A Greedy Approximation Algorithm for the Group Steiner Problem

Chandra Chekuri, Guy Even, Guy Kortsarz

Presenter: Ricardo A. Collado

Rutgers University

Network Design and Game Theory

Ricardo A. Collado

Rutgers University

Application History

Single-Port Wire Routing in VLSI

- Each terminal is a single port
- Looks for a minimum length net containing all the terminals
- Application of the classical Steiner tree problem

Multi-Port Wire Routing in VLSI

- Each terminal is assigned a collection (group) of ports
- Looks for a minimum length net containing at least one port from each terminal group
- Application of the group Stiner problem

Multi-Port Routing

Advantages

- Flexibility in placement of terminals
- Examines different choices of module placement and orientation
- More interaction between placement and routing phases
- Allows better optimizations in the design

Rutgers University

Ricardo A. Collado

Group Steiner Problem Definition

Input:

- Undirected edge-weighted graph G = (V, E, w)
- Groups of vertices $g_1, \ldots, g_m \subset V$

Objective:

Find a minimum weight tree that contains at least one vertex from each group

 $w(e) = 1, \forall e \in E$

Ricardo A. Collado

Group Steiner Problem

Rutgers University

Group Steiner Problem Definition

Input:

- Undirected edge-weighted graph G = (V, E, w)
- Groups of vertices $g_1, \ldots, g_m \subset V$

Objective:

Find a minimum weight tree that contains at least one vertex from each group

 $w(e) = 1, \forall e \in E$

Ricardo A. Collado

Group Steiner Problem

Rutgers University

Complexity

- Direct generalization of set cover:
- Cannot be approximated to a factor o(ln k) unless P = NP (even if G is a star)

Reduction:

Ricardo A. Collado

Rutgers University

Group Steiner Problem on Trees:

Input:

- Rooted edge-weighted tree G = (V, E, r, w)
- Groups of vertices $g_1, \ldots, g_m \subset V$

Objective:

Find a minimum *r*-rooted tree that contains at least one vertex from each group

 $w(e) = 1, \forall e \in E$

Outline

We will show a combinatorial poly-logarithmic approximation to the group Steiner problem on trees.

- Previous algorithms were based on solving an LP relaxation problem
- Approximation of $O(\frac{1}{\epsilon} \cdot (\log n)^{1+\epsilon} \cdot \log m)$
- Sightly worse than previous ratio O(log n log m)
- We extend probabilistically to problem on general graphs by using tree metrics

Two Main Ideas

Preprocessing:

- Height reducing transformation: Reduces the hight of the tree to O(log_α n) with a factor of O(α) in weight of the optimal solution
- Degree reducing transformation: Reduces the max degree to β + 1 while increasing height by O(log_{β/2} n) and not increasing the weight of optimal

Geometric Greedy Algorithm:

- Reduce the number of recursive calls by geometric search
- Avoids sub-trees that cover few groups

Ricardo A. Collado

Trivial Preprocessing

- Eliminate every nonterminal leaf
- Eliminate every nonterminal interior node of degree two
 - The number of nodes is O(n)
- Add a new group containing all nodes
- Scale edge weights such that w(e) > 0 implies that w(e) > 1

Ricardo A. Collado

Definitions and Notation

Let T' be an *r*-rooted subtree of T

- n(T') = Number of terminals in T'
- m(T') = Number of groups in T'
- w(T') = Weight of T'
- h(T') = Height of T'
- Density of T': $\gamma(T') = \frac{w(T')}{m(T')}$
- A *z*-cover is a set $S \subseteq V(T)$ that covers *z* terminals

Ricardo A. Collado

Rutgers University

Faithful Trees

Definition

The tree *B* is an α -faithful representation of the tree *A* if there is $\pi : V(A) \rightarrow V(B)$ such that:

- 1. For every $S \subseteq A$, $w_B(B[\pi(S)]) \le \alpha \cdot w_A(A[S])$
- 2. For every $S' \subseteq \pi(V(A)), w_A(A[\pi^{-1}(S')]) \le w_B(B[S'])$

Theorem

Let B be an α -faithful representation of A. A β -approximate z-cover in B induces an $(\alpha \cdot \beta)$ -approximate z-cover in A.

Ricardo A. Collado

Rutgers University

Definition

- ► A node *u* is α -*light* with respect to T_r if $n_u \leq n_r/\alpha$
- A node *u* is α -heavy with respect to T_r if $n_u > n_r/\alpha$
- A subtree Q ⊆ T_r is an α-decomposition of T_r if r ∈ Q and every leaf of Q is maximally α-light
- The skeleton of an α-decomposition Q is the subtree sk(Q) ⊂ Q induced by all the alpha-heavy nodes in Q

Remark:

- We can obtain an α-decomposition by exploring T_r with depth first search twice
- Every leaf in sk(Q) is minimally α-heavy
- The number of leaves in sk(Q) is at most α

