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Introduction I: BEC in Random Potentials

Non-interacting Bose gas without random potential:
BEC occurs only in dimension 3 and higher.

Non-interacting Bose gas with certain random potentials:
BEC possible also in dimension 1 and 2.

However, more realistic to consider repulsive interaction between the
particles.

Does BEC still occur?
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The model

N ∈ N bosons “at zero temperature” in dimension 2 or higher

confined in the box ΛN := (−LN/2, LN/2)
d ⊂ Rd , d ≥ 2,

LN = (ρ−1N)1/d , ρ > 0

HN =
N∑
i=1

(−∆i + V (ω, xi )) +
∑

1≤i<j≤N

vN(xi − xj) on L2sym(Λ
N
N)

hard Poissonian obstacles: V (ω, x) =
∑
j
W (x − x̂j) where

W (x) = ∞ · 1∥x∥≤r and {x̂j}j distributed according to a PPP on Rd

with arbitrary, fixed intensity

interparticle interaction: vN ∈ (L1 ∩ L∞)(Rd) nonnegative, even,
positive-definite function s.t. v̂N ∈ L1(Rd) ∀N ∈ N
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Main Result

(i) ∀ϵ > 0 ∃κ > 0: If ∥vN∥1 ≤ κN−1(lnN)−2/d for all but finitely many
N ∈ N and vN(0) ≪ (lnN)−(1+2/d), then ∀ζ > 0

lim inf
N→∞

P

(∣∣∣∣∣n1,ωN

N
− 1

∣∣∣∣∣ < ζ

)
≥ 1− ϵ

i.e., complete BEC with probability almost one

(ii) If ∥vN∥1 ≪ N−1(lnN)−2/d and vN(0) ≪ (lnN)−(1+2/d), then ∀ζ > 0

lim
N→∞

P

(∣∣∣∣∣n1,ωN

N
− 1

∣∣∣∣∣ < ζ

)
= 1

i.e., there is complete BEC in probability.

Note: n1,ωN = N tr(ρ(1)|uk̃,ωN ⟩⟨uk̃,ωN |) where uk̃,ωN is the minimizer of

Ek,ω
N [ψ] =

∫
Λk̃,ω
N

|∇ψ(x)|2 dx+
N − 1

2

∫
Λk̃,ω
N

∫
Λk̃,ω
N

vN(x− y)|ψ(x)|2|ψ(y)|2 dxdy
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Main Result: Example

(i) ∀ϵ > 0 ∃κ > 0: If ∥vN∥1 ≤ κN−1(lnN)−2/d for all but finitely many
N ∈ N and vN(0) ≪ (lnN)−(1+2/d), then ∀ζ > 0

lim inf
N→∞

P

(∣∣∣∣∣n1,ωN

N
− 1

∣∣∣∣∣ < ζ

)
≥ 1− ϵ

i.e., complete BEC with probability almost one

(ii) If ∥vN∥1 ≪ N−1(lnN)−2/d and vN(0) ≪ (lnN)−(1+2/d), then ∀ζ > 0

lim
N→∞

P

(∣∣∣∣∣n1,ωN

N
− 1

∣∣∣∣∣ < ζ

)
= 1

i.e., there is complete BEC in probability.

For example,

vN(x) =
κV (x)

N(lnN)2/d
,

which leads to a potential energy per particle comparable in size to the
spectral gap of the Dirichlet Laplacian.
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Brief remark regarding the proof

A.-S. Sznitman, On the spectral gap in the Kac–Luttinger model and
Bose–Einstein condensation, Stoch. Process. Their Appl. (2023)

lim
σ→0

lim inf
N→∞

P
(
e1,ωN − e2,ωN ≥ σ(lnN)−(1+2/d)

)
= 1

regarding the gap between the two lowest eigenvalues of the Dirichlet
Laplacian in a Poissonian cloud of hard spherical obstacles

For any ξ ∈ L1(Rd) we have∑
1≤i<j≤N

vN(xi − xj) ≥
N∑
j=1

(ξ ∗ vN)(xj)

− 1

2

∫
Rd

∫
Rd

vN(x − y)ξ(x)ξ(y) dxdy − N
vN(0)

2
,

see M. Lewin, Mean-field limit of Bose systems: rigorous results,
Proceedings of the International Congress of Mathematical Physics,
Santiago de Chile (2015).
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