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� Abstract
A new cell shape index is defined for use with atomic force microscopy height images
of cell cultures. The new cell shape index reveals quantitative cell spreading information
not included in a conventional cell shape index. A supervised learning-based cell seg-
mentation algorithm was implemented by texture feature extraction and a multi-layer
neural network classifier. The texture feature sets for four different culture surfaces
were determined from the gray level co-occurrence matrix and local statistics texture
models using two feature selection algorithms and by considering computational cost.
The quantitative morphometry of quiescent-like and reactive-like cerebral cortical
astrocytes cultured on four different culture environments was investigated using the
new and conventional cell shape index. Inclusion of cell spreading with stellation infor-
mation through use of the new cell shape index was shown to change biomedical con-
clusions derived from conventional cell shape analysis based on stellation alone. The
new CSI results showed that the quantitative astrocyte spreading and stellation behav-
ior was induced by both the underlying substrate and the immunoreactivity of the
astrocytes. VC 2015 International Society for Advancement of Cytometry

� Key terms
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A cell shape index (CSI) is a dimensionless quantitative measure of cell morphology

acquired from images. Cells have different morphologies depending on their type

in vivo, e.g., astrocytes have a stellate morphology in the central nervous system

(CNS) for interactions with neurons and capillaries (1), while endothelial cells in

heart arteries have an elongated morphology with actin and microtubule fibers

aligned parallel to the direction of blood flow (2). In vitro, cells also adopt dis-

tinctive morphologies that approximately recapitulate their in vivo counterparts

and that can be influenced by a controlled environment. Quantitative cell mor-

phology investigations have recently been used to explore the potentially signifi-

cant directive impact of environments for healthy or pathological cellular

outcomes (3–7).

A conventional CSI in widespread use is the ratio of perimeter squared to the

cell projection area (1):

CSI5
P2

4pA
(1)

where P is cell perimeter and A is cell projection area. This equation describes stella-

tion as a cell’s departure from a circular projection since:
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2prð Þ2

4p pr2ð Þ
51 (2)

The conventional CSI has been previously used to evalu-

ate morphology of astrocytes (1) and vascular endothelial cells

(2). However, this definition for CSI, which was created for

use with two-dimensional (2D) optical microscopy images,

does not include three-dimensional (3D) effects, e.g., cell-

spreading or hypotonic swelling.

New research directions are actively being pursued to

enhance the usefulness of cell shape analysis in biomedical

research. Two important directions are research to incorporate

and analyze 3D information and research to segment cells for

CSI analysis. Addressing the former, Canham and Burton

have proposed a “sphericity index” for the study of human

red blood cells (8). Their volumetric CSI is highly appropriate

for optical microscopy images of blood cells in a 3D environ-

ment. The 2D and 3D discrete compactness measures that are

invariant under translation, rotation, and scaling were devel-

oped by Bribiesca (9). Chv�atal et al. have recently developed a

3D cell morphometry definition for use with z-series confocal

microscopy images (10). A 3D model retrieval that uses both

semantic concepts and 2D and 3D classical compactness

measures shape indexes was proposed by Kassimi et al. (11).

The 2D shape indexes and texture features measured from cell

nuclei were recently used to classify healthy and pathological

skin fibroblast by Thibault et al. (12). Farooque et al. (13)

have recently proposed a dimensionality matrix to assess gyra-

tion tensor ellipsoids that are fit to each cell, and then classi-

fied the ellipsoids as 1D, 2D, or 3D. The L0:51 =L0:53 measure in

Ref. 13 can be used to quantitatively estimate the cell spread-

ing behavior for cell types and/or biological events that are

dominated by the cell soma response, e.g., hypotonic swelling.

For other cell types such as neurons and astrocytes, the cell

process extension response is equally important. This adds an

additional level of complexity as the process volumes must be

included with the cell soma result.

Addressing the latter, CSI analysis is a revealing but cur-

rently under-utilized approach because CSI calculation

requires a clearly defined cell perimeter, which is a segmenta-

tion issue. Automatic extraction of cell boundary information

using, e.g., NIH Image J 1.46r is limited to isolated cells with

perimeters that display sharp contrast. In recent work by Pin-

cus and Theriot (14), a mask and template matching approach

was innovatively applied to confluent cells in culture to create

an accurate numerical 2D representation for individual cells

with extractable boundaries. Tiryaki et al. developed a new

CSI that incorporates volumetric information acquired from

high-resolution AFM height images of cell-scaffold/substrates

interactions (15). This utilized a Gaussian high-pass filter

(GHPF) design followed by histogram equalization that

enabled the edges and processes to be clearly distinguished;

however, the final cell boundaries were determined by manual

segmentation. In the present investigation, a new cell segmen-

tation approach that is based on supervised learning and tex-

ture analysis is developed to semiautomatically extract cell–

substrate boundaries with minimum user bias, which greatly

facilitates use of the new AFM-based CSI.

