
Improved Approximations for Relative Survivable Network Design

Michael Dinitz∗

Johns Hopkins University
mdinitz@cs.jhu.edu

Ama Koranteng†

Johns Hopkins University
akorant1@jhu.edu

Guy Kortsarz
Rutgers University, Camden
guyk@camden.rutgers.edu

Zeev Nutov
The Open University, Israel

nutov@openu.ac.il

October 4, 2023

Abstract

One of the most important and well-studied settings for network design is edge-connectivity
requirements. This encompasses uniform demands such as the Minimum k-Edge-Connected
Spanning Subgraph problem, as well as nonuniform demands such as the Survivable Network
Design problem (SND). In a recent paper by [Dinitz, Koranteng, Kortsarz APPROX ’22], the
authors observed that a weakness of these formulations is that we cannot consider fault-tolerance
in graphs that have small cuts but where some large fault sets can still be accommodated. To
remedy this, they introduced new variants of these problems under the notion relative fault-
tolerance. Informally, this requires not that two nodes are connected if there are a bounded
number of faults (as in the classical setting), but that two nodes are connected if there are a
bounded number of faults and the two nodes are connected in the underlying graph post-faults.

This seemingly minor change in definition makes the problem dramatically more complex,
and so the results in [Dinitz, Koranteng, Kortsarz APPROX ’22] are quite limited. For the
Relative Survivable Network Design problem (RSND) with non-uniform demands, they are only
able to give a nontrivial result when there is a single demand with connectivity requirement 3—a
non-optimal 27/4-approximation. We strengthen this result in two significant ways: We give a

2-approximation for RSND where all requirements are at most 3, and a 2O(k2)-approximation
for RSND with a single demand of arbitrary value k. To achieve these results, we first use the
“cactus representation” of minimum cuts to give a lossless reduction to normal SND. Second,
we extend the techniques of [Dinitz, Koranteng, Kortsarz APPROX ’22] to prove a generalized
and more complex version of their structure theorem, which we then use to design a recursive
approximation algorithm.

∗Supported in part by NSF awards CCF-1909111 and CCF-2228995.
†Supported in part by an NSF Graduate Research Fellowship and NSF award CCF-1909111

ar
X

iv
:2

30
4.

06
65

6v
2

 [
cs

.D
S]

 3
 O

ct
 2

02
3

1 Introduction

Fault-tolerance has been a central object of study in approximation algorithms, particularly for
network design problems where the graphs we study represent physical objects which might fail
(communication links, transportation links, etc.). In these settings it is natural to ask for whatever
object we build to be fault-tolerant. The precise definition of “fault-tolerance” varies in different
settings, but a common formulation is edge fault-tolerance, which typically takes the form of edge
connectivity. Informally, these look like guarantees of the form “if up to k edges fail, then the
nodes I want to be connected are still connected.” For example, consider the following classical
fault-tolerance problem.

Definition 1. In the Survivable Network Design problem (SND, sometimes referred to as Gen-
eralized Steiner Network) we are given an edge-weighted graph G and demands {(si, ti, ki)}i∈[ℓ],
and we are supposed to find the minimum-weight subgraph H of G so that there are at least ki
edge-disjoint paths between si and ti for every i ∈ [ℓ]. In other words, for every i ∈ [ℓ], if fewer
than ki edges fail then si and ti will still be connected in H even after failures.

The Survivable Network Design problem is well-studied (see [16, 24, 26, 31] for a sample); no-
tably, Jain gives a 2-approximation algorithm for the problem in a seminal paper [26]. Beyond
SND, edge fault-tolerance has been studied in many related network design contexts, with the k-
Edge Connected Spanning Subgraph, Fault-Tolerant Group Steiner Tree, Fault-Tolerant Spanner,
and Fault-Tolerant Shortest Paths problems being just a few examples (see [4,16,19,27] for exam-
ples). These and other classical fault-tolerance problems, including the Survivable Network Design
problem, are absolute fault-tolerance problems—if up to k objects fail, the remaining graph should
function as desired. This differs from the stronger notion of fault-tolerance introduced in [17], called
relative fault-tolerance. Relative fault-tolerance makes guarantees that rather than being absolute
(“if at most k edges fail the network still functions”) are relative to an underlying graph or system
(“if at most k edges fail, the subgraph functions just as well as the original graph post-failures”).

Relative fault-tolerance is therefore a natural generalization of absolute fault-tolerance: If the in-
put graph has the desired connectivity, then the relative fault-tolerance and absolute fault-tolerance
definitions are equivalent. However, if the input graph does not have the requested connectivity,
then relative fault-tolerance allows us to return a solution with interesting and nontrivial guaran-
tees while absolute fault-tolerance forces us to return nothing. In this way, relative fault-tolerance
overcomes a significant weakness of absolute fault-tolerance.

This relative fault-tolerance definition was inspired by a recent line of work on relative notions
of fault-tolerance for graph spanners and emulators [5–10, 12, 18, 19]. In these settings, the goal is
generally to find existential bounds and algorithms to achieve them, rather than to do optimization.
In [17], by contrast, their approach takes the point of view of optimization and approximation
algorithms. With this notion of fault-tolerance in network design, the authors of [17] define the
relative version of the Survivable Network Design problem.

Definition 2. In the Relative Survivable Network Design problem (RSND), we are given a graph
G = (V,E) with edge weights w : E → R≥0 and demands {(si, ti, ki)}i∈[ℓ]. A feasible solution is a
subgraph H of G where for all i ∈ [ℓ] and F ⊆ E with |F | < ki, if there is a path in G \ F from
si to ti then there is also a path in H \ F from si to ti. Our goal is to find the minimum weight
feasible solution.

Note that if si and ti are ki-connected in G for every i ∈ [ℓ], then RSND is exactly the same as
SND. If in G there exists some i ∈ [ℓ] such that si and ti are not ki-connected, then although there
is no solution for SND, there is a meaningful RSND solution. We note that the fault-tolerance we

1

achieve is really “one less” than the given number (there are strict inequalities in the definitions).
This is “off-by-one” from the related relative fault-tolerance literature (see the definitions in [12]),
but makes the connection to the traditional SND formulation cleaner.

There has been recent work on a related network design model introduced by Adjiashvili [1–3,
11,14]. In this model, E is partitioned into “safe” and “unsafe” edges. Informally, in the Flex-SNDP
problem we are given a graph G = (V,E) with edge costs and with functions p, q : V × V → Z+.
We must return a min cost subgraph such that for each vertex pair u, v, they are p(u, v)-connected
after deleting any subset of up to q(u, v) unsafe edges. Like RSND, Flex-SNDP is a natural
generalization of SND. However, it is an absolute fault-tolerance problem since it does not consider
the underlying connectivity of the input. No polynomial-time approximation algorithms are known
for general Flex-SNDP, though there has been recent work on several special cases [3, 11,13,14].

The results of [17]. Although relative fault-tolerance is a natural and promising generaliza-
tion of fault-tolerance, the results given in [17] for the RSND problem are quite limited. Outside
of a 2-approximation algorithm for the special case in which all demands are identical, [17] is only
able to give algorithms for some of the simplest RSND special cases. First, they give an extremely
simple 2-approximation for the RSND special case where all demands are in {0, 1, 2} (also known
as the 2-RSND problem). The algorithm falls out of the observation that there is only a difference
between a relative demand of 2 and an absolute demand of 2 when there is a cut of size one sepa-
rating the vertex demand pair. Cuts of size one are very easy to handle, allowing for a simple and
straightforward reduction to SND.

