==ROMA
A:TRE Giovanna Marcelli

UNIVERSITA DEGLI STUDI

Adiabatic evolution of low-temperature
many-body quantum systems

joint work with R. L. Greenblatt, M. Lange and M. Porta
Commun. Math. Phys. (2024)

Universita degli studi di Palermo - 2nd international AMS-UMI joint meeting - 25/07/2024



Outline

m Introduction: adiabatic theorems for quantum systems.



Outline

m Introduction: adiabatic theorems for quantum systems.

m Setting: interacting fermionic lattice systems.
Dynamics: initial state in thermal equilibrium then a weak and slowly-varying
time-dependent perturbation is introduced.



Outline

m Introduction: adiabatic theorems for quantum systems.

m Setting: interacting fermionic lattice systems.
Dynamics: initial state in thermal equilibrium then a weak and slowly-varying
time-dependent perturbation is introduced.

m Main result: convergent expansion for expectation values of local observables, at small
temperature. Corollary: adiabatic theorem.

paper QR code



Adiabatic Theorem (AT)

m Let 7((nt) be atime-dependent Hamiltonian, where 0 < 1 <« 1is the adiabatic parameter
and nt € [—1,0].
Let s := nt be the slow scaled time.



Adiabatic Theorem (AT)

m Let 7((nt) be atime-dependent Hamiltonian, where 0 < 1 <« 1is the adiabatic parameter
and nt € [—1,0].
Let s := nt be the slow scaled time.

m Suppose that there exists a family of spectral projections s + P(s) satisfying the gap

condition.
For simplicity, for every s suppose that 7 (s) has an eigenvalue E(s) such that

dist(E(s),o(H (s)) \{E(s)}) =g > 0forall s € [-1,0]
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m Let 7((nt) be atime-dependent Hamiltonian, where 0 < 1 <« 1is the adiabatic parameter
and nt € [—1,0].
Let s := nt be the slow scaled time.

m Suppose that there exists a family of spectral projections s + P(s) satisfying the gap
condition.
For simplicity, for every s suppose that 7 (s) has an eigenvalue E(s) such that

dist(E(s),o(H (s)) \{E(s)}) =g > 0forall s € [-1,0]

m AT: Any initial state | ¢(—1) |in Ran P(—1) evolves under the Schroédinger evolution into
a state that is localised in Ran P(s) up to error of order 1.
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m [Born-Fock 1928, Kato 1950] AT implies that there exists C, independent of #:

[P(s) (5| = (1 = P(s))(s)]| < Con (1)

for all s € [—1,0], where C, depends linearly in ||7¢ (s)|| < cc.
In a quantum spin or fermionic lattice system on I'; = Z¢/(LZ%), one gets:

|7 (s)|| = ”ZXQL @X(s)H o« L4 = (1) is useless for large L at fixed 7.

m [Bachmann-De Roeck-Fraas, CMP "18] In spin lattice system let Oy be a local operator,
then there exists C independent of 7 and the system size L:

[((s)] Ox9(s)) — (¢(s)| Ox9(s))| < Cynp foralls € [-1,0].

For fermionic lattice system, similar result in [Monaco-Teufel RMP '19, Henheik, Teufel
FMY '20] for finite/infinite volume. In the setting one-body (infinitely extended) contin-
uum system an analogous result in [Elgart-Schlein CPAM '04, Marcelli LMP "22].
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Main question

m (Standard) Adiabatic theorem can be applied whenever one considers T' = 0: Initial state
is in the range of the projection on the ground state of many-body gapped Hamiltonian
(or Fermi projection of one-body gapped Hamiltonian).
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m Consider K (nt). Letpg , | = 7 C

where 5 = 1/T.
The state p(t) of the system is determined by the Cauchy problem:

{ idp(t) = [H(nt), p(t)]
p(—=1/n) = PB,u,L-

Let <'>nt be the instantaneous Gibbs state of F (nt).
Main question: Under which conditions it holds true that

’Tr Oxp(t) — (OX>nt’ is small as n — 0" uniformly in L.