AFM is becoming increasingly important for biomedical

research as it provides direct high-resolution information with

minimal sample preparation. Recent AFM-based biomedical

investigations include studies of multi-scale nano-mechanical

hierarchies present within hydrogel intermediate filament

phantoms (16), multi-scale nano-mechanical assembly pres-

ent during tendon embryogenesis (17), cytoskeletal rounding

during mitosis (18), and myosin walking with head torsion

(19). In the present work, we present investigations using the

new volumetric CSI definition based on analysis of high-

resolution AFM images (15) that incorporates the new semi-

automatic texture-based cell segmentation analysis. AFM

height images retain volumetric information for both cell

spreading and cell processes, making the new CSI appropriate

for investigations of all substrate-adherent cell cultures and

surface seeding of 3D matrix cultures.

In the present investigation, the new AFM-based CSI is

used to quantitatively analyze the responses of quiescent-like

and reactive-like (dibutyryl cyclic adenosine monophosphate

(dBcAMP)-treated) astrocytes to the nanophysical cues pro-

vided by four culture environments including a biomimetic

polyamide nanofibrillar scaffold environment. Astrocyte reac-

tivity induced by dBcAMP-treatment recapitulates elements of

CNS traumatic injury. We are especially interested in astrocyte

responses to polyamide nanofibrillar scaffolds, as these appear

to favorably modulate the glial scar response that blocks axon

regeneration in CNS traumatic injury (20,21). Our previous

AFM studies determined that significant responses include

cell spreading as well as process formation, and that the cell

spreading can vary, depending on the surface polarity of the

cell environment (3). In the present work, we use the new CSI

to perform a quantitative 3D cell spreading and stellation

response investigation of astrocytes in response to (1) changes

in nanophysical environment cues and (2) dBcAMP-

treatment.

MATERIALS AND METHODS

Nanofibrillar Scaffolds and Comparative Culture

Surfaces

Four cell culture surfaces were investigated: poly-L-lysine-

functionalized planar glass (PLL glass), unfunctionalized pla-

nar Aclar (Aclar), PLL-functionalized planar Aclar (PLL

Aclar), and polyamide nanofibrillar scaffolds. Glass coverslips

(12 mm, No. 1 coverglass, Fisher Scientific, Pittsburgh, PA)

and Aclar coverslips (12 mm, Ted Pella, Redding, CA) were

used as underlying surfaces for the PLL functionalization.

Glass or Aclar coverslips were placed in a 24-well tissue culture

plate (one coverslip/well) and covered with 1 mL of poly-L-

lysine (PLL) solution (50 lg PLL mL21 in dH2O) overnight.

The coverslips used for the cultures were then rinsed with

dH2O and sterilized with 254 nm UV light using a Spectronics

Spectrolinker XL-1500 (Spectroline Corporation, Westbury,

NY). The polyamide nanofibrillar scaffolds electrospun on

Aclar substrates were obtained from Donaldson (Minneapolis,
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MN) and Corning Life Sciences (Lowell, MA). The fiber diam-

eter for the nanofibrillar scaffolds has a range from �100 to

�300 nm.

Promising in vivo and in vitro results have been obtained

for astrocytes in contact with these nanofibrillar scaffolds, as

implants or as culture surfaces. In our recent work (3,4),

astrocyte responses to the nanofibrillar scaffolds were studied

in comparison with their responses to three additional culture

surfaces: PLL glass, Aclar, and PLL Aclar. PLL glass is a stand-

ard astrocyte culture surface, and astrocyte responses to it are

well characterized, making it useful for identifying differences

in astrocyte responses to other surfaces. The polyamide nano-

fibrillar scaffolds were electrospun on Aclar substrates. Astro-

cyte responses to PLL Aclar surfaces were studied to clarify the

role of the underlying substrate versus surface

functionalization.

Primary Quiescent-like and Reactive-like Astrocyte

Cultures

Primary quiescent-like astrocyte cultures were prepared

from new born Sprague Dawley (postnatal Day 1 or 2) rats

(3). All procedures were approved by the Rutgers Animal Care

and Facilities Committee (IACUC Protocol #02-004). The rat

pups were sacrificed by decapitation and the cerebral hemi-

spheres were isolated aseptically. The cerebral cortices were

dissected out, freed of meninges, and collected in Hank’s buf-

fered saline solution (HBSS; Mediatech, Herndon, VA). The

cerebral cortices were then minced with sterile scissors and

digested in 0.1% trypsin and 0.02% DNase for 20 min at

378C. The softened tissue clumps were then triturated by pass-

ing several times through a fine bore glass pipette to obtain a

cell suspension. The cell suspension was washed twice with

culture medium [Dulbecco’s Modified Eagle’s Medium

(DMEM; Life Technologies, Carlsbad, CA) 110% fetal bovine

serum (FBS, Life Technologies)] and filtered through a 40-lm

nylon mesh. For culturing, the cell suspension was placed in

75-cm2 flasks (one brain/flask in 10 mL growth medium) and

incubated at 378C in a humidified CO2 incubator. After 3 days

of incubation, the growth media was removed, cell debris was

washed off, and fresh medium was added. The medium was

changed every 3–4 days. After reaching confluency (�7 days),

the cultures were shaken to remove macrophages and other

loosely adherent cells.

To obtain reactive-like astrocytes, 0.25 mM dibutyryl

cyclic adenosine monophosphate (dBcAMP) was added to the

culture medium of 7-day-old semi-confluent quiescent astro-

cyte cultures and the serum concentration was reduced to 1%.

The cultures in dBcAMP containing medium were incubated

for additional 7–8 days with a media change every 3–4 days.