Cuts of size two or larger are significantly more difficult to reason about, and so the 2-RSND
algorithm does not extend to larger demands. As a result of this more complex cut structure, [17]
is only able to handle demands of value 3 (and reason about the size two cuts between them) when
there is only a single demand, with value 3 (also known as the SD-3-RSND problem). Despite this
being an extremely restricted special case of RSND, the algorithm and analysis given by [17] are
quite complex, depending on a careful graph decomposition involving “important separators” (a
concept from fixed-parameter tractability [29]). Moreover, this algorithm only achieved a 27/4-
approximation for the problem, far from the 2-approximation (or even exact algorithm) that one
might hope for.

The limited results of [17] show that while relative fault-tolerance is an attractive notion, apply-
ing it to the Survivable Network Design problem significantly changes the structure of the problem
and makes it difficult to reason about and develop algorithms for. For example, while [17] only
gives a 27/4-approximation for SD-3-RSND, there is an exact polynomial-time algorithm for the
SND equivalent (by a simple reduction to the Min-Cost Flow problem). So one might worry that
relative fault-tolerance is simply too difficult of a definition, and the results of [17] are limited
precisely because nothing is possible for even slightly more general settings.

1.1 Our Results and Techniques

In this paper, we seek to alleviate this worry by providing improved bounds for generalizations of
the settings considered in [17]. In particular, we study two natural generalizations of the SD-3-
RSND problem (which [17] provided a 27/4-approximation for). First, rather than only a single
demand with value at most 3, can we handle an arbitrary number of demands that are at most 3?
Secondly, in the single demand setting, instead of only handling a demand of at most 3, can we
generalize to arbitrary values?

2

1.1.1 3-RSND

We begin with the setting where all demands are at most 3, but there can be an arbitrary number
of such demands. We call this the 3-RSND problem. Note that, as discussed, there are no previous
results for this setting, and the most related result is a 27/4-approximation if there is only a single
such demand [17]. We prove the following theorem.

Theorem 1.1. There is a polynomial-time 2-approximation for the 3-RSND problem.

To obtain this theorem, we use entirely different techniques from those used in [17]. Most
notably, we use the cactus representation of the global minimum cuts (which in this case are 2-
cuts) of the input graph. The cactus representation of global minimum cuts is well studied and has
been leveraged in a number of settings (see [20,21,25,28,30] for a sample). While it can be defined
and constructed for more general connectivity values, for our setting we can construct the cactus
representation by contracting components with certain connectivity properties. This results in a
so-called cactus graph, which at a high level is a “tree of cycles”: every pair of cycles intersects on
at most one component in the construction. This cactus graph now has a simple enough structure
that it allows us to reduce the original problem to a simpler problem in each of the contracted
components. That is, we are able to show that certain parts of the cactus are essentially “forced”,
while other parts are not necessary, so the only question that remains is what to do “inside” of each
cactus vertex, i.e., each component. This reduction makes the connectivity demands inside each
component more complicated, but fortunately we are guaranteed 3-connectivity between special
vertices inside the component. Hence we can use Jain’s 2-approximation for SND [26] without
worrying about the relative nature of the demands.

1.1.2 SD-k-RSND

Our second improvement is orthogonal: rather than allowing for more demands of at most 3, we
still restrict ourselves to a single demand but allow it to be a general constant k rather than 3. We
call this the SD-k-RSND problem. As with the 3-RSND problem discussed earlier, there are no
known results for this problem. We prove the following theorem:

Theorem 1.2. There is a polynomial-time 2O(k2)-approximation for the SD-k-RSND problem.

To prove this, we extend the technique used by [17] for the k = 3 case. They construct a “chain”
of 2-separators (cuts of size 2 that are also important separators) so that in each component in the
chain, there are no 2-cuts between the incoming separator and the outgoing separator. They are
then able to use this structure to characterize the connectivity requirement of any feasible solution
restricted to that component. To extend this technique, we use important separators of size up
to k − 1 to carefully construct a hierarchy of chains. The hierarchy has k − 1 levels of nested
components, so that for each component in the ith level of the hierarchy, there are no cuts of size
at most i between the incoming and outgoing separators. There are multiple ways of constructing
such a hierarchy, but we prove that a particular construction yields a hierarchy with a number of
useful but delicate properties within a single level and between different levels of the hierarchy.
With these properties, we can characterize the complex connectivity requirement of any feasible
solution when restricted to a component in the hierarchy. Once we have this structure theorem, we
approximate the optimal solution in each component of the hierarchy via a recursive algorithm.

1.1.3 Simplification of k-EFTS

The k-Edge Fault Tolerant Subgraph problem (k-EFTS) is the special case of RSND where all
demands are identical: every two nodes have a demand of exactly k. A 2-approximation for k-

3

EFTS was recently given in [17] via a somewhat complex proof; in particular, they defined a new
property called local weak supermodularity and used it to show that Jain’s iterative rounding still
gave the same bounds in the relative setting. In Appendix D we give a simplification of this proof.
It turns out that local weak supermodularity is not actually needed, and a more classical notion of
F-supermodularity suffices. This allows us to reduce to previous work in a more black-box manner.

2 Preliminaries

We will consider the following special cases of RSND (Definition 2):

• The k-Relative Survivable Network Design problem (k-RSND) is the special case of
RSND where r(s, t) ≤ k for all s, t ∈ V . In this paper we consider the case k = 3, namely,
the 3-RSND problem.

• The Single Demand k-Relative Survivable Network Design problem (SD-k-RSND)
is the special case of RSND where r(s, t) = k for exactly one vertex pair s, t ∈ V and there
is no demand for any other vertex pairs (equivalently, all other demands are 0). We consider
the full SD-k-RSND problem for arbitrary k.

• The k-Edge-Fault-Tolerant-Subgraph problem (k-EFTS) is the special case of RSND
where r(s, t) = k for all s, t ∈ V .

For each of the listed RSND problem variants, we will use the following notation and definitions
throughout. Let G = (V,E) be a (multi-)graph and H a spanning subgraph (or an edge subset)
of G. For A ⊆ V , let δH(A) denote the set of edges in H with exactly one endpoint in A, and let
dH(A) = |δH(A)| be their number. Additionally, let G[A] denote the subgraph of G induced by
the vertex set A. Let s, t ∈ V . We say that A is an st-set if s ∈ A and t /∈ A, and that δG(A) (or
δE(A)) is an st-cut of G (induced by A). An st-cut δG(A) (or an st-set A) is G-minimal if δG(A)
contains no other st-cut of G. Assuming G is connected, it is easy to see that δG(A) is G-minimal
if and only if both G[A] and G[V \ A] are connected. One can also see that if an st-cut X ⊆ E is
G-minimal, then X = δG(A) for some A ⊆ V . Finally, let λG(s, t) denote the size of a min st-cut
in G.

By Theorem 17 of [17], we may assume without loss of generality that the input graph G of any
RSND instance is 2-edge-connected (which we will call “2-connected”).

3 2-Approximation for 3-RSND (and SD-3-RSND)

Given an RSND instance, we say that a vertex pair s, t is a k-demand if r(s, t) = k. We call a
k-demand relative if the minimum st-cut has size less than k; that is, if λG(s, t) < k. A k-demand
is then ordinary if λG(s, t) ≥ k. Recall that SD-3-RSND has only one demand st, and that it is
a 3-demand. The edges of any size 2 st-cut, or 2-st-cut, belong to any feasible solution so we call
them forced edges. As a result, we can assume without loss of generality that they have cost 0.

3.1 Overview

We first give an overview of the theorems and proofs in this section. In order to prove Theorem 1.1,
we will show that we can replace a single relative 3-demand by an equivalent set of ordinary 3-
demands. More formally, we will prove the following.

4

Theorem 3.1. Given an SD-3-RSND instance, there exists a polynomially computable set of
ordinary 3-demands, D, such that for any H ⊆ E that contains all forced edges, H is a feasible
SD-3-RSND solution if and only if H satisfies all demands in D.