Example

$$n = 11$$
, $\alpha = 3$, and $\frac{n}{\alpha} \simeq 3.7$

Global structure of an α -decomposition

Ricardo A. Collado

Rutgers University

Branches

Definition A branch is a maximal subpath in sk(Q) between two branching points

Example: n = 18, $\alpha = 9$, and $\frac{n}{\alpha} \simeq 2$

Ricardo A. Collado

Bunches

Definition

Fix a branch *B* of sk(Q). Denote the endpoint of *B* closer to *r* by *v*. Form the following *bunches*:

$$B_0 = \{ u \in B \mid w(path(v, u)) = 0 \}$$

$$B_i = \{ u \in B \mid w(path(v, u)) = \in [2^{i-1}, 2^i) \}$$

Recall that nonzero edge weights are at least 1, so there are no vertices between B_0 and B_1

Ricardo A. Collado

For every branch B, the following subtree is constructed. Let r' denote the root of Q'. Add a node v(B) in Q', that corresponds to v, and an edge (r', v(B)). The edge (r', v(B)) is given weight equal to the weight of the path from r to v. The bunches B_i are promoted as follows. For every non-empty bunch B_i , add a new node b_i and an edge $(v(B), b_i)$. For every leaf $\ell \in \mathcal{L}(Q)$ hanging from a node in B_i , we create a leaf $\ell' \in \mathcal{L}(Q')$ that hangs from b_i . Weights are assigned as follows: (a) $w(v(B), b_0) = 0$, (b) $w(v(B), b_i) \leftarrow 2^i$, if i > 0, and (c) $w(b_i, \ell') \leftarrow w(p(\ell), \ell)$, for a leaf ℓ hanging from a vertex in B_i .

The mapping π maps the nodes V(Q) to V(Q') as follows. The root of Q is mapped to the root of Q'. For a branch B, all the nodes in B_i are mapped to the node b_i . Every leaf $\ell \in \mathcal{L}(Q)$ is mapped to its counterpart $\ell' \in \mathcal{L}(Q)$.

Figure 1: Promotion of bunches along a single branch. Depth of light leaves after promotion is three.

Height Reducing Transformation

Definition

Height reducing transformation:

- If r is a leaf, return a copy of T_r
- Otherwise
 - An α -decomposition Q is computed
 - A height 3 subtree Q' is created from Q
- Recurse: the mapping π is defined in every step of the recursion as described before

Since promotion substitutes *Q* by *Q'* of height 3 we get the recurrence $h(n) \le 3 + h(n/\alpha)$. Thus $h(T') \le 3 \log_{\alpha} n$.

Ricardo A. Collado

Analysis of HR-Transformation I

Theorem

T' is an $O(\alpha)$ -faithful representation of *T*

Let Q_1, \ldots, Q_k be the sequence of α -decompositions computed during the HR-transformation. Let Q'_i be the height-3 subtree of T'used to promote Q_i . Clearly $\{Q_i\}_i, \{Q'_i\}_i$ partition E(T), E(T'), respectively.

Let $S \subseteq V(T)$, we assume that S contains all the *border* points (points in at least two Q_i 's) in T[S]. Then

$$w_T(T[S]) = \sum_{i=1}^k w_{Q_i}(Q_i[S_i])$$

 $w_{T'}(T'[S']) = \sum_{i=1}^k w_{Q'_i}(Q'_i[S'_i])$

where $S_i = S \cap V(Q_i)$, $S' = \pi(S)$, and $S'_i = \pi(S_i)$.

Ricardo A. Collado

Rutgers University

Analysis of HR-Transformation II

The previous hold if $S' \subseteq \pi(V(T))$ and $S = \pi^{-1}(S')$, hence it suffices to show that Q'_i is an $O(\alpha)$ -faithful representation of Q_i , $1 \le i \le k$.

Main Idea:

There is a separate subtree in Q' for every branch in Q and this means that w(e) is counted multiple times (once pre branch below e). But the number of branches is $O(\alpha)$, so the increase in weight can be bounded by $O(\alpha)$.

To bound the multiple counting within each branch we use the fact that the weights of edges $(v(B), b_i)$ increase exponentially with *i*, and hence their sum is dominated by the heaviest edge.

Ricardo A. Collado

Let $\beta > 0$

- If u is a leaf, return u
- Otherwise, let v_1, \ldots, v_k be the children of u. Do:
 - The β-heavy v_i's are not changed: the edges (u, v_i) are kept and their weights are not modified
 - The β-light children of u are grouped into minimal β-heavy bunches
 - For every new bunch B, a new node b is created, an edge (u, b) is added as well as edges between b and the children of u in B
 - ► The new edge weight is: w(u, b) = 0 and w(b, v_i) = w(u, v_i)

Recurse

Ricardo A. Collado

Important Results

Claim 2.4 Let $\alpha > 1$. There exists a linear time algorithm that, given a rooted tree T with n nodes, computes an $O(\alpha)$ -faithful representation T' of T such that $h(T') = O(\log_{\alpha} n)$.