The morphology of the cells was observed on alternate days

under a phase contrast microscope. In the control cultures,

the cells were fed with DMEM1 1% FBS (without dBcAMP).

Quiescent-like and reactive-like astrocytes were harvested

at the same time point using 0.25% Trypsin/ethylene-diami-

netetraacetic acid (EDTA, Sigma-Aldrich, St. Louis, MO) and

re-seeded at a density of 30,000 cells per well directly on 12-

mm Aclar or PLL Aclar coverslips, PLL glass coverslips, or on

Aclar coverslips coated with nanofibers in 24-well plates in

astrocyte medium containing dBcAMP (0.5 mL). After cultur-

ing the astrocytes on the aforementioned substrates for 24 h,

they were fixed with 4% paraformaldehyde for 10 min. Parallel

cultures were immunostained with GFAP, an identification

marker for astrocytes, and >95% were found to be GFAP-

positive.

For atomic force microscopy investigation, the astrocytes

cultured on coverslips were fixed in 4% paraformaldehyde for

10 min, rinsed with distilled water, and air-dried, but were

not immunostained.

AFM Imaging

AFM investigations were performed using a Nanoscope

IIIa (Bruker AXS, Madison WI, formerly Veeco Metrology)

operated in contact mode and in ambient air. A J scanner

with 125 lm 3 125 lm 3 5.548 lm x-y-z scan range, and

Bruker DNP silicon nitride probes with a 3586 28 cone angle,

and a nominal 20-nm tip radius of curvature were used for

AFM investigations. Cell segmentation for both the conven-

tional and new CSI calculations was implemented with MAT-

LAB version 7.7.0 (R2012b) (The MathWorks, Natick, MA)

using the neural network and image processing toolboxes. For

each culture surface and immunoreactivity group at least 50

astrocyte images were captured from different regions of at

least three different cell substrates. AFM height and deflection

images were 512 3 512 or 256 3 256 pixels with 8 bit gray

level depth. The field of view of the images was 100 lm 3 100

lm. AFM height images were stitched manually when a single

astrocyte was in multiple AFM images.

The base level for all culture surfaces was determined by

taking the average of substrate/scaffold region height values in

the AFM height image. The pixel intensities of the astrocytes

on nanofibrillar scaffolds were not always higher than the base

level. Therefore, for the nanofibrillar scaffold cultures the cell

region was divided into two regions: cell surface that is higher

and lower than the base level. For the pixels that are higher

than the base level, the cell volume was calculated according to

the base level. When the astrocyte surface pixel intensities were

lower than the base level, the thickness of the cell region was set

to average astrocyte process thickness. Fifty AFM cross-section

measurements, typically midway between the cell soma and the

process end, were performed to determine the astrocyte process

thickness, with results 193.26 20.9 nm (mean6 SE) for

quiescent-like astrocytes and 154.66 20.1 nm (mean6 SE) for

reactive-like astrocytes.

Cell Segmentation of AFM Cell Culture Images

A supervised texture-based cell segmentation method

was developed by extracting texture features from both AFM

deflection and height images. We briefly explain the nature of

these imaging modalities. In contact mode AFM (22,23), a

probe attached to the end of a cantilever is scanned over the

sample surface while the magnitude of cantilever deflection is

measured from the reflected laser beam by a photodiode

detector. A feedback loop maintains constant deflection via

the input from the photodiode detector by applying a voltage

to a piezoelectric actuator, which is capable of moving the
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sample stage in the x-y-z direction at high resolution. The

constant deflection means a constant force is applied to the

sample by the cantilever. AFM height data is constructed by

recording the voltage applied to the z piezo at the same time

the probe’s (x, y) position. The deflection data is obtained by

recording the cantilever deflection that occurs prior to re-

establishing the constant force. Therefore, an AFM deflection

image is the height intensity differences between consecutive

pixels, and hence mathematically the first-order derivative of

the height image along the fast scan axis. This was tested by

taking the first derivative of AFM height images using [1, 21]

and “conv2” command in MATLAB, and confirming the cor-

respondence of the deflection image captured by the instru-

ment and the derivative of height image.

For cell segmentation, AFM raw data were exported as an

ASCII file and AFM height and deflection images were loaded.

To eliminate the nonlinearity from piezo scanners in the AFM

height images, the images were flattened by subtracting a cor-

rection plane from the height image. The nonlinearity in the

height images was in the vertical direction (slow scan axis).

The correction plane was constructed by searching the column

that has the minimum standard deviation, using a least-

squares fit of that column to a second degree polynomial, and

assuming each column has the same nonlinearity effect. The

flattening step is different from the “flatten” command in the

Nanoscope IIIa software and the step was implemented using

“lsqcurvefit” command in MATLAB.

Sequential forward selection (SFS) and sequential for-

ward floating selection (SFFS) (24) feature selection algo-

rithms were used to identify the most discriminative features,

avoid the effects of curse of dimensionality (25), and reduce

the computational cost for cell segmentation. SFS and SFFS

were implemented to determine the sub-optimal feature set

from a total of 27 types of textural features including local sta-

tistics and GLCM texture feature models. The texture features

were extracted from each pixel of AFM height and deflection

images by setting the moving window size to 3 3 3, 5 3 5,

and 73 7 determined by the minimal time required to classify

culture surface and cell membrane texture patterns. The total

time required for SFS calculation of PLL glass, Aclar, PLL

Aclar, and nanofibrillar scaffolds using 5 3 5 mask size were

9 h 25 min, 5 h 48 min, 13 h 52 min, and 18 h 56 min,

respectively.

