛽,𝜇,𝐿.

-T t
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Decay of time‐ordered cumulants

Ifℋ0 andΨ𝑋𝑖
are quadratic (interaction parameter 𝜆 = 0), the bound follows fromWick’s

rule and the decay of non‐interacting two‐point function

𝑔2(𝑡, 𝑥; 𝑠, 𝑦) ∶= ⟨T𝛾𝑡(𝑎−
𝑥 )𝛾𝑠(𝑎+

𝑦 )⟩𝜆=0
𝛽,𝜇,𝐿.

In particular, if 𝐻 is gapped and 𝜇 is in the gap, then 𝔠 is independent of 𝛽.

For finite‐range Ψ𝑋𝑖
∈ 𝒜𝒩

𝑋𝑖
, ℋ = ℋ0 + 𝜆𝒱 with ℋ0 quadratic and 𝒱 quartic or higher

even power, the bound (∗∗) follows from cluster expansion [Brydges–Battle–Federbush
formula & Gawedzki–Kupiainen–Lesniewski bound].
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