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1. Overview

The purpose of this package is to compute the complete hyperbolic structure of
a link complement in 3-sphere using a link diagram instead of a triangulation of
the complement. The link is given by the user, and can be arbitrary. The pro-
gram implements the method described in [11,13] by Thislethwaite and Tsvietkova.
The initial software was written by Koenig, and has been modified later with his
permission.

The method produces the complete hyperbolic structure if a suitable link diagram
is given. Such diagrams are called taut. A diagram is taut if two checkerboard
surfaces contain no accidental parabolics, as was noted by [11]. (There is also
a condition of incompressibility and boundary incompressibility of these surfaces
in [11], but it was noted by Nathan Dunfield later that this condition follows from
the lack of accidental parabolics.)

All reduced alternating diagrams of hyperbolic alternating links are known to be a
priori suitable, i.e. taut, as was first proved by Thistlethwaite and Tsvietkova [11].
For non-alternating links, it is not known which diagrams are a priori suitable
beyond certain families of links. For example, all fully augmented diagrams are
known to be suitable by the work of Flint [3].

The suitability of a link diagram can be compared with the suitability of a tri-
angulation in the classical method for finding hyperbolic structure, described by
Thurston [12], and implemented in SnapPea [1,16]. There, a suitable triangulation
is needed to compute the complete hyperbolic structure, and not every triangu-
lation is suitable a priori. The triangulations that are a priori suitable are only
known for some families of links: for example, for two-bridge links due to the work
of Sakuma and Weeks, and Futer and Gueritaud [4,10]. The question of a suitable
triangulation for a hyperbolic alternating link for the classical method is still open,
unlike for the diagrammatic method implemented here. One of the strengths of
SnapPea though is that it empirically finds a suitable triangulation rather quickly,
modifying the existing triangulation.

The generalizations of the method by Tsvietkova and Thistlethwaite to 3-manifolds
beyond link complements in 3-sphere are discussed in the work of Neumann and
Tsvietkova, and the work of Kwon, Park, and Tham [6, 8]. They are not imple-
mented in this package. The generalization that allows to compute equations for
the canonical component of the character variety of a knot complement in 3-sphere
is developed in the upcoming preprint by Petersen and Tsvietkova [9]. It similarly
does not use any triangulation, and is based on a link diagram.
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Note that if one simply needs a tool to compute the complete hyperbolic struc-
ture, SnapPy is currently a better developed software package, with wide function-
ality, beautiful interface, and speedy running times. It is also extensively tested in
terms of reliability. Yet the diagrammatic method implemented here, as well as the
equations and the complex values produced by it, may be useful in research. For
example, using this method, one can often produce general formulae for equations
for the complete hyperbolic structure of an infinite family of links with similar di-
agrams, and use them to explore lengths of arcs, commensurability, exact versions
of certain invariants (e.g. hyperbolic volume), or associated number fields (e.g.
invariant trace field). This was done by Thislethwaite and Tsvietkova in [11], by
Tsvietkova in [13–15], by Neumann and Tsvietkova in [8], by Flint in [3], by Haider
in his upcoming PhD thesis [5]. The fact that triangulating the 3-manifold is not
necessary is also at times convenient, and at times allows to gather different kind
of data than SnapPy about the intrinsic geometry of hyperbolic links. Therefore,
it is useful to have a software package that allows some hands-on testing with the
diagrammatic method.

Below, we explain how the method was implemented, describe input and output,
give an example, and list things to do in the future as the package is still very
much a work in progress. Testing and debugging was limited so far to the class of
hyperbolic alternating links and their prime alternating diagrams.

We neither prioritized nor carefully investigated computational complexity or
practical running times of the package, and often just chose to use functions, mod-
ules, and classes that are readily available. For the examples that we tried, the
computation was fast. The number of steps required to write down a system of
equations for a given diagram is polynomial in the number of crossings. The com-
plexity of the Newton-Raphson method that we use to solve the system is known to
be Oplog nq or Opnq, depending on the initial value. Empirically, usually about a
hundred of iterations for Newton-Raphson method was enough to obtain the correct
solution with the needed precision (several decimal places).

2. Implementation

The code for the package is written in Python and uses the Spherogram module
from the SnapPy Plink editor [1].