This theorem reduces SD-3-RSND to the ordinary 3-SND problem (that is, the special case
of SND where all demands are at most 3). In fact, this also gives us a lossless reduction from
3-RSND to 3-SND: Given a 3-RSND instance, we include the forced edges of all 3-demands into
our solution, replace each relative 3-demand by an equivalent set of ordinary demands, and obtain
an equivalent ordinary 3-SND instance. Since SND admits approximation ratio 2, this reduction
from 3-RSND to 3-SND implies Theorem 1.1.

We will also show that SD-3-RSND is approximation equivalent to certain instances of a special
case of 3-SND. Before we define this special case, we must give a definition. A vertex subset R
is a k-edge-connected subset in a graph H if λH(u, v) ≥ k for all vertex pairs u, v ∈ R. Since
the relation {(u, v) ∈ V × V : no (k − 1)-cut separates u, v} is transitive, this is equivalent to
requiring that λH(u, v) ≥ k for pairs u, v that form a tree on R. We will prove that SD-3-RSND
is approximation equivalent to special instances of the following problem:

4-Subset 3-EC
Input: A graph J = (V ′, E′) with edge costs, and a set R ⊆ V ′ of at most 4 terminals.
Output: A min-cost subgraph H of J , such that R is 3-edge-connected in H.

More specifically, we will prove the following.

Theorem 3.2. Let s and t be vertices in J = (V ′, E′), where J is the input graph to an instance
of 4-Subset 3-EC. SD-3-RSND admits approximation ratio ρ if and only if 4-Subset 3-EC with
the following properties (A,B) admits approximation ratio ρ:

(A) dJ(s) = dJ(t) = 2 and R is the set of neighbors of s, t.

(B) If dJ(A) = 2 for some st-set A, then A = {s} or A = V ′ \{t}. Namely, if F is a set of 2 edges
of J such that J \ F has no st-path, then F = δJ(s) or F = δJ(t).

The general 4-Subset 3-EC problem admits approximation ratio 2, since it is a special case
of SND. However, it is not actually known whether 4-Subset 3-EC is in P or is NP-hard. To
the best of our knowledge, the complexity status of even 3-Subset 2-EC is open. Both the 4-
Subset 3-EC and 3-Subset 2-EC problems are related to the special case of SND where the
sum of the demands is bounded by a constant. This special case has been studied; for example,
both [15] and [22] studied this and related questions. Nevertheless, the best known approximation
algorithm for the 4-Subset 3-EC problem gives a 2-approximation. As such, our 2-approximation
for 3-RSND is the best we can hope for. In the rest of this section, we prove Theorems 3.2, 3.1,
and 1.1. All missing proofs can be found in Appendix A.

3.2 Cactus Representation and Definitions

We first give some definitions and describe the cactus representation. The relation {(u, v) ∈ V ×V :
no (k − 1)-cut separates u, v} is an equivalence, and we will call its equivalence classes k-classes.
We construct a cactus G by shrinking every nontrivial 3-class (that is, every 3-class with at least
2 nodes) of the input graph G. Note that since G is 2-connected, G is a connected graph in which
every two cycles have at most one node in common; see Fig. 1(a) for an example. Going forward,
we will identify every 3-class with the corresponding node of G. The edge pairs that belong to the
same cycle of G are the 2-cuts of G.

5

(c)

(a)

(e)

(d)

(b)

t

s

s t

ts t

s

ts
s

t

’t

s’

tst

s

s’

’t

Figure 1: (a) 3-classes (shown by gray areas) and the cactus G of G; (b) 3-demands s′t′ (red
dashed line) and the attachment nodes of s′t′-relevant 3-classes, where attachment nodes of central
classes are yellow and of non-central classes are green; (c) 3-demands st (blue dashed line) and the
attachment nodes of st-relevant 3-classes; (d) a set of ordinary 3-demands that is equivalent to the
relative 3-demand st. (e) components w.r.t. the 3-demand st.

6

We will assume that vertex pair st is a relative 3-demand (otherwise we have an instance of
SD-3-SND which can be solved exactly in polynomial time). We say that the st-chain of cycles
of G consists of all the cycles (and their nodes) in G that contain a 2-st-cut. We say that the nodes,
or 3-classes, on these cycles are st-relevant. Note that the set of edges in G that are in the st-chain
of cycles are the forced edges. We also say that an st-relevant 3-class is central if it contains s or
t, or belongs to two cycles of the st-chain. Additionally, the attachment nodes of an st-relevant
3-class are nodes in the 3-class that are either s or t, or are the ends of the edges (the attachment
edges) that belong to some cycle in the st-chain of cycles. Since G is 2-connected, the number of
attachment nodes in a non-central 3-class is exactly 2, while the number of attachment nodes in a
central 3-class is between 2 and 4; see Fig. 1(b,c).

3.3 Proof of Theorems 3.2, 3.1, and 1.1

For the proof of Theorems 3.2 and 3.1, we associate with each st-relevant 3-class, C, a certain graph
GC which we call the component of C, obtained as follows (see Fig. 1(e)):

• If C is a non-central 3-class then, in the graph obtained from G by removing the two attach-
ment edges of C, GC is the connected component that contains C.

• If C is a central 3-class, then removing the attachment edges of C results in at least one
and at most two connected components that do not contain C – one contains s and the
other contains t, if any. We obtain GC from G by contracting the connected component that
contains s into node s, and contracting the connected component that contains t into node t.

We now modify the central components GC to satisfy properties (A,B) from Theorem 3.2.
Consider some central 3-class C, and consider its component J = GC . If J does not contain one of
the original nodes s or t, then it has properties (A,B) and no modification is needed. If J contains
the original node s, then we rename s to s′, add a new node s, and connect new s by two zero
cost edges to s′. The obtained J now has properties (A,B). A similar transformation applies if J
contains the original node t.

The following lemma is about both the non-central components and these modified central com-
ponents; in the lemma, we show that for H to be a feasible SD-3-RSND solution, it is necessary
and sufficient to satisfy certain connectivity properties within each component. Note that a sub-
graph H is a feasible solution to SD-3-RSND if for any F ⊆ E with |F | ≤ 2, the following holds: if
there is an st-path in G \ F , then there is an st-path in H \ F .

Lemma 3.3. Let H be a subgraph of G, and suppose that H contains all forced edges. Subgraph
H is a feasible SD-3-RSND solution if and only if for every component J , the following holds (see
Fig, 1(e)).

(i) If J is a non-central component, then H[J] contains two edge-disjoint uv-paths, where u and
v are the two attachment nodes of J .

(ii) If J is a central component, then H[J] is a feasible solution to the SD-3-RSND instance in
J (with demand r(s, t) = 3).

Suppose that for the special SD-3-RSND instances that arise in the central components we can
achieve approximation ratio α. Then, we can achieve ratio α for general SD-3-RSND by picking
into our solution H three types of edge sets.

1. The forced edges.

7

2. A min-cost set of 2 edge-disjoint paths between the attachment nodes of each st-relevant
non-central component.

3. An α-approximate solution in each st-relevant central component.

Note that edges picked in steps 1,2 do not invoke any cost in the approximation ratio, since by
Lemma 3.3 we actually pick parts of an optimal solution. Thus we get that the approximability
of SD-3-RSND is equivalent to the approximability of the very special instances that arise in the
central components. We will now show that these special instances from the central components
are in fact instances of 4-Subset 3-EC with properties (A,B) from Theorem 3.2, thus proving
Theorem 3.2. We will consider only central components with 4 attachment nodes; other cases with
3 or 2 attachment nodes are similar.

In what follows, let I be an SD-3-RSND instance on input graph J with properties (A,B)
(just as in our central components). Let R = {x, y, z, w} where x, y are the neighbors of s and z, w
are the neighbors of t and let H be a subgraph of J that includes the four forced edges sx, sy, zt,
and wt. Now we prove that H is a feasible solution for I if and only if R is 3-connected in H.
Lemma 3.4 gives the “only-if” direction, while Lemma 3.5 gives the “if” direction.