Local statistics were used to estimate textures related to

first, second, and higher order statistics. Standard deviation

and mean by standard deviation features were defined as:

f15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i51

pi2lð Þ2

v

u

u

t (3)

f25l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i51

pi2lð Þ2

v

u

u

t (4)

where l5
1
N

p11 . . .1pNð Þ, pi is the pixel intensity, and N is

the number of pixels in the moving window.

GHPF textural feature was calculated as described before

(26). Texture measure A was defined as:

f35

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ch x; yð Þ21Cv x; yð Þ2
q

(5)

where Ch x; yð Þ5I�B, * represents 2D convolution, Ch and Cv

are the horizontal and vertical convolution, I is input

AFM image, and B is a bar mask of the form [21 2 21] or

[21 21 2 2–1 21] (27).

Entropy is a measure of the uncertainty of a random vari-

able (28), and was calculated by:

f452

X

K

k51

P X5k½ �log P X5k½ �ð Þ (6)

where X is the discrete random variable with Sx5

1; 2; . . . ;Kf g and pmf pk5P X5k½ �.
Skewness is a measure of symmetry and kurtosis is a

measure of whether the data are peaked or flat relative to a

normal distribution. These features were calculated as follows:

f55

PN
i51 pi2lð Þ3=N

r3
(7)

f65

PN
i51 pi2lð Þ4=N

r4
(8)

where l and r are the means and standard deviations of the

pixel intensities in the moving window.

Power spectrum of GHPF was more discriminative than

the power spectrum of height images, and it was calculated

from GHPF images by:

F u; vð Þ5
X

w21

x50

X

h21

y50

G x; yð Þe22pi ux
w
1

vy

hð Þ (9)

f75jF u; vð Þj2 (10)

where G(x, y) is the GHPF image, and F(u, v) is the discrete

Fourier transform, which was calculated by using “fft2” com-

mand in MATLAB (29).

Local binary pattern (LBP), proposed in 1994 (30), is a

type of feature which was shown to be useful for texture anal-

ysis and face recognition, and was defined as:

LBP5
X

N21

i50

u ti2tcð Þ2i (11)

where u(x)5 1 if x� 0 and u(x)5 0 otherwise. N is the num-

ber of pixels in the moving window, ti is the intensity of neigh-

boring pixel i, and tc is the intensity of the center pixel in the

moving window. Moving window size was constant and 3.

The rotational invariant version of LBP was calculated as (31):

f85LBPri
5min ROR LBP; ið Þ j i50; 1; . . . ; 7f g (12)

where ROR(x, i) performs a circular bit-wise shift on the 8 bit

number x i times until a maximal number of the most signifi-

cant bits is 0.

Gray level co-occurrence matrix (GLCM) is a statistical

method of extracting texture features from images (32).
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GLCM texture features including contrast, correlation, energy,

inverse difference moment, sum average, sum variance, sum

entropy, entropy, difference variance, difference entropy, and

information measures of correlation 1 and 2 were described

and formulated by Haralick et al. (32). GLCM texture feature

extraction was performed using fast calculation of Haralick’s

texture features (33). A total of 18 different types of GLCM

features were calculated using equations given in the Support-

ing Information section.

The texture feature selection for cell segmentation is criti-

cal since it affects cell perimeter and cell area calculations, and

hence the conventional and new CSI results. In SFS and SFFS

algorithms, the newly found best texture feature was added to

the current feature set when inclusion of the new feature

resulted in at least 0.5% improvement in the cell segmentation

recognition rate. Cell segmentation performance evaluation

was based on the correctly classified pixels that belong to cell

and substrate surface, and recognition rate was defined as:

Recognition rate5
TP1TN

TP1TN1FP1FN
(13)

where TP, TN, FP, and FN denote true positive, true negative,

false positive, and false negative, respectively. TP is the num-

ber of correctly classified cell pixels, TN is the number of cor-

rectly classified substrate/scaffold pixels, FP is the number of

scaffold/substrate pixels that are incorrectly classified as cell

pixels, and FN is the number of cell pixels that are incorrectly

classified as scaffold/substrate pixels.

Neural networks were recently shown to have superior

performance in image classification and segmentation (34,35).

In the present work, an artificial neural network classifier was

used to form the decision boundary for pixel-by-pixel classifi-

cation of AFM cell culture images. The neural network has an

input layer, two hidden layers, and an output layer. The activa-

tion functions of the first and second hidden layer were hyper-

bolic tangent and logarithmic sigmoid transfer function,

respectively. The training of the neural network is performed

by determining weights by resilient backpropagation algo-

rithm (36). The average number of cell and scaffold/substrate

surface training pixels was �42,000 and 60,000, respectively.

The number of weights was �10% of the number of training

patterns (37). The number of training iteration was deter-

mined empirically and set to 30 times the number of input

features to avoid the overtraining of the classifier. The output

layer of the neural network has two nodes that are trained to

take [1 21] when the output is cell pixel, and [21 1] when

the output is scaffold/substrate pixel. This is done to increase

the performance of the neural network (37). Both nodes of

the output layer are fed by the nodes in the second hidden

layer. The number of nodes in the second hidden layer is 60.

