Interacting many-particle systems in the random Kac–Luttinger model and proof of Bose–Einstein condensation

Maximilian Pechmann

Tennessee Technological University

Joint work with Chiara Boccato and Joachim Kerner

Journal de Mathématiques Pures et Appliquées (2024)

Special session "Functional analytic methods in Quantum many-body theory" at the AMS-UMI joint meeting

Palermo, Italy, July 25 - 26, 2024

- Non-interacting Bose gas without random potential: BEC occurs only in dimension 3 and higher.
- Non-interacting Bose gas with certain random potentials: BEC possible also in dimension 1 and 2.
- However, more realistic to consider repulsive interaction between the particles.
- Does BEC still occur?

The model

. .

- $\mathit{N} \in \mathbb{N}$ bosons "at zero temperature" in dimension 2 or higher
- confined in the box $\Lambda_N := (-L_N/2, L_N/2)^d \subset \mathbb{R}^d$, $d \ge 2$, $L_N = (\rho^{-1}N)^{1/d}$, $\rho > 0$

•
$$H_N = \sum_{i=1}^N (-\Delta_i + V(\omega, x_i)) + \sum_{1 \le i < j \le N} v_N(x_i - x_j)$$
 on $L^2_{sym}(\Lambda^N_N)$

- hard Poissonian obstacles: $V(\omega, x) = \sum_{j} W(x \hat{x}_{j})$ where $W(x) = \infty \cdot \mathbb{1}_{\|x\| \le r}$ and $\{\hat{x}_{j}\}_{j}$ distributed according to a PPP on \mathbb{R}^{d} with arbitrary, fixed intensity
- interparticle interaction: v_N ∈ (L¹ ∩ L[∞])(ℝ^d) nonnegative, even, positive-definite function s.t. v_N ∈ L¹(ℝ^d) ∀N ∈ ℝ

Main Result

● $\forall \epsilon > 0 \ \exists \kappa > 0$: If $\|v_N\|_1 \le \kappa N^{-1} (\ln N)^{-2/d}$ for all but finitely many $N \in \mathbb{N}$ and $v_N(0) \ll (\ln N)^{-(1+2/d)}$, then $\forall \zeta > 0$

$$\liminf_{N \to \infty} \mathbb{P}\left(\left| \frac{n_N^{1,\omega}}{N} - 1 \right| < \zeta \right) \geq 1 - \epsilon$$

i.e., complete BEC with probability almost one

$$\begin{array}{l} \textcircled{0} \quad \text{If } \|v_N\|_1 \ll N^{-1}(\ln N)^{-2/d} \text{ and } v_N(0) \ll (\ln N)^{-(1+2/d)}, \text{ then } \forall \zeta > 0 \\ \\ \lim_{N \to \infty} \mathbb{P}\left(\left| \frac{n_N^{1,\omega}}{N} - 1 \right| < \zeta \right) = 1 \end{array}$$

i.e., there is complete BEC in probability.

Note: $n_N^{1,\omega} = N \operatorname{tr}(\rho^{(1)}|u_N^{\tilde{k},\omega}\rangle\langle u_N^{\tilde{k},\omega}|)$ where $u_N^{\tilde{k},\omega}$ is the minimizer of

$$\mathcal{E}_{N}^{k,\omega}[\psi] = \int_{\Lambda_{N}^{\tilde{k},\omega}} |\nabla\psi(x)|^{2} \, \mathrm{d}x + \frac{N-1}{2} \int_{\Lambda_{N}^{\tilde{k},\omega}} \int_{\Lambda_{N}^{\tilde{k},\omega}} v_{N}(x-y) |\psi(x)|^{2} |\psi(y)|^{2} \, \mathrm{d}x \mathrm{d}y$$

Main Result: Example

● $\forall \epsilon > 0 \ \exists \kappa > 0$: If $\|v_N\|_1 \le \kappa N^{-1} (\ln N)^{-2/d}$ for all but finitely many $N \in \mathbb{N}$ and $v_N(0) \ll (\ln N)^{-(1+2/d)}$, then $\forall \zeta > 0$

$$\liminf_{N \to \infty} \mathbb{P}\left(\left| \frac{n_N^{1,\omega}}{N} - 1 \right| < \zeta \right) \geq 1 - \epsilon$$

i.e., complete BEC with probability almost one

$$If \|v_N\|_1 \ll N^{-1} (\ln N)^{-2/d} \text{ and } v_N(0) \ll (\ln N)^{-(1+2/d)}, \text{ then } \forall \zeta > 0$$

$$\lim_{N \to \infty} \mathbb{P}\left(\left| \frac{n_N^{1,\omega}}{N} - 1 \right| < \zeta \right) = 1$$

i.e., there is complete BEC in probability. For example,

$$v_N(x) = \frac{\kappa V(x)}{N(\ln N)^{2/d}} ,$$

5/6

Brief remark regarding the proof

• A.-S. Sznitman, On the spectral gap in the Kac-Luttinger model and Bose-Einstein condensation, Stoch. Process. Their Appl. (2023)

$$\lim_{\sigma \to 0} \liminf_{N \to \infty} \mathbb{P}\left(e_N^{1,\omega} - e_N^{2,\omega} \ge \sigma(\ln N)^{-(1+2/d)}\right) = 1$$

regarding the gap between the two lowest eigenvalues of the Dirichlet Laplacian in a Poissonian cloud of hard spherical obstacles

• For any $\xi \in L^1(\mathbb{R}^d)$ we have

$$\sum_{1 \leq i < j \leq N} v_N(x_i - x_j) \geq \sum_{j=1}^N (\xi * v_N)(x_j)$$
$$- \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} v_N(x - y) \xi(x) \xi(y) \, \mathrm{d}x \mathrm{d}y - N \frac{v_N(0)}{2} ,$$

see M. Lewin, *Mean-field limit of Bose systems: rigorous results*, Proceedings of the International Congress of Mathematical Physics, Santiago de Chile (2015).