Lemma 3.4. If subgraph H is a feasible solution for instance I, then R = {x, y, z, w} is a 3-edge-
connected subset in H.

Lemma 3.5. If R = {x, y, z, w} is a 3-edge-connected subset in subgraph H, then H is a feasible
solution for instance I.

By Lemmas 3.4 and 3.5, H is a feasible solution for I if and only if H includes all forced edges
and R is a 3-edge-connected subset—that is, R forms a feasible solution to 4-Subset 3-EC—in
H. This, along with Lemma 3.3, implies that the approximability of SD-3-RSND is equivalent to
that of 4-Subset 3-EC with properties (A,B), concluding the proof of Theorem 3.2.

Proof of Theorem 3.1 We will prove that a single relative 3-demand st can be replaced by
an equivalent forest of ordinary 3-demands in polynomial time, where the trees in this forest span
the sets of attachment nodes of the st-relevant 3-classes; see Fig. 1(d). Recall that by Lemma 3.3
and Lemmas 3.4,3.5, subgraph H is a feasible SD-3-RSND solution for 3-demand st if and only if
the following holds for every st-relevant 3-class C:

(i) If C is central, then the set RC of attachment nodes of C is a 3-connected subset in H.

(ii) If C is non-central, then H[C] contains 2 edge-disjoint uv-paths, where u and v are the
attachment nodes of C.

The first condition is equivalent to satisfying a clique of 3-demands on RC .
1 For the second

condition, consider a non-central st-relevant 3-class C with attachment nodes u, v. One can see
that if H contains all forced edges and satisfies (i,ii) then the number of edge-disjoint uv-paths in
H is larger by exactly 1 than their number in H[C]—the additional path (that exists in H but not
in H[C]) goes along the cycle of the cactus that contains C, and there is exactly one such path.
Thus, the demand r(u, v) = 3 is equivalent to requiring two edge-disjoint paths from u to v in RC

(in addition to including all forced edges).

1Recall that since the relation {(u, v) ∈ V × V : no 2-cut separates u, v} is transitive, this is equivalent to having
a tree of 3-demands on RC .

8

Thus we obtain an equivalent 3-SND instance by replacing the single relative 3-demand st by a
set D of 3-demands that form a clique (or, which is equivalent, a tree) on the set RC of attachment
nodes of every st-relevant 3-class C. These new demands can be computed in polynomial time,
and they are ordinary 3-demands, since each RC is a 3-edge-connected subset in G. This concludes
the proof of Theorem 3.1.

Proof of Theorem 1.1 Finally, we give a 2-approximation for 3-RSND in the following
theorem. We treat each demand in the 3-RSND instance as its own instance of SD-3-RSND, solve
each SD-3-RSND instance, and include the edges of each solution in our output.

4 SD-k-RSND

We give a recursive 2O(k2)-approximation algorithm for SD-k-RSND for arbitrary constant k (The-
orem 1.2). The algorithm is a generalization of the SD-3-RSND algorithm from [17]. At a high
level, the main idea is to partition the input graph using a hierarchy of important separators, prove
a structure theorem that characterizes the required connectivity guarantees within each component
of the hierarchy, and then achieve these guarantees using a variety of subroutines: a Weighted
st Shortest-Path algorithm, the recursive SD-k -RSND approximation algorithm, and a Min-Cost
Flow algorithm.

4.1 Hierarchical Chain Decomposition

In this section we define important separators and describe how to use them to construct a hierar-
chical k-chain decomposition of G.

Definition 3. Let X and Y be vertex sets of a graph G. An (X,Y)-separator of G is a set of
edges S such that there is no path between any vertex x ∈ X and any vertex y ∈ Y in G \ S. An
(X,Y)-separator S is minimal if no subset S′ ⊂ S is also an (X,Y)-separator. If X = {x} and
Y = {y}, we say that S is an (x, y)-separator.

In [17], the authors provide the following definition.

Definition 4 (Definition 20 of [17]). Let S be an (X,Y)-separator of graph G, and let R be the
vertices reachable from X in G \ S. Then S is an important (X,Y)-separator if S is minimal and
there is no (X,Y)-separator S′ such that |S′| ≤ |S| and R′ ⊂ R, where R′ is the set of vertices
reachable from X in G \ S′.

In Section 4.1 of [17], the authors describe how to construct the “s − t 2-chain” of a graph G
2. Here, we define the (X,Y) h-chain of G similarly, where X and Y are vertex sets and h > 0 is
an integer. Instead of using size two important separators to partition the graph, we will use size
h important separators. See Figure 2 for an example.

First, if there are no important (X,Y)-separators of size h in G, then the (X,Y) h-chain of G
is simply G and we’re done (the chain is a single component, G, with no separators). If such an
important separator exists, then we first find an important (X,Y)-separator Sh

0 of size h in G, and
we let Rh

0 be the set of vertices reachable from any vertex x ∈ X in G \ Sh
0 . We let V h

(0,r) be the

vertices in Rh
0 incident on Sh

0 , and let V h
(1,ℓ) be the nodes in V \Rh

0 incident on Sh
0 . We then proceed

2Note that all separator-based chain definitions given in this section are unrelated to the cactus-based chain
definitions in Section 3.

9

Figure 2: An (X,Y) h-chain of a graph G, where h = 2.

inductively. Given V h
(i,ℓ), if there is no important (V h

(i,ℓ), Y)-separator of size h in G\ (∪i−1
j=0R

h
j) then

the chain is finished. Otherwise, let Sh
i be such a separator, let Rh

i be the nodes reachable from
V h
(i,ℓ) in (G \ (∪i−1

j=0R
h
j)) \ Sh

i , let V h
(i,r) be the nodes in Rh

i incident on Sh
i , and let V h

(i+1,ℓ) be the

nodes in V \ (∪i
j=0R

h
j) incident on Sh

i . After this process completes we have our (X,Y) h-chain,

consisting of components Rh
0 , . . . , R

h
p along with important separators Sh

0 , . . . , S
h
p−1 between the

components. See Figure 2.
Next we note that by Lemma 17 of [17], we can find an important (X,Y)-separator of size h in

polynomial time as long as h is a constant.

Lemma 4.1 (Lemma 17 of [17]). Let d ≥ 0. An important (X,Y)-separator of size d can be found
in time 4d · nO(1) (if one exists), where n = |V |.

Constructing the Hierarchical k-chain Decomposition. Now we describe how to con-
struct the hierarchical k-chain decomposition of G. We start by creating the (s, t) 2-chain of G.
We say that each component of the (s, t) 2-chain is a 2-component of G in the hierarchical chain
decomposition, and that G is the 1-component of the decomposition. We also say that G is the
parent component of each 2-component.

We then proceed inductively. Let Rh
i be an h-component of the hierarchical k-chain decomposi-

tion. If h = k−1, then the decomposition is finished. Otherwise, build the (V h
(i,ℓ), V

h
(i,r)) (h+1)-chain

of Rh
i . The (h + 1)-chain consists of (h + 1)-components. Component Rh

i is the parent of these
(h + 1)-components (and these (h + 1)-components are the children of Rh

i). Note that the vertex
set V h

(i,ℓ) is also in the first (h+1)-component in Rh
i and that V h

(i,r) is in the last (h+1)-component

in Rh
i . After this process completes we have our hierarchical k-chain decomposition of G.
The set of all h-components can be ordered as follows: The h-component that contains s is the

first component while the h-component that contains t is last. All other h-components are adjacent
via a left important separator and a right important separator to a left neighbor h-component and
a right neighbor h-component, respectively. Observe that in this hierarchical decomposition, an
h-component Rh

i has no (V h
(i,ℓ), V

h
(i,r))-separator of size h or less.