Let n
j
4 denote the output layer, then

n
j
45

X

60

i51

w
i;j
34n

i
3 and j51; 2 (14)

where ni3 is the value of ith node of the second hidden layer,

w
i;j
34 denote the weights between ni3 and n

j
4. The neural net-

work is used to classify each AFM image pixel either as a “cell

pixel” or a “substrate pixel,” and the final classification

method becomes the whole artificial neural network. The

implementation of the neural network was performed using

“newff” command in MATLAB. The cell versus substrate sur-

face ground truth images were determined by observation for

the Aclar, PLL Aclar, and PLL glass cell culture images. As

reported in (26), cell boundaries on nanofibrillar scaffolds, are

not easily distinguishable by human observation of either

AFM height or deflection images. The cell and nanofibrillar

scaffolds ground truth data were therefore determined using

AFM GHPF cell culture images (26).

After the texture feature set was determined for each cul-

ture surface by SFS, SFSS algorithm, and human observation,

texture features in the set were extracted, binarized, concaten-

ated, and applied to the input of the classifier for training.

The trained neural networks were saved, and the binary cell

masks were obtained using the AFM images and trained net-

works. The morphological close operation and image filling

were used to reduce the segmentation error. Small regions in

the segmented images that were <1% of the whole image

were eliminated, and then cell masks were ready for CSI and

new CSI calculations.

Astrocyte Morphology Investigation by New AFM-

based CSI

The new CSI that includes volumetric information

extracted from AFM images of cells on surfaces is defined as

(15):

New CSI5
SA3

cell

60:75pV 2
cell

(15)

where SAcell is cell surface area and Vcell is cell volume. The

new CSI increases from 1 to 11 as cell becomes more stellate

and/or the cell spreading increases. The assumptions, consist-

ent with experiments, are that the cell is resting on, not pene-

trating, a surface, and that the cell is not fragmented. For a

hemispherical “cell” on a surface, the new CSI is:

0:5 4pr2ð Þ1pr2ð Þ
3

60:75p 0:5 4=3pr
3

� �� �2 51 (16)

Departure from unity reflects the average departure from

a 3D hemispherical volume by both stellation and cell spread-

ing. The surface area of each cell was calculated by splitting

the AFM topography faces into triangles. The area of a triangle

in 3D space was computed using the cross product given by

(38):

SAtriangle5 0:5 j v22v1ð Þ 3 v32v1ð Þj (17)

where SAtriangle is area of a triangle on the cell surface and

coordinates of the vertices are given by vi5 (xi, yi, zi). The

surface area of each triangle was computed over the seg-

mented cell area and then cell surface area was obtained. The

volume of each astrocyte was calculated by assuming each

pixel and its z coordinate as a square prism (39). The volume

under each pixel was computed by multiplying the unit pixel
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area by the height of that pixel. This was repeated for all of the

cell region pixels. The base level for all culture surfaces was

determined by taking the average of substrate/scaffold height

values in the AFM height image. Variations in the new CSI

data among the culture surfaces were analyzed using ANOVA

followed by pairwise post hoc comparisons with Tukey’s test.

Significance levels were set at P< 0.05.

Astrocyte Morphology Investigation by Conventional

CSI and Comparison

The conventional CSI definition given in Eq. (1) was

used for comparison investigation of the quantitative mor-

phometry of the cerebral cortical astrocytes cultured on the

four different culture surfaces that presented different nano-

physical cues (3). Variations in conventional CSI data among

the culture surfaces were analyzed using ANOVA followed by

pairwise post hoc comparisons with Tukey’s test. Significance

levels were set at P< 0.05. The illustration of conventional

and new CSI calculation steps is shown in Figure 1.

RESULTS

Cell Segmentation

Strategy. The individual recognition rates of each textural

feature for the four culture surfaces, defined as the recognition

rate [Eq. (13)] rendered as a percent, are shown in Figure 2.

The highest recognition rates were observed for PLL glass

because of its relatively smooth surface compared to cell sur-

face. All GLCM features except dissimilarity, inertia, cluster

shade, and cluster prominence were highly discriminative for

cell segmentation on PLL glass. For nanofibrillar scaffolds and

Aclar surfaces, the power spectrum and standard deviation

were the most discriminative features, respectively. The lowest

recognition rates were observed for the cell segmentation on

PLL Aclar. The most discriminative feature for cell segmenta-

tion on PLL Aclar was mean by standard deviation. Power

spectrum and standard deviation features were good discrimi-

nators on nanofibrillar scaffolds, Aclar, and PLL Aclar, while

the recognition rates of LBPri and GLCM features: dissimilar-

ity, inertia, cluster shade, and cluster prominence were low for

all culture surfaces.

The sub-optimal textural feature set for each culture sur-

face found by SFS and SFFS algorithms is given in Table 1. In

general, features extracted from height images were more dis-

criminative than deflection images.

The cell segmentation performance depended on the

window size as well as the culture surface and the texture fea-

tures identified in the feature set found by feature selection

algorithms. Three different window sizes were investigated in

this work: 3 3 3, 5 3 5, and 7 3 7. The recognition rates

increased as the window size was increased from 3 3 3 to 7 3

7 for all culture surfaces. The number of input texture feature

(dimension) changed from one to four.