The program takes link diagrams using Dowker-Thistlethwaite (DT) notation
[2] or planar diagram (PD) code. From it, it creates a link, by using Link class
from SnapPy [1]. In the process, it assigns every region of the link diagram either
black and white color, so that the diagram is checkerboard colored. Note that in
theory, not every link diagram has such coloring, but, for example, all reduced
alternating diagrams do. Then, using the method of Thistlethwaite and Tsvietkova
[11], it creates a system of polynomial equations from the given link diagram. It
then applies Newton-Raphson method to find a solution to the equations. On
every iteration of Newton-Raphson method, the QR decomposition (from Nympy
package) is used to make the Jacobian matrix for the system a square matrix,
since initially the number of unknowns and the number of equations are not equal.
The initial values for the Newton-Raphson method are set so that the hyperbolic
polygons that correspond to regions of the link diagram are close to being regular
hyperbolic polygons. Empirically, if the diagram is suitable, the Newton-Raphson
method then converges to a complex solution, and the solution gives the complete
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Figure 1. Plink Editor from [1] was used to create this figure. Its
DT code as given by the editor is (12, 14, 16, 2, 4, 6, 8, 10)

hyperbolic structure on the link complement in 3-sphere. Recall that such structure
is unique due to Mostow-Prasad rigidity. The solution consists of complex values
called edge and crossing labels that give lengths of certain arcs, and values of angles
between the arcs in H3 as explained in [11].

3. Example

Consider Turk’s Head knot with a reduced alternating diagram, as in Figure 3.

3.1. Input and labels. Recall from [11] that an edge is a piece of the strand of a
link diagram from one crossing to the next crossing. Each crossing and edge of a
given link diagram is assigned a label. The value of the label is a complex number
that will be computed by the package. In [11], edge labels are denoted by ui’s, vi’s,
crossing labels are denoted by wi’s. The hyp[erbolic structure is determined by the
values and the placement of the labels (i.e. which label is assigned to which crossing
or edge of the link diagram). As explained in [11], one can then easily compute
presentation of Wirtinger generators into PSLp2,Cq, cusp shape, lengths of various
arcs (e.g. meridian) from the labels that correspond to the complete hyperbolic
structure. This is not implemented in the package though. To understand the
placement of the labels, we need to describe the number labeling that the program
gives to the crossings and edges in the code. This depends on the input, i.e. on PD
or DT code.

3.2. Planar Diagram code. For inputting alternating links, one can use the Pla-
nar Diagram (PD) code, as in, for example, [7]. It is only recommended for al-
ternating links since Spherogram module that we use may not accept signs in the
input, and traditionally in PD code negative signs correspond to certain crossing in
non-alternating link diagrams. Therefore for non-alternating links, go to DT code
subsection below.

The Planar Diagram (PD) code for our example is in the bottom of Figure 1, right.
There is a total of 8 ordered tuples of 4 integer numbers. The tuples correspond
to crossings of the knot diagram. For instance, the first chosen crossing, labeled
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0 internally by the code, corresponds to the ordered tuple (1,6,2,7). Overall, the
program internally labels the crossings by 0, 1, ..., 7 corresponding to the ordered
tuples from left to right.

One can then reconstruct the internal labelling of the edges of the link diagram.
In our example, start by labelling an edge that connects crossings 0 and 3 by 1,
since label 1 can be found in the first and fourth ordered tuples (corresponding to
0th and 3rd crossings). Similarly, there is an edge labelled 2 from crossing 0 to
crossing 5, etc. We can see that crossing 0 will end up surrounded by edges labelled
1, 6, 2, and 7, precisely the first tuple given. The order of the tuples corresponds
to traveling around a crossing counterclockwise.

The syntax for the PD code input for the Turk’s head is:
rp1, 6, 2, 7q, p3, 9, 4, 8q, p5, 10, 6, 11q, p11, 1, 12, 16q,
p7, 13, 8, 12q, p13, 2, 14, 3q, p9, 14, 10, 15q, p15, 5, 16, 4qs

3.3. Dowker-Thislethwaite code. It is possible to use Dowker-Thistlethwaite
(DT) code to input any knot or link into the program. Since conventions differ
across the literature, below we recall how DT code is obtained. One can also use
Plink Editor from [1] to obtain it.