4.2 Structure Theorem

Preliminaries. We say a subgraph H satisfies the RSND demand (X,Y, d) on input graph
G if the following is true: If there is a path from at least one vertex in X to at least one vertex in
Y in G \ F , where F is a set of at most d− 1 edges, then there is a path from at least one vertex
in X to at least one vertex in Y in H \ F . Going forward, if V h

(i,ℓ) = {s}, then we consider Sh
i−1 to

be the empty set. Similarly, if V h
(i,r) = {t}, then Sh

i is the empty set.

10

Fix an h-component Rh
i and let X be a vertex set such that X ⊆ V h

(i,ℓ). We say that SX is the

set of edges in Sh
i−1 incident on vertices in X. Similarly, if Y is a vertex set such that Y ⊆ V h

(i,r),

we say that SY is the set of edges in Sh
i incident on vertices in Y . We will also use S to denote

the set of all edges in an important separator in the hierarchical chain decomposition. Let H be a
subgraph of G. We will also say that Gh

i = G[Rh
i] is the subgraph of G induced by the vertex set

Rh
i , and that Hh

i = H[Rh
i] is the subgraph of H induced by Rh

i .
We can now use the hierarchical chain construction to give a structure lemma that characterizes

feasible solutions. The lemma states that a subgraph H of G is a feasible solution to SD-k-RSND
if and only if in the hierarchical k-chain decomposition of G, all edges in S are in H, and certain
connectivity requirements between groups of vertices in V h

(i,ℓ) and in V h
(i,r) are met in Hh

i for each

component Rh
i in the decomposition.

Theorem 4.2 (Structure Theorem). Subgraph H is a feasible solution to SD-k-RSND if and only
if all edges in S are included in H, and for each h-component Rh

i in the hierarchical k-chain
decomposition of input graph G, subgraph Hh

i satisfies the following:

1. Hh
i is a feasible solution to RSND on subgraph Gh

i with demands{
(X,Y, d) : X ⊆ V h

(i,ℓ), Y ⊆ V h
(i,r), (X,Y) ̸=

(
V h
(i,ℓ), V

h
(i,r)

)
,

d = max(0, k + |SX |+ |SY | − |Sh
i−1| − |Sh

i |)
}
.

2. Hh
i is a feasible solution to RSND on subgraph Gh

i with demand(
V h
(i,ℓ), V

h
(i,r), h+ 1

)
.

3. Hh
i is a feasible solution to RSND on subgraph Gh

i with demand(
V h
(i,ℓ), V

h
(i,r), k − 1

)
.

The proof of this structure theorem is long and involved; it can be found in Appendix B. We
describe the proof here at a very high level. To prove the “only if” direction, we first assume that
we are given some feasible solution H. Then for each of the properties in Theorem 4.2, we assume
it is false and derive a contradiction by finding a fault set F ⊆ E with |F | < k where there is a
path from s to t in G\F , but not in H \F . The exact construction of such an F depends on which
of the properties of Theorem 4.2 we are analyzing.

To prove the ‘if” direction, we assume that H satisfies the conditions of Theorem 4.2 and
consider a fault set F ⊆ E with |F | < k where s and t are connected in G \ F . We want to show
that s and t are connected in H \ F . We analyze a special “fault subchain” of the hierarchical
chain decomposition that has specific properties, including that it contains all the edges in F . We
prove that at least one vertex, v, at the end of that subchain is reachable from s in H \ F (we
also show that t is reachable from v in H \ F to complete the proof). Specifically, we consider two
cases. In Case 1, all fault edges in F are in the same (k − 1)-level component in the hierarchical
chain decomposition; this component is the fault subchain in this case. In Case 2 there is some
level, h, such that F is not entirely contained in a single h-level component, but at level h− 1, F
is completely contained in a single (h − 1)-level component, C. In this case, the fault subchain is
the set of all h-level components in C.

11

For Case 1, we show that because all components in the hierarchy satisfy Property 2 of Theo-
rem 4.2, there must be an st path in H \ F . The structure of F relative to the hierarchy is more
complex in Case 2. As a result we must prove several key characteristics of the components in the
fault subchain. With these characteristics, along with Properties 1, 3 of Theorem 4.2, we show
via a highly technical inductive proof that at least one vertex at the end of the fault subchain is
reachable from s in H \ F , and thus t is also reachable from s in H \ F .

4.3 Algorithm and Analysis

4.3.1 Algorithm

We can now use Theorem 4.2 (Structure Theorem) to give a 2O(k2)-approximation algorithm for SD-
k-RSND. Given a graph G = (V,E) with edge weights w : E → R≥0 and a single demand {(s, t, k)},
we first create the hierarchical k-chain decomposition of G in polynomial time, as described in
Section 4.1. Within each component we run a set of algorithms to satisfy the RSND demands stated
in Theorem 4.2. Our solution, H, includes the outputs of each of these algorithms along with S, the
set of all edges in the separators of the hierarchical k-chain decomposition. We now describe the set
of algorithms run on each component in the hierarchical k-chain decomposition. Fix a component
Rh

i of the decomposition and let X ⊆ V h
(i,ℓ), Y ⊆ V h

(i,r), and d = max(0, k+|SX |+|SY |−|Si−1|−|Si|):

• Base Case (Shortest st Path). For each X,Y pair such that d = 1, contract the vertices
in X and contract the vertices in Y to create super nodes x and y, respectively. We first
check in polynomial time if x and y are connected in Gh

i = G[Rh
i]. If they are connected, then

we create an instance of the Weighted st Shortest-Path problem on Gh
i (in polynomial time),

using x and y as our source and destination nodes. For each edge e ∈ E(Rh
i), set the weight

of e to w(e). Run a polynomial-time Weighted st Shortest-Path algorithm on this instance
(e.g. Dijkstra’s algorithm), and add to H all edges in the output of the algorithm.

• Recursive Step. For each X,Y pair such that 1 < d < k, we create an instance of SD-
d-RSND on Gh

i . Contract the vertices in X and contract the vertices in Y to create super
nodes x and y, respectively. For each edge e ∈ E(Rh

i), set the cost of e to w(e). The set of
RSND demands is just {(x, y, d)}. Run the recursive polynomial-time SD-d-RSND algorithm
on this instance, where d < k. Add to H all edges in the output of the algorithm.

• Final Recursive Step. We now create an SD-(k − 1)-RSND instance on Gh
i . Contract the

vertices in V h
(i,ℓ) and contract the vertices in V h

(i,r) to create super nodes vℓ and vr, respectively.

For each edge e ∈ E(Rh
i), set the cost of e to w(e). The set of RSND demands is just

{(vℓ, vr, k − 1)}. Run the recursive SD-(k − 1)-RSND algorithm on this instance. Add to H
all edges in the output of the algorithm.

• Min-Cost Flow. Finally, we create an instance of the Min-Cost Flow problem on Gh
i .

Contract the vertices in V h
(i,ℓ) and contract the vertices in V h

(i,r) to create super nodes vℓ and

vr, respectively. Let vℓ be the source node and vr be the sink node. For each edge e ∈ E(Rh
i),

set the capacity of e to 1 and set the cost of e to w(e). Require a minimum flow of h + 1,
and run a polynomial-time Min-Cost Flow algorithm on this instance. Since all capacities
are integer the algorithm will return an integral flow, so we add to H all edges with non-zero
flow.

12

4.3.2 Analysis

The following lemma is essentially directly from Theorem 4.2 (Structure Theorem) and the descrip-
tion of the algorithm. The proof of this lemma can be found in Appendix C.

Lemma 4.3. Let H be the output of the algorithm given in Section 4.3.1. Subgraph H is a feasible
solution to the SD-k-RSND problem.