In particular, T — 0" after L — oc.
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m We consider interacting fermions on T'y := Z¢/(LZ%), including M € N internal degree
of freedom: the total configuration space ’ Ay =T, x{1,...,M} ‘

m We denote by &, the usual fermionic Fock space on ¢2(A;), and introduce standard
fermionic creation/annihilation operators:

{ag,ay} =6,,1 and {ag,a,}=0={a; a; for any z,y € A;.

m Given X C A;, let Ay be the polynomials over C constructed with a_, a; with z € X.
An operator Oy € A y is said a local operator.
Any O € A, can be represented as O = ZchL Ox where 0Oy e Ay.

m Letthe numberoperator N =33\ aja; € Ay, AV :={0€ Ax[[O,N] =0}
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m Wesaythat 0 € An, is a finite-range operator if there exist
(i) R > 0independent of L such that @, = 0 if diam(X) > R
(i) S > 0independent of L such that |[Ox| < S.

m We consider finite-range and self-adjoint Hamiltonian over A :

H=Sxen, Hx  withHy €AY

m Prototypical example:
%:Zz,yGA aiH(z, y)a, —I—)\nyeA ;a;v(ac y)a,a;

where H, v are finite-range functions and A € R.

B let Oy € Ax. Grand-canonical Gibbs state:

e—/i(}[—;x]\*')

<OX>/3,/L,L = TI‘SpL (OX pﬁsMsL) W|th pﬁﬂ.t,L = W
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Driving the system out of equilibrium
m We introduce fort <0
Hnt)=H +cqg(nt)P withe e Randn >0,

- is finite-range and self-adjoint operator in /ZZ\VL,

-for simplicity g(t) = e (the function g can be chosen in a suitable switch function class).
m Evolution of the state: the density matrix of the system is determined by

igio(t) = [H(nt),p(t)]  and  p(—00) = pg . 1.

m We are interested in the expectation value of local observables:

Tr (Ox p(t)) = Tr (OX Pa,n,ﬂ,y,,L(t» .

Order of limits: the adiabatic regime n — 0" and & small uniformly in n, uniformly in the
system size L. Comparison with the instantaneous Gibbs state of # (nt).
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Perturbation theory for quantum dynamics
m Let the Heisenberg evolution be:
Rt 7, (0):=e?"0e ™" foranyOe Ay, .
m The Duhamel expansion for quantum dynamics via interaction picture:

TrOxp(t) = TrOxpg,. 1

+Z(—is)”/ | ds et o) ([ [, (Ox ), 7 (P)] 75 (P

n>1

where symplex means —oo <'s,, <+ <s; <t <0.
m Using the unitarity of the dynamics a very rough bound for the n-th term is:

Cnﬁ ’AL|n
n n!
Thus, for L < oo and n > 0 the series is absolutely convergent. But it is useless for large
L and small n.
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m The instantaneous Gibbs state of the perturbed Hamiltonian 7 (nt):

Tr O ye ATt —1N)
(Ox)u = Ty o—Atan—m)
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m Cumulant expansion around the Gibbs state of the unperturbed Hamiltonian 7¢:
<OX>nt =Tr OXP,@ w,L

ee”t
+Z /[ ] ds (T7,, (P) 196, (P) 5 576, (P):Ox) g
0,8]™

n>1

m For a relevant class of models:
/[ ] ds [(Ty, (P) 175, (P) 5 395, (P):Ox) g pup| < <l
0,8]"

for a constant ¢ that might depend on § but is uniformin L.

Is there a relation between these two PTs?
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Assumptions
Let H (nt) = F + ee™ P with J(, P finite-range, self-adjoint in /lf{fL.

Assume the Integrability of time-ordered cumulants:
For © finite-range operators,

1 n n+1 n
/ di(L+1tls) Y (T, (O%)i 1%, (0%): 0%, | < el
[0,8]" X,CA; b

with [t]; = >_1  min, ., [t; —mp| and ¢ = ¢(j).

