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5 — Machine Learning

Fast forward, then, to the present—to deep learning and 
affiliated machine learning (ML) technologies associated 
with second-wave AI.1 These systems have made definite 
progress on the first and second of GOFAI’s failures (neu-
rological and perceptual)—and have arguably begun to ad-
dress, though they have by no means yet fully embraced, 
the third or fourth (ontological and epistemological).

ML is essentially a suite of statistical techniques for:

1.	 the statistical classification and prediction of patterns
2.	 based on sample data (often quite a lot of it)
3.	 using an interconnected fabric of processors
4.	 arranged in multiple layers.

These techniques are implemented in architectures often 
known as “neural networks,” because of their topological 
similarity to the way the brain is organized at the neural 
level. Figure 7 illustrates a way in which they are often de-
picted, but a better way to understand contemporary ma-
chine learning is in terms of the following four facts.

1. Though the phrase ‘machine learning’ was employed in era of first-
wave AI, I will use it here, especially the ‘ML’ acronym, in its contem-
porary sense: to refer not only to deep learning algorithms but also 
to a variety of follow-on technologies, including deep reinforcement 
learning, convolutional neural networks, and other techniques involv-
ing statistical computations over complex graph configurations.

For deep learning in particular, see Yann LeCun, Yoshua Bengio, 
and Geoffrey Hinton, “Deep Learning,” Nature 521, no. 7553 (2015): 
436–444.
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D1	 Correlations: As we have seen, first-wave (GOFAI) 
systems were built to entertain and explore the 
consequences of symbolically articulated discrete 
propositions implemented as formal symbols rep-
resenting objects, properties, and relations in terms 
of a presumptively given formal ontology. Based on 
this model, rationality and intelligence2 were taken 
to involve deep, many-step inference, conducted by 
a serial process, consisting of one or a few threads, 
using modest amounts of information, formulated 
in terms of a small number of strongly correlated 
variables (sidebar, next page). Standard logical 
connectives, such as negation (¬), conjunction 
(∧), disjunction (∨), implication (⊃), and the like, 
procedure and class definitions, and so on, can be 
understood as various forms of 100% positive and 

2. Or thought, or cognition—as indicated earlier, no distinctions 
were being drawn at the time.

Figure 7
Sandra Danilovic
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negative correlation. The model makes sense under 
the classical assumption of formal ontology, partic-
ularly under the grip of Descartes’s desideratum of 
“clear and distinct ideas.”

As indicated in the sidebar, below, contemporary 
machine learning is essentially the opposite. It con-
sists of shallow (few-step) inference conducted by a 
massively parallel process using massive amounts of 
information, involving a huge number of weakly cor-
related variables. Moreover, rather than “exploring 
the consequences” of such correlations, its strength 
is to learn and reproduce mappings between inputs 
and outputs. Whether the mappings should be un-
derstood as relating causal patterns in the machine 

GOFAI vs. Machine Learning
The most compact way to understand the difference between 
GOFAI and machine learning is in terms of their opposing positions 
on five conceptual axes.

GOFAI

1.	 Deep (many-step) inference
2.	 By a serial process, using
3.	 Modest amounts of information
4.	 Involving a relatively small number of
5.	 Strongly correlated variables

Machine Learning

1.	 Shallow (few-step) inference
2.	 By a massively parallel process, using
3.	 Massive amounts of information
4.	 Involving a very large number of
5.	 Weakly correlated variables



50 The Promise of Artificial Intelligence

(i.e., as uninterpreted mechanical patternings) or 
complex representations of configurations of the 
world (i.e., as interpreted) is a question we need 
to examine. Most literature appears to discuss it 
in terms of mechanical configurations, though the 
critical probabilities are always understood in terms 
of what is represented. 

What is called “face recognition” is widely touted 
as an ML success. But like many other terms un-
critically applied to computational systems, the 
term “recognition” rather oversells what is going on. 
A better characterization is to say that ML systems 
learn mappings between (i) images of faces and (ii) 
names or other information associated with the 
people that the faces are faces of. We humans often 
know the referents of the names, recognize that the 
picture is a picture of the person they name, and so 
forth, and so the systems can be used by us to “recog-
nize” who the pictures are pictures of.3

To be cautious, I will mark with corner quotes 
(“⌈“ and “⌉”) terms we standardly apply to comput-
ers that I believe rely on our interpretation of the 
semantics of the action or structures, rather than 
anything that the system itself can be credited with 
understanding or owning. Thus: image or face ⌈rec-
ognition⌉, algorithmic ⌈decision making⌉, and so on. 
(Perhaps we should even say ⌈computing⌉ the sum 
of 7 and 13, but that is for another time.)

3. If the capacity is built into a camera, one might argue that at least 
the camera is computing a mapping between real people and other in-
formation about them. But the question of whether what the system 
associates with the other (represented) information is the person in 
view, or their representation on the camera’s digital sensor, is vexed. 
See the discussion of adversarial examples in chapter 6, note 5 (p. 57).
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D2	 Learning: Perhaps the most significant property of 
ML systems is that they can be trained. Using Bayes-
ian and other forms of statistical inference, they are 
capable of what I will call ⌈learning⌉—a holy grail 
of AI, with respect to which the classic first-wave 
model provided neither insight nor capacity.