In the next lemma, we give an approximation ratio for the SD-k-RSND algorithm. Let H∗

denote the optimal solution, and for any set of edges A ⊆ E, let w(A) =
∑

e∈Aw(e). The next
lemma follows from combining the approximation ratios of each of the subroutines used in the
algorithm and solving the recurrence.

Lemma 4.4. w(H) ≤ 2O(k2) ∗ w(H∗).

Proof. Fix level h of the hierarchical k-chain decomposition of G. Let Hh
i = H[Rh

i], G
h
i = G[Rh

i],
and let Hh∗

i = H∗[Rh
i] be the subgraph of the optimal solution induced by Rh

i . Let d = max(0, k+
|SX |+|SY |−|Sh

i−1|−|Sh
i |). We also let W h

i,X,Y denote the subgraph of Hh
i returned by the Weighted

st Shortest-Path algorithm run on Gh
i for contracted vertex subsets X ⊆ V h

(i,ℓ) and Y ⊆ V h
(i,r) such

that d = 1. Additionally, let Dh
i,X,Y denote the subgraph of Hh

i returned by the SD-d-RSND

algorithm run on Gh
i for contracted X ⊆ V h

(i,ℓ) and contracted Y ⊆ V h
(i,r) such that 1 < d < k − 1.

Let Dh
i,ℓ,r denote the subgraph of Hh

i returned by the SD-(k − 1)-RSND algorithm run on Gh
i for

contracted V h
(i,ℓ) and contracted V h

(i,r) with demand k − 1. We also let Mh
i denote the subgraph of

Hh
i returned by the Min-Cost Flow algorithm run on Gh

i for contracted V h
(i,ℓ) and contracted V h

(i,r).

Similarly, let W h∗
i,X,Y be the optimal solution to the Weighted st Shortest-Path instance on Gh

i

for contracted X ⊆ V h
(i,ℓ) and contracted Y ⊆ V h

(i,r) such that d = 1; let Dh∗
i,X,Y be the optimal

solution to the SD-d-RSND instance on Gh
i for contracted X ⊆ V h

(i,ℓ) and contracted Y ⊆ V h
(i,r)

such that 1 < d < k; let Dh∗
i,ℓ,r be the optimal solution to the SD-(k − 1)-RSND instance on Gh

i for

contracted V h
(i,ℓ) and contracted V h

(i,r) with demand k − 1; let Mh∗
i be the optimal solution to the

Min-Cost Flow instance on Gh
i .

For each X,Y pair such that d = 1, subgraph W h
i,X,Y is given by an exact algorithm. Subgraph

Mh
i is also given by an exact algorithm. Let T (j) be the approximation ratio of our Single Demand

RSND algorithm with demand (s, t, j). For each X,Y pair such that 1 < d < k, subgraph Dh
i,X,Y

is given by our Single Demand RSND algorithm, a T (d)-approximation algorithm. Subgraph Dh
i,ℓ,r

is also given by our algorithm, which in this case is a T (k − 1)-approximation. Hence we have the
following for each component Hh

i in the hierarchical k-chain decomposition:

w(W h
i,X,Y) = w(W h∗

i,X,Y) ∀X,Y s.t. d = 1 (1)

w(Dh
i,X,Y) ≤ T (d) · w(Dh∗

i,X,Y) ∀X,Y s.t. 1 < d < k (2)

w(Dh
i,ℓ,r) ≤ T (k − 1) · w(Dh∗

i,ℓ,r) (3)

w(Mh
i) = w(Mh∗

i). (4)

Summing over all subsets of V h
(i,ℓ) and V h

(i,r), we get the following from expressions (1) and (2):∑
(X,Y):d=1

w(W h
i,X,Y) =

∑
(X,Y):d=1

w(W h∗
i,X,Y)∑

(X,Y):1<d<k

w(Dh
i,X,Y) ≤

∑
(X,Y):1<d<k

T (d) · w(Dh∗
i,X,Y).

13

For each level h of the hierarchical k-chain decomposition, we denote the set of h-components as
Rh

0 , R
h
1 , . . . R

h
ph
. By summing over all components in the hierarchical k-chain decomposition, we get

the following:

k−1∑
h=2

ph∑
i=0

∑
(X,Y):d=1

w(W h
i,X,Y) =

k−1∑
h=2

ph∑
i=0

∑
(X,Y):d=1

w(W h∗
i,X,Y) (5)

k−1∑
h=2

ph∑
i=0

∑
(X,Y):1<d<k

w(Dh
i,X,Y) ≤

k−1∑
h=2

ph∑
i=0

∑
(X,Y):1<d<k

T (d) · w(Dh∗
i,X,Y) (6)

k−1∑
h=2

ph∑
i=0

w(Dh
i,ℓ,r) ≤ T (k − 1) ·

k−1∑
h=2

ph∑
i=0

w(Dh∗
i,ℓ,r) (7)

k−1∑
h=2

ph∑
i=0

w(Mh
i) =

k−1∑
h=2

ph∑
i=0

w(Mh∗
i). (8)

We also have that

w(Hh
i) ≤

∑
(X,Y):d=1

w(W h
i,X,Y) +

∑
(X,Y):1<d<k

w(Dh
i,X,Y) + w(Dh

i,ℓ,r) + w(Mh
i). (9)

Summing inequality (9) over all components in the hierarchical k-chain decomposition, then sub-
stituting in expressions (5) through (8) gives the following:

k−1∑
h=2

ph∑
i=0

w(Hh
i) ≤

k−1∑
h=2

ph∑
i=0

∑
(X,Y):d=1

w(W h
i,X,Y) +

k−1∑
h=2

ph∑
i=0

∑
(X,Y):1<d<k

w(Dh
i,X,Y)

+
k−1∑
h=2

ph∑
i=0

w(Dh
i,ℓ,r) +

k−1∑
h=2

ph∑
i=0

w(Mh
i) (10)

≤
k−1∑
h=2

ph∑
i=0

∑
(X,Y):d=1

w(W h∗
i,X,Y) +

k−1∑
h=2

ph∑
i=0

∑
(X,Y):1<d<k

T (d) · w(Dh∗
i,X,Y)

+ T (k − 1) ·
k−1∑
h=2

ph∑
i=0

w(Dh∗
i,ℓ,r) +

k−1∑
h=2

ph∑
i=0

w(Mh∗
i). (11)

The optimal subgraph H∗ is a feasible solution, so by Theorem 4.2, each RSND demand in the
theorem statement must be satisfied in subgraph Hh∗

i , for all h, i. For all RSND demands in the
theorem statement to be satisfied in a subgraph Hh∗

i , the set of edges E(Hh∗
i) must be a feasible

solution to each of the Weighted st Shortest Path, SD-k-RSND, and Min-Cost Flow instances we
created on Gh

i . Therefore, the cost of Hh∗
i must be at least the cost of the optimal solution to each

of the instances. We have that

w(W h∗
i,X,Y) ≤ w(Hh∗

i) ∀X,Y s.t. d = 1

w(Dh∗
i,X,Y) ≤ w(Hh∗

i) ∀X,Y s.t. 1 < d < k

w(Dh∗
i,ℓ,r) ≤ w(Hh∗

i)

w(Mh∗
i) ≤ w(Hh∗

i).