Remark: This assumption holds true for many-body perturbations of quadratic Hamilto-
nians by cluster expansion [Brydges-Battle-Federbush formula & Gawedzki-Kupiainen-
Lesniewski bound], as for example:

H = Z ar H(z,y)a, + A Z agaiv(z,y)a, a;
T, YEN L, zT,YEA L

with |A] < Ay small independent of L, both H and v finite-range. If H is gapped, and
is in the gap, the constants A, ¢ are independent of f.



Main result

Theorem (R. L. Greenblatt, M. Lange, G. M., M. Porta)
Under the previous assumptions, there exists ¢, = ¢, (¢) such that for every |e| < g:

1. We have that
e (Oxplt) = (Ox)os + 2 d T a0+ aaemt),
where
Ié”#L (n,1) /ds [ et }<T731(3D)§’752(5D)3"'373n<?)§OX>5,M,L
with 7, € 27N, 0 <ng —n < 2F

B>

el

‘I(,ML n,t)| <c¢"n! and ‘R@%L(a,n, O < K—— TR
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Main result

2. Let (-),, be the instantaneous Gibbs state of #(nt). Then

Kle 1 C
Tr (Oxp(t)) — (Ox), ‘ d+|2|5 + Cilel <77+ B) " »52’175’ '

Remark:

-if A is a many-body perturbation of a non-interacting gapped Hamiltonian (of the types
considered before) then ¢ is actually independent of 5. Hence, for this latter class of models
gp Is independent of L, n and .

-To make sure that the remainder term R , ; (g,7,1) is small, one needs to choose 3 large
enough so that
el

M < 1 < Small temperature condition.

Thank you very much!
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Sketch of the proof

m For simplicity consider g(nt) = €™, thus let g5, (t) = e"s" with g € 2%D\I.

m We replace the perturbed dynamics generated by J# (nt) = H + eg(nt)P with the one
generated by H 5 ,.(t) = H + egg, (t)P, by making an error O ( d+25)

m We write down the Duhamel expansion:
Try, Oxp(t) =Try, Oxpg 1
+ > (e [ ds [Hgﬁ W] 17(0), 7 (P 7y (P

n>1 symplex



Sketch of the proof

m Each term in the Duhamel expansion is “Wick rotated” (complex deformation):

| ds [ TL 95.0(59)] b= ((0) 7 (P 7o (P g

<.<s <t j=1

e T R
[0,8]™ Jj=1



Sketch of the proof

B Let us show this equality at first order:
t

lim ngﬁ,n(3)<[Tt(O>7Ts(‘SD)DB,,u,L =

T—00 T
t

lim ds gﬁm(s){<Ts,iﬁ(?)7t(0)>ﬁ7u,L - <TS(?)Tt<O)>B,u,L} =

T—o00 T

lim { /T ds gg (s —iB)(Ts_ig(P)T(O)) g 1

T—o00

-/ 595, P)( O g } =
—T

B
—i/o ds gg.(t —is) (1, 35(P)T(O0)) g 1 =
B

8
_i/ ds gg.n(t —18)(v(P)O)g L = _i/ ds gg,n(t = 18)(T7s(P); O) g p L
0 0



Sketch of the proof

Let f(2) == gpy(2N(T.(P)1(0)) g 1. = € H(T(P)T(O)) g 1,1

A

A

Y
1
e}

v
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Decay of time-ordered cumulants

m If F(qand ¥y are quadratic (interaction parameter A = 0), the bound follows from Wick's
rule and the decay of non-interacting two-point function

92 (t7 Zz;s, y) = <T'7t(a;>75(a;>>ngL

In particular, if H is gapped and p is in the gap, then ¢ is independent of f.

m For finite-range Uy € A% H = Fy+ AV with F, quadratic and V quartic or higher
even power, the bound (xx) follows from cluster expansion [Brydges-Battle-Federbush
formula & Gawedzki-Kupiainen-Lesniewski bound].