Computational demand. The decision for determining the

final window size and feature set for cell segmentation was

made by considering both the recognition rate and the com-

putational cost. The maximum acceptable feature extraction

computation time for a 256 3 256 image was set to 10 s to

enable implementation of the cell segmentation algorithm on

an ordinary personal computer. The recognition rates of

standard deviation, mean by standard deviation, texture mea-

sure A, and kurtosis for cell segmentation on PLL glass using

the 3 3 3 window size were close. After doing pairwise com-

parisons of these features on multiple images, kurtosis feature

using 3 3 3 moving window size was found to be the most

discriminative. For PLL glass, GLCM features were not

required and were not used due to their high computational

cost. For nanofibrillar scaffolds, the first two features of SFS

result: power spectrum and standard deviation were used. The

recognition rate of power spectrum plus standard deviation

proved better than power spectrum alone for nanofibrillar

scaffolds, and the computational cost of adding the standard

deviation was low. For cell segmentation on Aclar and PLL

Aclar surfaces, the feature set found by SFS using 5x5 moving

window size was used. Window size increases were carefully

investigated for cells on PLL Aclar surfaces; however, use of up

to the 9 3 9 window size did not increase the cell segmenta-

tion recognition rate. Therefore, the feature set found by SFS

using the 5 3 5 moving window size was also used for cells on

PLL Aclar surfaces. Feature extraction computation times for

256 3 256 images via 3 3 3, 5 3 5, and 7 3 7 moving win-

dow sizes are compared in Figure 3. The final window size

and feature set performance results for cell segmentation are

summarized in Table 2. Representative examples of input

AFM height and deflection images and cell segmentation

results are shown in Figure 4. The low recognition rate for cell

segmentation on PLL Aclar surfaces can be seen in the figure.

Comparison of Conventional and New CSI

Analysis Results

The conventional and the new CSIs were used to perform

quantitative investigations of astrocyte responses as a function

of 1) changes in nanophysical environment cues, and 2)

dBcAMP-treatment. At 24 h, quiescent-like and reactive-like

astrocytes on all substrates exhibited significant variation in

their morphologies. The conventional CSI results, shown in

Figure 5a, indicated that quiescent-like astrocytes cultured on

Figure 1. Flow chart of conventional and new CSI calculations.
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Aclar surfaces were more stellate than the ones on other surfa-

ces. The mean CSI of astrocytes cultured on PLL Aclar and

nanofibrillar scaffolds were close. The biomedical interpreta-

tion of the conventional CSI results would be that astrocytes

cultured on nanofibrillar scaffolds and PLL Aclar were respon-

sive to the dBcAMP-treatment whereas ones on Aclar and PLL

Aclar were almost unchanged.

However, the new CSI results (Figure 5b) showed that

both quiescent-like and reactive-like astrocytes cultured on

the Aclar surfaces had the lowest mean CSI values. This

implies that, with the same stellation counted in the new CSI,

there is also dominant minimal spreading behavior. The new

CSI analysis indicated that astrocytes cultured on Aclar surfa-

ces were less spread than the ones on other substrates, and

this is consistent with our previous independent AFM cross-

section analysis (3). For all surfaces, the new CSI value was

significantly increased after dBcAMP-treatment except the

ones on PLL glass. The highest new CSI values were observed

for quiescent-like astrocytes on PLL glass and reactive-like

astrocytes on PLL Aclar. The new CSI of both the quiescent-

like and reactive-like astrocytes on nanofibrillar scaffolds were

in the midway between Aclar and PLL Aclar. The new CSI of

quiescent-like and reactive-like astrocytes on PLL Aclar surfa-

ces was significantly higher than the corresponding ones on

Aclar surfaces. The biomedical interpretation of the new CSI

values for astrocytes on PLL functionalized surfaces would be

that PLL functionalization induced an increase in cell spread-

ing for both quiescent-like and reactive-like astrocytes. This is

Figure 2. Recognition rates of individual texture features extracted from AFM height images using 5 3 5 moving window size. (std: stand-

ard deviation; GHPF: Gaussian high pass filter; TMA: texture measure A; spec: spectrum; LBPri: rotationally invariant local binary pattern;

hom: homogeneity; IDM: inverse difference moment; avg: average; var: variance; diff: difference; IMC: information measure of correlation;

cluster prom.: cluster prominence).
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consistent both with our previous independent AFM cross-

section analysis (3) and with the known interaction of posi-

tively charged PLL with negatively charged cell membrane

moieties (40,41).