14

Let C(j) be the number X,Y pairs such that X ⊆ V(i,ℓ), Y ⊆ V(i,r), (X,Y) ̸= (V(i,ℓ), V(i,r)), and
j = max(0, k + |SX | + |SY | − |Si−1| − |Si|). Summing over subsets of V(i,ℓ) and V(i,r) and over all
components in the hierarchical k-chain decomposition, we have the following:

k−1∑
h=2

ph∑
i=0

∑
(X,Y):d=1

w(W h∗
i,X,Y) ≤

k−1∑
h=2

ph∑
i=0

C(1) · w(Hh∗
i) (12)

k−1∑
h=2

ph∑
i=0

∑
(X,Y):1<d<k

T (d) · w(Dh∗
i,X,Y) ≤

k−1∑
h=2

ph∑
i=0

∑
(X,Y):1<d<k

T (d) · w(Hh∗
i)

≤
k−1∑
h=2

ph∑
i=0

k−1∑
j=2

C(j) · T (j) · w(Hh∗
i) (13)

k−1∑
h=2

ph∑
i=0

w(Dh∗
i,ℓ,r) ≤

k−1∑
h=2

ph∑
i=0

w(Hh∗
i) (14)

k−1∑
h=2

ph∑
i=0

w(Mh∗
i) ≤

k−1∑
h=2

ph∑
i=0

w(Hh∗
i). (15)

Plugging inequalities (12) through (15) into inequality (11) gives the following:

k−1∑
h=2

ph∑
i=0

w(Hh
i) ≤ C(1)

k−1∑
h=2

ph∑
i=0

w(Hh∗
i) +

k−1∑
j=2

C(j)T (j) ·
k−1∑
h=2

ph∑
i=0

w(Hh∗
i) + T (k − 1)

k−1∑
h=2

ph∑
i=0

w(Hh∗
i)

+
k−1∑
h=2

ph∑
i=0

w(Hh∗
i)

=

C(1) +
k−1∑
j=2

C(j)T (j) + T (k − 1) + 1

 k−1∑
h=2

ph∑
i=0

w(Hh∗
i)

Now we account for the important separators, or edges between components, in the hierarchical
k-chain decomposition. Let S be the separators of the decomposition and let S∗ be the set of edges
in these separators included in the optimal solution. Edge set S is included in H. By Theorem 4.2,
any feasible solution must include all edges between components in the decomposition. We therefore
have that S = S∗ and get the following:

w(H) =

k−1∑
h=2

ph∑
i=0

w(Hh
i) + w(S)

≤

C(1) +

k−1∑
j=2

C(j)T (j) + T (k − 1) + 1

 k−1∑
h=2

ph∑
i=0

w(Hh∗
i) + w(S∗)

=

C(1) +

k−1∑
j=2

C(j)T (j) + T (k − 1) + 1

w(H∗).

Therefore, a bound on the approximation ratio of the SD-k-RSND algorithm for demand k is given

15

by the following recurrence relation:

T (k) ≤ C(1) +
k−1∑
j=2

C(j)T (j) + T (k − 1) + 1

=
k−1∑
j=1

C(j)T (j) + T (k − 1) + 1

≤
k−1∑
j=1

C(j)T (k − 1) + T (k − 1) + 1

with base case T (1) = 1 (recall that the SD-k-RSND problem with k = 1 is solved exactly using a
Weighted st Shortest Paths algorithm).

First, note that because there are at most 22(k−1) pairs of vertex sets X,Y such that X ⊆ V h
(i,ℓ)

and Y ⊆ V h
(i,r), we have that

∑k−1
j=1 C(j) ≤ 22(k−1). This gives the following:

T (k) ≤ T (k − 1)

k−1∑
j=1

C(j) + T (k − 1) + 1

≤ T (k − 1) · 22(k−1) + T (k − 1) + 1

= (22(k−1) + 1)T (k − 1) + 1.

By solving the recurrence relation, we get the following

T (k) = O

(
k−1∏
x=1

22(k−x)

)
= O

(
2
∑k

j=1 2j
)

= O
(
2k(k+1)

)
= 2O(k2).

Therefore, we have that w(H) ≤ 2O(k2) · w(H∗).

Theorem 1.2 is directly implied by Lemmas 4.3 and 4.4 together with the observation that the
algorithm runs in polynomial time.

16

References

[1] David Adjiashvili, Felix Hommelsheim, and Moritz Mühlenthaler. Flexible graph connectivity:
Approximating network design problems between 1- and 2-connectivity, 2020. arXiv:1910.

13297.

[2] David Adjiashvili, Felix Hommelsheim, Moritz Mühlenthaler, and Oliver Schaudt. Fault-
tolerant edge-disjoint paths – beyond uniform faults, 2020. arXiv:2009.05382.

[3] Ishan Bansal, Joseph Cheriyan, Logan Grout, and Sharat Ibrahimpur. Improved approxima-
tion algorithms by generalizing the primal-dual method beyond uncrossable functions, 2022.
arXiv:2209.11209.

[4] Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Multiple-edge-fault-tolerant
approximate shortest-path trees, 2016. URL: https://arxiv.org/abs/1601.04169, doi:

10.48550/ARXIV.1601.04169.

[5] Greg Bodwin, Michael Dinitz, and Yasamin Nazari. Vertex fault-tolerant emulators. In Mark
Braverman, editor, 13th Innovations in Theoretical Computer Science Conference, ITCS 2022,
volume 215 of LIPIcs, pages 25:1–25:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.ITCS.2022.25.

[6] Greg Bodwin, Michael Dinitz, and Yasamin Nazari. Epic Fail: Emulators can tolerate poly-
nomially many edge faults for free. In 14th Innovations in Theoretical Computer Science
Conference, ITCS 2023, 2023.

[7] Greg Bodwin, Michael Dinitz, Merav Parter, and Virginia Vassilevska Williams. Optimal
vertex fault tolerant spanners (for fixed stretch). In Artur Czumaj, editor, Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New
Orleans, LA, USA, January 7-10, 2018, pages 1884–1900. SIAM, 2018.

[8] Greg Bodwin, Michael Dinitz, and Caleb Robelle. Optimal vertex fault-tolerant spanners
in polynomial time. In Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, 2021.

[9] Greg Bodwin, Michael Dinitz, and Caleb Robelle. Optimal vertex fault-tolerant spanners in
polynomial time. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022
ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, pages 2924–2938. SIAM, 2022.
doi:10.1137/1.9781611976465.174.

[10] Greg Bodwin and Shyamal Patel. A trivial yet optimal solution to vertex fault tolerant span-
ners. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing,
PODC ’19, page 541–543, New York, NY, USA, 2019. Association for Computing Machinery.
doi:10.1145/3293611.3331588.

[11] Sylvia Boyd, Joseph Cheriyan, Arash Haddadan, and Sharat Ibrahimpur. Approximation
algorithms for flexible graph connectivity, 2022. arXiv:2202.13298.

[12] Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. Fault tolerant spanners for
general graphs. SIAM J. Comput., 39(7):3403–3423, 2010.

[13] Chandra Chekuri and Rhea Jain. Approximating flexible graph connectivity via räcke tree
based rounding, 2022. arXiv:2211.08324.

17

http://arxiv.org/abs/1910.13297
http://arxiv.org/abs/1910.13297
http://arxiv.org/abs/2009.05382
http://arxiv.org/abs/2209.11209
https://arxiv.org/abs/1601.04169
https://doi.org/10.48550/ARXIV.1601.04169
https://doi.org/10.48550/ARXIV.1601.04169
https://doi.org/10.4230/LIPIcs.ITCS.2022.25
https://doi.org/10.1137/1.9781611976465.174
https://doi.org/10.1145/3293611.3331588
http://arxiv.org/abs/2202.13298
http://arxiv.org/abs/2211.08324

[14] Chandra Chekuri and Rhea Jain. Augmentation based approximation algorithms for flexible
network design, 2022. arXiv:2209.12273.

[15] J. Cheriyan, B. Laekhanukit, G. Naves, and A. Vetta. Approximating rooted steiner networks.
ACM Trans. Algorithms, 11(2):8:1–8:22, 2014.

[16] Joseph Cheriyan and Ramakrishna Thurimella. Approximating minimum-size k-connected
spanning subgraphs via matching. SIAM Journal on Computing, 30(2):528–560, 2000. doi:

10.1137/S009753979833920X.

