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✬

✫

✩

✪

An optimal algorithm for the minimum

cost perfect matching in a bipartite

graphs
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✬

✫

✩

✪

Linear independence

A collection of row vectors {vTi } are

independent if there are no constants {ci} so

that
∑

i civ
T
i = 0.

For an n× n matrix the rows are independent

if and only if the determinant is not 0.

The rank of a matrix the maximum subset of

rows that are independent. The rank of the

rows and the rank of the columns is the same.

This can be shown by Gaus eliminations.
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✬

✫

✩

✪

The rank of a matrix

If we have Maximize c · v such that Ax ≥ b, and

A is an m× n type matrix. Since for every

variable we have and x ≥ 0, these rows induce

the identity matrix of dimension n× n. Thus

the rank of the columns is n so this is also the

rank of the rows.

Recall the a BFS is obtained by taking n

independent rows and put equality and solve

this n× n, system of equalities. It looks as

A′ · x = b′. (Note that x does not change since

x had size n to begin with). Since A′ has

independent rows the inverse matrix A′−1

exists since this is equivalent to the

determinant is not 0..

Thus x = A′
−1

· b. A unique solution exists.

Which is a corner (a basic feasible solution).
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✬

✫

✩

✪

Summary

For minimize c · x under Ax ≥ b, x ≥ 0,

The main property we use is:

Theorem 1 The number of independent rows

is the number of variables.

All corners or basic feasible solution are derived

by taking n independent rows and putting

A′ · x = b′. The BFS is (A′)−1 · b′.
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✬

✫

✩

✪

Minimum cost perfect matching in

a bipartite graph

Definition 2 A balanced bipartite graph is an

independent set V1 with another independent

set V2 both of size n, nd a collection of edges

each with one vertex of V1 and another in V2 so

that there exists a perfect matching (a matching

that contains V1 ∪ V2).
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✬

✫

✩

✪

A property of the vertex versus

edges bipartite graph

A B
C D E

F G H Y Z

V 1

V2

Figure 1: An example of a bipartite graph
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✬

✫

✩

✪

The variables versus edges

representation

A B C

D E X

A

B

C

D

E

X

AD AE BD BX CE CX

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

1 0 1 0 0 0

0 1 0 0 1 0

0 0 0 1 0 1

Figure 2: We later use this matrix. It is the

matrix of vertices versus edges
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✬

✫

✩

✪

The basic property of this matrix

Theorem 3 These rows are dependent.

Proof. In the example, note that if we add the

rows of A,B,C this gives the same as adding

the rows of D,EX. The sum in both cases is

(1, 1, . . . , 1)

More generally if we add the rows of the

variables of V1 and we add the rows of the

variables in V2 both will be the all 1 vector.

Thus in a bipartite graph with n vertices on

each side the rank at most 2n− 1. Because we

can give all the rows of V1 multiplied by 1 and

all the rows of V2 are given −1 we will get 0
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✬

✫

✩

✪

Minimum cost perfect matching

Say that we are given a balanced bipartite

graph with both sides having n vertices. Say

that every edge has a cost c(e).

The minimum cost perfect matching is a

perfect matching of minimum cost.

Note that there could be exponentially many

matchings and we want to minimum cost one.
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✬

✫

✩

✪

Example

There is an example of a minimum cost perfect

matching.

2 2

A B C

X Y Z

32

2

6 6

Figure 3: The minimum cost perfect matching

is AY,XB,CZ of cost 6

.
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✬

✫

✩

✪

An optimal iterative rounding

algorithm

Minimize
∑

e=uv∈E ce · xuv

Subject to:
∑

v|vu∈E xuv = 1
∑

u|vu∈E xuv = 1

xuv ≥ 0, for all uv ∈ E

xuv is the fraction by which uv is taken.

Both lines say that the sum of fraction of the

edges of a given vertex must be 1. If the

solution is integral this is so by the definition of

an a minimum cost perfect matching.

Note that the above is the vertices versus edges

matrix, of a bipartite graph.
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✬

✫

✩

✪

How to get BFS

Theorem 4 For any BFS solution, there is at

least one edge e = uv so that either xuv = 0 or

xuv = 1.

Say that its true, how do we find an optimal

solution? If xe = 0 we remove the edge and the

LP value does not change.

If there is xe = 1 we take the edge and pay its

cost c(e). We remove the edge and its two

vertices. Thus the LP value goes down by c(e)

Thus if this can be done in every iteration we

take exactly a cost that is subtracted from the

LP.

That we have a matching of value optf = opt.
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✬

✫

✩

✪

Proof by contradiction

Say that there is no xe so that xe = 1 or xe = 0

Thus every edge touching a vertex is fractional.

We note that
∑

u xvu = 1. This means that

each vertex in a given side has at least two

edges that are fractional. This follows since one

edge can not get a 1 by assumption.

The number of edges is the number of variables

and so the rank of the matrix. It is at least 2n.

On the other hand if all 0 < xe < 1 tight

inequalities tight equalities can only happen in

the first 2n rows.

But we saw that the vertices versus edges

matrix has row rank at most 2n− 1. Thus

there are at most 2n− 1 edges.
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✬

✫

✩

✪

This is a contradiction

We found out that the number of edges is at

least 2n and at most 2n− 1.

It must be the case that at every iteration for

one xe, xe = 0 or xe = 1.

This implies an optimum algorithm as seen

before.