Claim 2.5 Let $\beta \geq 3$. There exists a linear time algorithm that, given a rooted tree T with n nodes, computes a 1-faithful representation T' of T such that: $h(T') \leq h(T) + \lfloor \log_{\beta/2} n \rfloor$ and every node in T' has at most β children.

By choosing $alpha = \log^{\epsilon} n$ and $\beta = \log n$ we obtain a tree with height $O(\frac{1}{\epsilon} \log n / \log \log n)$ and maximum degree $O(\log n)$. Further, we are guaranteed that there is a solution in this tree of weight at most $O(\log^{\epsilon} n)$ times the weight of an optimal solution in the input tree.

Ricardo A. Collado

Rutgers University

Algorithm 2 Modified-GS $(T_{r'}, z')$ - Modified GS Algorithm (uses geometric search).

- 1: stopping condition: if r' is a leaf then return $(T_{r'})$.
- 2: Initialize: $cover \leftarrow \emptyset$, $z^{res} \leftarrow z'$, and $T^{res} \leftarrow T_{r'}$.
- 3: while $z^{res} > 0$ do
- 4: recurse: for every u ∈ children(r') and for every z" power of (1 + λ) in [¹/_{deg(r')·(1+¹/_λ)·(1+λ)} · z^{res}, z^{res}]

$$C_{u,z''} \leftarrow \text{Modified-GS}(T_u, z'').$$

5: select: (pick the lowest density tree)

$$T_{aug} \leftarrow \text{Min-density}\left\{C_{u,z''} \cup \left\{(r',u)\right\}\right\}.$$

6: update:

- (a) $cover \leftarrow cover \cup T_{aug}$.
- (b) $z^{res} \leftarrow z' m(cover).$
- (c) remove all groups covered by T_{aug} from T^{res} .
- (d) if first time $m(cover) \ge z'/h(T_{r'})$ then $cover_h \leftarrow cover$.
- 7: end while
- 8: **return** (lowest density tree $\in \{cover, cover_h\}$).

Ricardo A. Collado

Rutgers University

Two New Ideas

1. In Line 4: Small subtrees are avoided in the sense that the demand value is at least

$$\frac{1}{deg(r')\cdot(1+\frac{1}{\lambda})\cdot(1+\lambda)}\cdot z^{res}$$

2. The algorithm stores the first partial cover that covers at least $z'/h(T_{r'})$ groups (this is used during the proofs)

Ricardo A. Collado

Theorem

Let Δ be the max deg of $T_{r'}$ and let $\beta = \Delta(1 + 1/\lambda)(1 + \lambda)$. The running time of Modified-GS $(T_{r'}, z')$ is $O(n\alpha^{h(T_{r'})})$ where $\alpha = \beta \cdot h(T_{r'}) \cdot \log z' \cdot \Delta \cdot \log_{1+\lambda} \beta$. If $h(T_{r'}) = O(\log n / \log \log n)$, $\Delta = O(\log n)$ and $1 \leq 1/\lambda = O(\log n)$, then the running time is polynomial in n and m.

Theorem

$$\gamma(T_{aug}) \leq (1+\lambda)^{2h(T_{r'})} \cdot h(T_{r'}) \cdot \gamma(\mathsf{OPT}(T_{r'}^{\mathsf{res}}, \mathsf{z}^{\mathsf{res}})).$$

Ricardo A. Collado

Rutgers University

Theorem 3.5 Let I be an instance of the group Steiner problem on a tree T of height $O(\log n/\log \log n)$ and maximum degree $O(\log n)$. Then Modified-GS runs in time polynomial n and m and gives an $O(h(T) \log m)$ -approximation.

Proof: Choose $\lambda = 1/h(T)$ in Modified-GS. For this choice of λ and the bounds on the height and degree of T it follows from Lemma 3.3 that Modified-GS runs in time polynomial in n and m.

From Lemma 3.4, we obtain that $\gamma(T_{aug}) \leq (1+1/h(T))^{2h(T)} \cdot h(T) \cdot \gamma(\text{OPT}(T^{res}, z^{res}))$. Therefore $\gamma(T_{aug}) \leq e^2h(T)\gamma(\text{OPT}(T^{res}, z^{res}))$. It follows that we obtain an $O(h(T)\log m)$ approximation. \Box

Corollary 3.6 For any fixed $\varepsilon > 0$, there is a polynomial time recursive greedy algorithm for the group Steiner problem on trees with an approximation ratio of $O(\frac{1}{\varepsilon} \cdot (\log n)^{1+\varepsilon} \cdot \log m)$.

Proof: Use Claim 2.4 with $\alpha = \log^{\varepsilon} n$ to reduce the height of the input tree to $O(\log n / \log \log n)$ and use Claim 2.5 with $\beta = \log n$ to reduce the maximum degree of the tree to $O(\log n)$ while still keeping the height $O(\log n / \log \log n)$. These transformations worsen the approximation ratio by a multiplicative factor of $O(\log^{\varepsilon} n)$. Applying the algorithm Modified-GS to the transformed tree gives the desired result.