DISCUSSION

The present work is one of the first studies to explore the

sub-optimal textural feature set for cell–scaffold/substrate seg-

mentation of AFM cell culture images. As demonstrated by

the present work, use of a feature set found by SFS and SFFS,

enables cell segmentation in comparative situations with aver-

age recognition rate higher than 90%. This is a valuable

approach for studies in which the biomedical goal is to inves-

tigate changes in cell behavior in response to varying environ-

ments, including variations in regenerative, stem cell, and

cancer cell environments. In the present work, a feature set

selected from 27 textural features including GLCM and local

statistical models and a multi-layer neural network classifier

were used to develop a semiautomatic cell segmentation algo-

rithm for a comparative study of neural cells in four different

regenerative environments. SFS and SFFS feature selection

algorithms were implemented and identified an individual

texture feature set for cell segmentation in the culture envi-

ronments. The feature set selections were then further revised

to meet a 10 s computational cost requirement for a 256 3

256 AFM image, enabling code access by a majority of users.1

In this work, a new CSI was defined that revealed quantita-

tive cell spreading information not included in a conventional

cell shape index. This required mathematical segmentation of

cells from scaffolds/substrates. The difficulty of segmentation

varied, depending on the textural similarity between cell mem-

branes and substrate/scaffold surfaces. The surface roughness of

a cell membrane has a large variance because of the different

types of glycoproteins, cell protrusions, channels, and protein

assemblies present. In terms of surface roughness, astrocyte cell

membranes and PLL Aclar surfaces were closer than those of

PLL glass and Aclar surfaces, resulting in a low recognition rate

on PLL Aclar surfaces. The segmentation was also challenging

on nanofibrillar scaffolds. Cells on nanofibrillar scaffolds inter-

act with these surfaces via nanoscale edges and processes that

are not distinguishable from the nanofibrillar background by

AFM height or deflection (or phase, not shown) imaging. This

is because the cellular edges and processes are approximately

the same order in height as the background nanofibers, �100

to �300 nm. This difficulty was partly overcome by using

GHPF as described in detail in Ref. 26.

The development of the new CSI in the present work was

motivated by the need to accommodate obvious differences in

cell spreading observed in response to regenerative environ-

ment differences, identified by the 3D volumetric capability of

AFM imaging.

All cells need to attach to a native or synthetic extracellu-

lar matrix or to another cell to survive. The attachments may

be relatively permanent, e.g., cardiomyocytes in heart tissue or

dynamic, e.g., astrocyte perivascular endfeet in contact with

capillary basement membranes at the blood–brain barrier.

Cell spreading is a consequence of cell and surface interactions

that are initiated with cell attachment (42). Figure 5b of our

present work showed that the reactive-like astrocyte spreading

on all culture surfaces, except PLL glass, were significantly

higher than quiescent-like astrocyte spreading. This result

indicates that cell spreading could be an indication of astro-

cyte immunoreactivity in culture.

Table 1. SFS and SFFS algorithm results for AFM cell segmentation using different moving window sizes

MOVING WINDOW SIZE ACLAR PLL ACLAR NANOFIBRILLAR SCAFFOLDS PLL GLASS

33 3 Standard deviation (h);

power spectrum (h);

power spectrum (d);

[GLCM sum average (h)]

Mean by standard

deviation (h);

power spectrum (h);

GLCM IMC 1 (d)

Standard deviation (d);

power spectrum (h);

entropy (h); mean by

standard deviation (d)

GLCM correlation (h)

standard deviation (d)

Recognition rate 86.07% [86.56%] 72.99% 93.06% 98.22%

53 5 standard deviation (h) mean by standard

deviation (h);

mean by standard

deviation (d)

power spectrum (h);

standard deviation (d);

mean by standard

deviation (d)

GLCM sum

average (h)

Recognition rate 91.41% 79.57% 96.28% 99.5%

73 7 GLCM sum of

variances (h)

GLCM IMC 2 (d)

mean by standard

deviation (h);

mean by standard

deviation (d);

GLCM energy (h)

power spectrum (h);

power spectrum (d)

GLCM sum of

variances (h)

Recognition rate 94.09% 81.79% 97.29% 99.77%

Features found by SFS but SFFS are shown in square brackets. AFM source image is indicated by (h) for height and (d) for deflection.

Features are listed in the order they were added to the feature subset. (IMC: information measure of correlation).

1Codes are publically available at http://www.msu.egr.edu/ebnl
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Cell spreading is related to how cell volume is distributed

on a surface. If cell volume is mainly aggregated in the center

and cell shape is like a hemisphere, then the cell is unspread. If

cell volume is distributed evenly and cell has a flattened shape,

then the cell is spread. A conventional CSI ignores the 3D

shape of the cell, and uses only cell perimeter and cell projec-

tion area data from 2D images to represent the 2D shape of

the cell. The new CSI analysis results in a combined measure

of cell spreading and stellation information, thus utilizes the

volumetric information provided by AFM. The calculation of

the new CSI is practical since only cell surface area and cell

volume measurements are required. The new CSI is, therefore,

a new promising quantitative cell morphology evaluation

method that is expected to be useful for biomedical research

in regenerative medicine.

Use of the new CSI in the present work enabled quantita-

tive results capable of biomedical interpretation. Our studies

showed that the dBcAMP-treatment induced a statistically sig-

nificant increase in the new CSI of cerebral cortical astrocytes

for all surfaces except the ones on PLL glass. The unusual

astrocyte response on PLL glass is possibly due to the high

substrate stiffness (4). The new CSI of quiescent-like astro-

cytes on PLL glass was significantly higher than for other sub-

strates. The high CSI for PLL glass indicated that astrocytes

spread more on PLL glass than on other substrates, which is

consistent with previously published results (43,44). Increased

spreading with dBcAMP-treatment on Aclar, PLL Aclar, and

nanofibrillar scaffolds, is possibly because the increased GFAP

expression in astrocyte cytoskeleton induced spreading of

astrocytes. The quiescent and reactive-like astrocytes on Aclar

were less spread compared to the corresponding ones on PLL

Aclar, which indicates that PLL functionalization induced cells

to become more spread. The new CSI of astrocytes on nanofi-

brillar scaffolds was in the midway between Aclar and PLL

functionalized surfaces indicating a moderate cell behavior on

these surfaces. The quiescent-like astrocyte process thickness

was higher than reactive-like astrocyte process thickness on

nanofibrillar scaffolds, which is consistent with the increased

spreading behavior with dBcAMP-treatment.

