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✬

✫

✩

✪

An optimal algorithm for Vertex Cover

and Maximum Matching on Bipartite

graphs
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✬

✫

✩

✪

Linear independence

A collection of row vectors {vTi } are

independent if there are no constants {ci} so

that
∑

i civ
T
i = 0.

For an n× n matrix the rows are independent

if and only if the determinant is not 0.

The rank of a matrix the maximum subset of

rows that are independent. The rank of the

rows and the rank of the columns is the same.

This can be shown by Gaus eliminations.
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✬

✫

✩

✪

The rank of a matrix

If we have Maximize c · v such that Ax ≥ b, and

A is an m× n type matrix. Since for every

variable we have and x ≥ 0, these rows induce

the identity matrix of dimension n× n. Thus

the rank of the columns is n so this is also the

rank of the rows.

Recall the a BFS is obtained by taking n

independent rows and put equality and solve

this n× n, system of equalities. It looks as

A′ · x = b′. (Note that x does not change since

x had size n to begin with). Since A′ has

independent rows the inverse matrix A′−1

exists since this is equivalent to the

determinant is not 0..

Thus x = A′
−1 · b. A unique solution exists.

Which is a corner (a basic feasible solution).
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✬

✫

✩

✪

Summary

For minimize c · x under Ax ≥ b, x ≥ 0,

The main property we use is:

Theorem 1 The number of independent rows

is the number of variables.

All corners or basic feasible solution are derived

by taking n independent rows and putting

A′ · x = b′. The BFS is (A′)−1 · b′.
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✬

✫

✩

✪

The Vertex Cover problem

Given a graph G(V,E), a subset U ⊆ V is a

Vertex Cover if for every edge e = (u, v), either

u ∈ U , or v ∈ U or both of the above hold.

The vertex Cover problem

Input: An undirected weighted graph G(V,E)

with a cost function c : V 7→ Q+ c(v) for every

v.

Required: A minimum cost subgraph U that

is a Vertex Cover.
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✬

✫

✩

✪

An example of a minimum Vertex

Cover

A
B

C

D

E

F

G

H

Z

Figure 1: The squared vertices are a vertex

cover. Every edge is touched by at least one

squared vertex and some times EF by two of

the chosen
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✬

✫

✩

✪

A fractional LP for V C

Minimize optf = cv · xv

subject to

xv + xu ≥ 1 for every e = (u, v)

xv ≥ 0

The xv vertices in a Linear program are 1 if the

vertex that is in the solution. And its zero of

its not in the solution.

The main inequality xv + xu ≥ 1 indicates that

either v or u (or both of them, and so we can

not have equality) belongs to the vertex cover.

We need to relax this to a fractional program.
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✬

✫

✩

✪

Bipartite graphs

Definition 2 A bipartite graph G(V1, V2, E), is

a graph so that V = V1 ∪ V2, and there are no

edges inside V1 and no edges inside V2, thus all

edges go from V1 to V2.

Such graphs are also called 2-colorable and in

an equivalent definition its the collection of

graphs that do not contains simple odd cycles.

A B
C D E

F G H Y Z

V 1

V2

Figure 2: An example of a bipartite graph
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✬

✫

✩

✪

The rows correspond to edges

Note that every row has two entries. For an

edge e = uv the row of e will have all 0 but the

columns of u and v that have 1.

The number of variables is n. Which is the row

rank of the matrix.
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✬

✫

✩

✪

Consider a collection of edges of a

cycle

The cycle is even.

It can also decomposed into two matching.

Every edge in the matching corresponds to a

row.

Summing the rows of the first matching M1

will give the vector with 1 in every column of a

vertex in the cycle.

Summing the rows of M2 gives the same thing.

Hence an independent set of rows (edges) has

no cycles and thus induces a forest.
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✬

✫

✩

✪

An optimal iterative rounding

algorithm

Theorem 3 Say that xv > 0 for every v. Then

there exists a subset F ⊆ E of the edges so that

1. xv + xu = 1 for e = vu.

2. The rows of the edges are linearly

independent

3. |F | = |V |

This follows from the characterization of a

BFS.
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✬

✫

✩

✪

An optimum algorithm

Let δ(v) be the edges touching v.

1. Set U ← ∅

2. While V (G) 6= ∅ do

(a) Find an optimum solution for the above

LP

(b) If there is a vertex with xv = 0it follows

for the remaining edges that

degE′(v) = 0 remove this vertex

(c) If there is a vertex with xv = 1, add v

to u

and set U ← U ∪ {v} and E ← E \ δ(v)

(d) Remove all edges (rows) of edges

covered by v.

3. Return U
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✬

✫

✩

✪

Correctness

We need to show that in any iteration there is

a vertex v so that xv = 1 or xv = 0. Then

optimality follows like in the Assignment

problem

Let E′ be the non covered edges.

