Skip to main content

Motivated by recent experiments on pump-induced polar ordering in the quantum paraelectric SrTiO3, we study a driven phonon system close to a second-order phase transition. Analyzing its classical dynamics, we find that sufficiently strong driving leads to transitions into polar phases whose structures, determined by the light polarization, are not all accessible in equilibrium. In addition, for certain intensity profiles, we demonstrate the possibility of two-step transitions as a function of fluence. For even stronger field intensities, the possibility of period-doubling and chaotic behavior is demonstrated. Finally we develop a generalized formalism that allows us to consider quantum corrections to the classical dynamics in a systematic fashion. We predict a shift in the critical pump fluence due to quantum fluctuations with a characteristic dependence on the fluence increase rate that should be observable in experiment.

 

Reference: Phys. Rev. B 107, 224307(2023)