The Center for Dermal Research Welcomes
Norman Richardson, BASF Pharma Solutions

“Functional pharmaceutical excipients for optimized transdermal drug delivery system (TDDS) design and development”

October 19th; 5:30pm (EST) – REMOTE VIA WEBEX LINK BELOW

Norman Richardson is currently Technical Services Manager for Skin Delivery in the North America region (US, Canada, Mexico), supporting the development of dermatological products in pharmaceutical companies with BASF Pharma Solutions’ excipients (including oleochemicals, PEGs, poloxamers, polyvinylpyrrolidones and coating chemistries).

Norman began his career in industry working at Unilever Research where he worked for 13 years supporting brands such as Dove, Lever 2000, Vaseline Intensive Care lotions and other personal care products. He investigated the metabolic fate of fatty acids deposited on skin, the regulation of epidermal hyperplasia, skin deposition of antimicrobials, hydration and biomechanics of the stratum corneum, water behavior in topical products, cellulite fat metabolism and topical product physical chemistry.

In 2001 he joined Pfizer Consumer Healthcare and supported numerous product development projects, supporting all topical product brands by managing medical device design control processes and providing technical support to solve problems.

From 2006 to 2012 he worked for J&J Consumer and Personal Products Worldwide and lead development of topical brands with a new emphasis on wound care (e.g. Band Aid Brand) as well as projects to scout for, identify, and evaluate technologies for topical healthcare applications.

At BASF (2012-2020) Norman opened and managed the BASF Pharma Skin Delivery Lab at the Tarrytown NY Tech Center and led the development of the Skin Delivery Platform and technical data to support the derma excipients. Through his contact with the global market, BASF’s presence in the derma formulating world was widely expanded and recognized.

Norman earned a BS in Biology from Montclair State University and MS Biology from Fairleigh Dickinson University.
Abstract: Transdermal drug delivery systems are defined as adhesive films (or patches) that provide sustained delivery of drug through the skin into the circulatory system for targeted or wide-ranging systemic action. Advantages include: 1. Bypassing liver and digestive system metabolic activity, 2. Ease of use for elderly, infants or brain-impaired who cannot swallow, 3. Opportunities for targeted delivery to joints, brain, gut, bladder, etc. as appropriate, and/or 4. Simplification of dosing regimes (because drug is delivered over longer periods). Some of the critical design criteria include: skin adhesion for multiple hours or days, low profile on the skin surface, ability to deliver drug at efficacious levels throughout wear time, maintaining drug in soluble state throughout life of patch, etc. Though the number and amount of device components (or excipients) utilized in TDDS is usually very small, there are a number of materials that have been widely used to help developers achieve their critical design and performance features. In this presentation we will review basic designs of TDDS (including a brief look at microneedles), and focus on some key povidone, polyethylene glycol, and oleochemical-based functional excipients that are available to help TDDS designers to meet their critical design criteria.

WEBEX MEETING LINK:

https://rutgers.webex.com/rutgers/j.php?MTID=me248240edd4d157a3a35d8e8b3a2cf45

Meeting number: 120 624 8537 Password: yCUMRqkm632

For easier access, request a direct link by sending an email to: cdr_frontdesk@dls.rutgers.edu

Join by video system: Dial 1206248537@rutgers.webex.com
You can also dial 173.243.2.68 and enter your meeting number.

Join by phone: +1-650-429-3300 USA Toll; Access code: 120 624 8537