Several architectural facts are critical to the ca-
pacity of ML systems to be trained. The complexity 
of the relatively low-level but extremely rich search 
spaces, architecturally manifested in high-dimen-
sional real-valued vectors, enable them—given 
sufficient computational horsepower (see D4, be-
low)—to use optimization and search strategies 
(especially hill-climbing) that would be defeated in 
low-dimensional spaces.4 Equally important, at the 
relevant level of abstraction the correlation spaces 
need not be discretely chunked—allowing steady 
incremental transitions between and among states, 
the epistemological opposite of ideas remaining 
“clear and distinct.”5

Metaphorically, we can think of these processes 

4. The higher the dimensionality of the search space—the greater the 
number of independent variables—the less likely it is that hill-climb-
ing algorithms (strategies that move in the direction that, locally, has 
the steepest upwards slope) will encounter local maxima.
5. It was never clear how Cartesian models could accommodate the 
gradual shifting of beliefs or of concept meanings, except by the ex-
cessively blunt addition or removal of specific discrete facts. Estima-
ble efforts were made within the GOFAI assumptions, including the 
tradition of non-monotonic reasoning and belief revision or mainte-
nance. See, for example, Jon Doyle, “A Truth Maintenance System,” 
Artificial Intelligence 12, no. 3 (1979): 231–272; and Peter Gärdenfors, 
ed., Belief Revision (Cambridge: Cambridge University Press, 2003). 
But it is fair to say that learning remained an Achilles’ heel of first-
wave AI.
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as moving around continuously in the submarine 
topography depicted in chapter 3’s figure 6 (p. 34), 
making much less mysterious their ability to “come 
above water” in terms of what we linguistic observ-
ers take to be “discrete conceptual islands.” That 
is not to say that the conceptual/nonconceptual 
boundary is sharp. Whether an outcropping war-
rants being called an island—whether it reaches 
“conceptual” height—is unlikely to have a determi-
nate answer. In traditional philosophy such ques-
tions would be called vague, but I believe that label 
is almost completely inappropriate. Reality—both 
in the world and in these high-dimensional repre-
sentations of it—is vastly richer and more detailed 
than can be “effably” captured in the idealized world 
of clear and distinct ideas. (There is nothing vague 
about the submarine topology of figure 6; it merely 
transcends ready conceptual description.) 

D3	 Big Data: Once trained, machine learning sys-
tems can respond to inputs of limited complexity 
(though often still substantial; a single image from a 
good digital camera uses megabytes of data). Train-
ing these systems, however, at least given the pres-
ent state of the art, requires vastly more data. This is 
why machine learning is at present a “post Big Data” 
development; training involves algorithms that sort, 
sift, and segment massive amounts of it, culling sta-
tistical regularities out of an overwhelming amount 
of detail.6

6. Humans may require massive initial training sets, too—the idea 
being that early childhood may be a long training sequence for in-
fants, in order to set up the initial prior probabilities needed for sub-
sequent recognition and processing.
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D4	Computational Power: Training algorithms can 
require phenomenal amounts of computational 
power.7 Some systems in current use employ the 
parallel processing capacities of banks of GPUs 
(video cards)—up to thousands at a time, each ca-
pable of processing thousands of parallel threads at 
gigahertz speeds.

The last two points are historically significant. As Geoffrey 
Hinton has remarked,8 they reflect the substantial truth in 
the (in)famous 1973 Lighthill Report,9 which threw cold 
water on the idea that first-wave AI could ever scale up 
to produce genuine intelligence. Given not only the ideas 
on which it was founded, but also the amount of com-
putational power available at the time, first-wave AI was 
indeed doomed. The million-dollar, room-filling comput-
ers on which GOFAI was developed10 had less than a mil-
lionth the processing power of contemporary cellphones; 
banks of current-day parallel processing video cards can 
extend that power by yet additional factors of hundreds 
or thousands.

But AI moves forward. Using different ideas, masses 
of collected data, and radically improved hardware, the 
results of machine learning are genuinely impressive. Re-
current networks, deep reinforcement networks, and other 
architectures are being developed to deal with time, to 
push feedback from later stages in a process back to ear-
lier ones, and so on. New accomplishments are published 

7. This is especially true of those in use at the time of this writing.
8. Geoffrey Hinton, personal communication, 2018.
9. James Lighthill, “Artificial Intelligence: A General Survey” in Artifi-
cial Intelligence: A Paper Symposium, Science Research Council, 1973.
10. Primarily Digital Equipment Corporation PDP6s and PDP10s. 
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almost daily—transforming machine ⌈translation⌉,11 
⌈reading⌉ X-rays, filling in deleted portions of images, 
and such. Certainly AI researchers are more excited and 
optimistic than they have been in 50 years; it is not just 
the press that is heady. I too agree that the developments 
portend profound changes to the nature of society and our 
self-understanding.

Does that mean that we have figured out what it is to 
think? I think not.

11. Google translation is especially impressive when the languages are 
similar linguistically and capable of similar registrations; increasingly 
less so as these similarities fall away.