Claim 1 In every iteration either we find a

vertex v with xv = 0 and degE′(v) = 0 or we

find a vertex v with xv = 1.



Approximation slides 14

✬

✫

✩

✪

Proof

For the sake of contradiction, assume that

Claim 1 is false.

Thus for every vertex xv < 1 and if xv = 0,

degE′(v) > 0. Note that for no vertex touched

by at least one edge, xv = 0 since in this case

all the neighbors if v have value 1

Let F be the set of edges whose rows are

independent and |F | = |V |.

This gives a contradiction as any cycle implies

that the rows of F are not independent. See

Corollary ?? that implies that F is a forest,

and so has at most n− 1 edges.
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✬

✫

✩

✪

A polynomial algorithm for

maximum matching in Bipartite

graphs

The LP

Maximize
∑

e ye · ce

Subject to:
∑

e∈E(v) ye ≤ 1,

ye ≤ 1, ye ≥ 0.
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✬

✫

✩

✪

The algorithm we will show that

works

The algorithm:

1. F ← ∅

2. While E(G) 6= ∅ do:

(a) Compute a solution to the above LP.

(b) Remove every edge e with ye = 0.

(c) If there is an edge e = uv so that ye = 1

then set F ← F ∪ F ∪ {e} and

E ← E \ {uv}

(d) Remove all edges with at least one

endpoint in e.

3. Return F
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✬

✫

✩

✪

When is a graph a collection of

cycles?

Claim 2 If deg(v) = 2 for every v, then there

is a collection of vertex disjoint cycles that

contains all of V

Proof. Consider an edge e = uv. Since both

u, v have degree 1 now, but degree 2 in the

graph, we can make the path longer by two,

adding an edge to u and to v. In general we get

a path whose first and last vertices have degree

1. Since the graph is finite, these two paths

must meet getting a cycle. The same argument

implies that G is a collection of cycles.
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✬

✫

✩

✪

Characterization of extreme points

There are more rows than columns so we need

to choose a subset of the rows W so that

|W | = |E| because there are |E| variables and

so you need to choose |E| rows. Note that we

choose a set of |E| vertices. WE should think

of that as a set W ⊂ V .

Note that for the chosen rows the inequality

also hold with equality. The vectors whose

inequality is chosen to hold with equality Also,

the vectors of the vertices must be linearly

independent.
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✬

✫

✩

✪

there are no cycles

Say that the graph restricted to the vertices in

W with all the edges with both endpoints in W

is a independent set. If the cycle is

x1 −−y1 −−x2 −−y2 −−x3 −−y3 − x1 for

example, the vectors of x1, x2, x3 have the same

edges as y1, y2, y3. This implies that the matrix

is dependent. Hence the graph induced by W

has no cycles.

This means that the graph G(W ) with W as

vertices and edges with both endpoints in W is

a forest.
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✬

✫

✩

✪

Proof

Say that we have no edges that are 1 or 0.

Namely for every edge 0 < ye < 1.

Let degW (v) be the number of neighbors v has

in W Its the degree of the vertex in G(W ) (we

are assuming here that v ∈W ).

Claim 3 degW (v) ≥ 2

Proof. We know by the characterization of an

extreme point that that for every v ∈W
∑

uv, u∈W yu = 1.

Since for e = vu, yvu = ye < 1 for every e, the

degree degW (v) of v in G(W ) is at least 2.

Now we show its almost 2.
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✬

✫

✩

✪

Claim 4 Vertices in W have degree at most 2

in G. In particular vertices not in W have no

edges to vertices in W .

Proof. 2|W | = 2|E| =
∑

v∈V deg(v) ≥
∑

v degW (v) ≥ 2|W |

The last inequality follows because the degree

of every vertex in W is at least 2.

This means that all inequalities are equalities:

2|W | = 2|E| =
∑

v∈V deg(v) =
∑

v degG(W )(v) = 2|W |

We know that degW (v) ≥ 2. But if there exists

a vertex that has a neighbor outside W then its

degree is at least 3 as its degree inside W is 2.

In this case we get contradiction if a degree 3

appears since we get 2|W | = 2|W |+ 1.

Thus vertices in V −W have no edges to

vertices in W . Also vertices have degree

exactly 2 in G(W ).
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✬

✫

✩

✪

Proof continued

By the claim above the graph G(W ) is a

collection of cycles. Because the degrees are

exactly 2 in G(W ). But we can not have cycles

as it leads to linear dependence.

Thus there is an e so that ye = 0 or ye = 1.

This ends the proof.

One thing we proved was that Minimum Vertex

cover is polynomial in bipartite graphs. Thus

so is Maximum Independent Set.