Pick an arbitrary crossing on the link diagram. In Figure 3, the crossing labelled
1 and 12 was picked. Then number the over- and underpasses at every crossing
consecutively as we follow the link component. Repeat for other link components,
starting with crossing that are already numbered, if there are any.

Now from the pair of labels for every crossing, say (1, 12), consider only the
second (largest) label, and record only even such labels. If the even label belongs
to an overpass, replace the label with its negative (12 changed to -12, for example).
In this example, we start with (1,12), so we record 12. The crossing 12 corresponds
to an underpass, so we leave it positive. We then skip (2,7) and look at (3,14). We
record the 14 and notice again that the crossing 14 corresponds to an underpass.
Then the input for the Turk’s Head knot into our program is:

DT: [(12, 14, 16, 2, 4, 6, 8, 10)]
We now describe the internal labeling produced by the program code from DT

code input. Starting with the DT code (12, 14, 16, 2, 4, 6, 8, 10), we start with
crossing internally labelled 0, which is crossing (1,12). Then move along the link
to crossing internally labelled 1, which is crossing (2,7) as seen in the diagram.
Continue moving along the link. If a crossing that we encounter already has an
internal label, skip it and move to the next one. The last crossing encountered will
be the (10,15) crossing, and thus it is the 7th crossing internally.

With this, we can label faces of the link diagram, by listing labels of the crossings
that belong to these faces (in arbitrary order). For example, a face internally
labelled by [7,3,4] refers to the face with (10,15) DT code at the crossing (the 7th
crossing internally), the (4,9) DT code at the crossing (the 3rd crossing internally),
and the (5,16) DT code at the crossing (the 4th crossing internally). Similarly the
face labelled [7,4,5] internally is the top region in Figure 3, and the face labelled
[1,2,5,7] internally is the outer unbounded region of the link diagram.

3.4. Output: equations. The output starts by listing out the region and edge
equations, defined in [11]. For Turks Head knot, this looks as follows:
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u1 ´ v1 ´ 1 “ 0
u2 ´ v2 ´ 1 “ 0
u3 ´ v3 ´ 1 “ 0
u1 ˚ u3 ` w4 “ 0
u1 ˚ u2 ´ w7 “ 0
u2 ˚ u3 ` w3 “ 0
v15 ˚ v5 ` w5 “ 0
v1 ˚ v5 ` w7 “ 0
v1 ˚ v15 ´ w4 “ 0
u4 ´ v4 ´ 1 “ 0
u5 ´ v5 ´ 1 “ 0
u6 ´ v6 ´ 1 “ 0
u7 ´ v7 ´ 1 “ 0
v13 ˚ v2 ´ w3 “ 0
v13 ˚ v4 ` w2 “ 0

u4 ˚ u5 ˚ u7 ´ u5 ˚

w2 ´ u7 ˚ w7 “ 0
u4 ˚ u5 ˚ u6 ´ u4 ˚

w5 ´ u6 ˚ w7 “ 0
u5 ˚ u6 ˚ u7 ´ u5 ˚

w1 ´ u7 ˚ w5 “ 0
v2 ˚ v4 ` w7 “ 0
u8 ´ v8 ´ 1 “ 0
u9 ´ v9 ´ 1 “ 0
u10 ´ v10 ´ 1 “ 0
u10 ˚ u8 ` w0 “ 0
u8 ˚ u9 ` w6 “ 0
u10 ˚ u9 ´ w1 “ 0

u11 ´ v11 ´ 1 “ 0
u12 ´ v12 ´ 1 “ 0
u13 ´ v13 ´ 1 “ 0
u11 ˚ u13 ´ w2 “ 0
u11 ˚ u12 ` w6 “ 0
u12 ˚ u13 ` w3 “ 0
v7 ˚ v9 ` w1 “ 0
v11 ˚ v9 ´ w6 “ 0
v11 ˚ v7 ` w2 “ 0
v12 ˚ v3 ˚ v8 ´ v3 ˚

w6 ´ v8 ˚ w3 “ 0
v12 ˚ v16 ˚ v8 ´ v12 ˚

w0 ´ v16 ˚ w6 “ 0
v16 ˚ v3 ˚ v8 ´ v3 ˚

w0 ´ v8 ˚ w4 “ 0

u14 ´ v14 ´ 1 “ 0
u15 ´ v15 ´ 1 “ 0
u16 ´ v16 ´ 1 “ 0
u14 ˚ u16 ` w0 “ 0
u14 ˚ u15 ´ w5 “ 0
u15 ˚ u16 ` w4 “ 0
v10 ˚ v6 ` w1 “ 0
v14 ˚ v6 ` w5 “ 0
v10 ˚ v14 ´ w0 “ 0