The important information about the cell spreading

behavior was missing from the conventional CSI analysis. It is

crucial to realize that the biomedical interpretation of the con-

ventional CSI results, that astrocytes cultured on nanofibrillar

scaffolds and PLL Aclar were responsive to the dBcAMP-

treatment whereas ones on Aclar and PLL Aclar were almost

unchanged, was incorrect and misleading.

The new CSI in the present work was developed for use

with cells in culture. Recently, cell culture standard practice

Figure 3. Feature extraction computation time for 256 3 256 images via 3 3 3, 5 3 5, and 7 3 7 moving window sizes. TMA, std,

mean*std, and power spec. extraction time does not strongly depend on the moving window size whereas entropy, skewness, and kurto-

sis computation time increase as moving window size increase. GLCM textural feature extraction is computationally more expensive than

local statistics except LBPri. GLCM feature extraction times do not depend on the window size and feature type except for cluster shade

and cluster prominence. (std: standard deviation; TMA: texture measure A; spec: spectrum; LBPri: rotationally invariant local binary pat-

tern; hom: homogeneity; IDM: inverse difference moment; avg: average; var: variance; diff: difference; IMC: information measure of corre-

lation; cluster prom.: cluster prominence).

Table 2. Texture feature sets proposed for AFM cell segmentation by considering both the recognition rate and the computational cost

CULTURE SURFACE ACLAR PLL ACLAR NANOFIBRILLAR SCAFFOLDS PLL GLASS

Texture feature type Standard

deviation (h)

mean by standard

deviation (h) (d)

power spectrum (h)

standard deviation (d)

kurtosis (h)

Window size 5 3 5 53 5 53 5 3 3 3

Recognition rate 91.41% 79.57% 95.56% 96.78%

Average computation time (s) 4.39 8.37 9.72 5.68

Average computation time is given for 20 randomly selected 2563 256 pixel AFM images. The texture features extracted from AFM

height and deflection images were indicated by (h) and (d), respectively.
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has changed from using planar glass or plastic substrates to

using fibrous and scaffold environments that produce more

biomimetic cell morphology results. These changes in cell cul-

ture protocols result in cell segmentation texture changes, and

therefore advantage in using our strategy of selection from a

texture feature set.

Cells in culture are often investigated using optical tech-

niques including confocal laser scanning microscopy (CLSM)

(10,13) and recently superresolution microscopy (SR) in sto-

chastic (PALM, STORM) and optical (STED) formats (45).

AFM is relatively a novel instrument in the biomedical com-

munity (4,14). Its key advantage for use in quantitative CSI

studies is its extremely high axial resolution, <1 nm in the z

direction. Axial resolution for CLSM and also for stochastic

SR is �200–500 nm, while axial resolution for optical SR can

reach �50 nm through splitting its resolving light into two

light paths. Total internal reflection fluorescence microscopy

(TIRF) is another optical technique, which is used for specifi-

cally for its axial resolution, �100–200 nm (46). For cell vol-

ume analysis by any of these optical microscopy techniques,

special stains that delineate the plasma membrane and have

minimal intracellular diffusion must be used. Their fluores-

cence must also be compatible with all excitation and probe

laser wavelengths, which require careful planning and execu-

tion of sample preparation. Furthermore, immunostaining

Figure 4. Cell segmentation results for AFM images of astrocytes cultured on Aclar, nanofibrillar scaffolds, PLL glass, and PLL Aclar. Top

row: AFM height images; middle row: AFM deflection images; bottom row: segmentation results. White and black pixels represent cell

and substrate/scaffold region found by neural network classifier, respectively. Scale bar, 10 lm.

Figure 5. Average (a) conventional and (b) new cell shape index

results for quiescent-like and reactive-like astrocytes. Error bars

show SE of n5 50 astrocytes. * denotes significance, P< 0.05; #

denotes significance from the same type of reactivity group,

P< 0.05.
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requires permeabilization of the cell membrane, which can

significantly affect the cell spreading. AFM sample preparation

is relatively easy, and it requires no staining, fixing, or label-

ing. Therefore, the cell volume and cell surface area calcula-

tions and hence the new CSI calculations from AFM images

are the most accurate that are currently available and have the

greatest integrity and ease of sample preparation. Because

AFM is a surface technique, it cannot be used to characterize

the cell spreading of cells cultured in 3D scaffolds or hydro-

gels. However, new techniques designed to combine the

advantages of AFM with those of continuously improving

optical microscopies are emerging (47). These techniques,

coupled with powerful image processing analyses and inter-

pretations, will lead to key advances in cell morphometry and

to significant nanobiomedical discoveries.
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