There are more equations that are displayed by the program. Note that the
program does not use symmetry of the link diagram (which can be used, as shown
in [11]) or any other shortcuts, and instead assigns a new label to every crossing,
and to every side of an edge of a given diagram. That is why the number of labels
and equations it displays is high.

For the Newton-Raphson method that is used to find the geometric solution, the
number of iterations is fixed (but easy to change) in the source code.

3.5. Output: edge and crossing labels. The output identifies a face that is
black. This allows the user to reconstruct the checkerboard coloring of all faces of
the link diagram. A face is identified through the internal labels of the face crossings
(internal labels are described above). In our example, when the input is given by the
DT code, the face with labels r7, 4, 5s for its crossings is black. The program then
gives the solution to the equations that it found using Newton-Raphson method.
For our example, it gives the following complex values for edge and crossing labels,
where i “

?
´1:

w0 “ p´0.5 ´ 0.866025iq
w1 “ p´0.5 ` 0.866025iq
w2 “ p´0.5 ` 0.866025iq
w3 “ p´0.5 ´ 0.866025iq
w4 “ p´0.5 ´ 0.866025iq
w5 “ p´0.5 ` 0.866025iq
w6 “ p´0.5 ´ 0.866025iq
w7 “ p´0.5 ` 0.866025iq

After this, faces are enumerated and the edges are given numerical labels. As
explained in the above subsections, each edge is labeled based on which crossings it
is attached to. Each edge also has two labels corresponding to the adjacent faces.
In what follows, we describe two faces from the Turk’s Head knot diagram. The
edge labels ui correspond to the black sides of the edges, and the edge labels vi to
the white sides.
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Face Number: 0
crossing 4 to crossing 7
crossing 7 to crossing 3
crossing 3 to 4
Face Color: Black

Edge from crossing 4 to crossing 7:
u1 = (0.5+0.866025j)
v1 = (-0.5+0.866025j)
Edge from crossing 7 to crossing 3:
u2 = (0.5+0.866025j)
v2 = (-0.5+0.866025j)
Edge from crossing 3 to crossing 4:
u3 = (1+0j)
v3 = 0j

Face Number: 1
crossing 5 to crossing 7
crossing 7 to crossing 4
crossing 4 to crossing 5
Face Color: White

etc.

Things to do

(1) The above description of how edge and crossing labels are placed is not
straightforward. Graphic interface would be a plus, with a link diagram
with labels on the diagram given as an output.

(2) The software was tested expensively for reduced alternating diagrams of hy-
perbolic alternating links, but not for other links. Only a few non-alternating
examples were run, with mixed results. While not every non-alternating di-
agram is suitable, some are known to be: e.g. fully augmented diagrams.
To start, the program needs to be tested and debugged for fully augmented
links. We saw some examples of such links where the complete hyperbolic
structure was not produced: most likely, the program does not correctly
deal with over and undercrossing and two sides of the same edge of a link
diagram in such cases. As noted in [11], either ui “ vi ˘ 1 or ui “ vi for the
two labels ui, vi corresponding to two sides of the same edge. The link ori-
entation and the information about subsecutive over/undercrossings needs
to be tracked carefully here.

(3) The next step would be to implement the algorithm for computing the
canonical component of character variety by Petersen and Tsvietkova [9].

(4) The readability of the source code was pushed off in priority. Comments,
breakpoints, and functions might need to be updated.

(5) The number of iterations can be changed in the source code. It would be
better to build in an error value or an iteration number set by a user.
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(6) May be it would be good to change the example described above from a
knot to a link. The package works for knots and links.
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