[17] M. Dinitz, A. Koranteng, and G. Kortsarz. Relative survivable network design. In APPROX-
RANDOM, volume 245, pages 41:1–41:19, 2022.

[18] Michael Dinitz and Robert Krauthgamer. Fault-tolerant spanners: better and simpler. In
Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing,
PODC 2011, San Jose, CA, USA, June 6-8, 2011, pages 169–178, 2011.

[19] Michael Dinitz and Caleb Robelle. Efficient and simple algorithms for fault-tolerant spanners.
In Yuval Emek and Christian Cachin, editors, PODC ’20: ACM Symposium on Principles of
Distributed Computing, pages 493–500. ACM, 2020. doi:10.1145/3382734.3405735.

[20] Ye Dinitz and Jeffery Westbrook. Maintaining the classes of 4-edge-connectivity in a graph
on-line. Algorithmica, 20:242–276, 1998.

[21] Yefim Dinitz and Zeev Nutov. A 2-level cactus model for the system of minimum and mini-
mum+ 1 edge-cuts in a graph and its incremental maintenance. In Proceedings of the twenty-
seventh annual ACM symposium on Theory of computing, pages 509–518, 1995.

[22] A. E. Feldmann, A. Mukherjee, and E. J. van Leeuwen. The parameterized complexity of the
survivable network design problem. In SOSA, pages 37–56, 2022.

[23] Harold N. Gabow and Suzanne R. Gallagher. Iterated rounding algorithms for the smallest
k-edge connected spanning subgraph. SIAM Journal on Computing, 41(1):61–103, 2012. doi:
10.1137/080732572.

[24] Harold N. Gabow, Michel X. Goemans, Éva Tardos, and David P. Williamson. Approximating
the smallest k -edge connected spanning subgraph by lp-rounding. Networks, 53(4):345–357,
2009.

[25] Monika Rauch Henzinger. A static 2-approximation algorithm for vertex connectivity and
incremental approximation algorithms for edge and vertex connectivity. Journal of Algorithms,
24(1):194–220, 1997.

[26] Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network problem.
Combinatorica, 21(1):39–60, 2001. doi:10.1007/s004930170004.

[27] Rohit Khandekar, Guy Kortsarz, and Zeev Nutov. Approximating fault-tolerant group-steiner
problems. Theoretical Computer Science, 416:55–64, 2012.

[28] On-Hei Solomon Lo, Jens M. Schmidt, and Mikkel Thorup. Compact cactus representations
of all non-trivial min-cuts. Discret. Appl. Math., 303:296–304, 2021.

[29] Dániel Marx. Important separators and parameterized algorithms. In International Workshop
on Graph-Theoretic Concepts in Computer Science, pages 5–10. Springer, 2011.

18

http://arxiv.org/abs/2209.12273
https://doi.org/10.1137/S009753979833920X
https://doi.org/10.1137/S009753979833920X
https://doi.org/10.1145/3382734.3405735
https://doi.org/10.1137/080732572
https://doi.org/10.1137/080732572
https://doi.org/10.1007/s004930170004

[30] Johannes A. La Poutre. Maintenance of 2- and 3-edge-connected components of graphs ii.
SIAM J. Comput., 29(5):1521–1549, 2000.

[31] David P. Williamson, Michel X. Goemans, Milena Mihail, and Vijay V. Vazirani. A primal-dual
approximation algorithm for generalized steiner network problems. Combinatorica, 15(3):435–
454, 1995. doi:10.1007/BF01299747.

A Proofs from Section 3 (3-RSND)

First we must show that any RSND demand can be expressed as a set of cut-covering constraints.

Lemma A.1. An RSND demand r(s, t) = k is satisfied by a subgraph H if and only if for any
G-minimal st-set A, dH(A) ≥ min{k, dG(A)}

Proof. First we prove the “only if” direction. Suppose that demand r(s, t) = k is satisfied by
subgraph H, but suppose for the sake of contradiction that there is some G-minimal st-set, A, such
that dH(A) < min{k, dG(A)}. Then, F = δH(A) is a fault set of size at most k− 1 such that there
is an st-path in G \F (since G[A] and G[V \A] are connected and |δG(A) \F | ≥ 1), but no st-path
in H \ F . This contradicts the feasibility of H.

Now we show the “if” direction. Suppose that for anyG-minimal st-setA, dH(A) ≥ min{k, dG(A)}.
Suppose however for the sake of contradiction that H does not satisfy requirement r(s, t) = k. Then
there is an H-minimal st-cut X ⊆ E with |X| < k such that s, t are not connected in H \X but
are connected in G \X. Edge set X is H-minimal, so we have that X = δH(A) for some vertex set
A. Note that δG(A) is a G-minimal st-set with dG(A) > dH(A). By our assumption, we have that
dH(A) ≥ min{k, dG(A)}. This is a contradiction, since we have dH(A) < k and dH(A) < dG(A).

Proof of Lemma 3.3. First suppose that H is a feasible SD-3-RSND solution. We will show that
both (i) and (ii) are satisfied. Suppose to the contrary that (i) does not hold for some non-central
component J . Let H ′ = H[J]. Let u and v be the attachment nodes of J , and assume without
loss of generality that in G, any (simple) st-path has u before v, as in Fig, 1(a). Then, there
exists a J-minimal uv-cut, δH′(AJ), such that dH′(AJ) ≤ 1 (recall that H ′ does not include any
of the attachment edges of its associated 3-class). Let A be the union of AJ and all components
that lie on some (simple) us-path of the cycle chain that do not contain v. It can be seen that
dH(A) = dH′(AJ) + 1 ≤ 2. Since u and v are 3-connected in G (they are in the same 3-class) and
A is a uv-set, dG(A) ≥ 3. It is also not hard to see that G[A] and G[V \ A] are both connected,
and thus δG(A) is a G-minimal st-cut. This all means that F = δH(A) is a fault set of size at most
2 such that there is an st path in G \ F , but no st path in H \ F . This contradicts the feasibility
of H.

Now suppose that (ii) does not hold for some central component J . Then, there must be a J-
minimal st-cut, δH′(AJ), such that dH′(AJ) < min{3, dJ(AJ)} (by Lemma A.1). Let A be the union
of AJ and all components of cycles that precede J in the cactus chain. Note that dH(A) = dH′(AJ)
and dG(A) = dJ(AJ). This gives dH(A) < min{3, dG(A)}, contradicting the feasibility of H.

Now suppose that H satisfies (i,ii). We will show that H is a feasible SD-3-RSND solution.
Let F ⊆ E such that G \ F has an st-path and H \ F has no st-path. One can see that since F
cannot contain two edges of the same cactus chain cycle, we have that F must have size at least 3;
thus, if there is an st path in G \ F for |F | ≤ 2, then there is an st path in H \ F as well.

Lemma A.2. Subgraph H is a feasible solution for instance I if and only if for any st-set A such
that dH(A) = 2, δH(A) = δJ(s) or δH(A) = δJ(t).

19

https://doi.org/10.1007/BF01299747

(a) (c)

(d) (e)

(b)

s

x z

s

x z

t

wy

y w

t

zx

st

wy y w

t

zx

s

s

x z

t

wy

Figure 3: Illustration to the proof of Lemmas 3.4, 3.5. Nodes in A are yellow and in V \ A are
green.

Proof. Let H be a feasible solution for I and let A be an st-set with dH(A) = 2. We will show
that either δH(A) = δJ(s) or δH(A) = δJ(t). Let F = δH(A). Then, H \ F has no st-path. Since
H is a feasible solution for I, J \ F must also have no st-path. Component J is 2-connected, so
δH(A) = δJ(A). By property (B) of Theorem 3.2, we then have that δJ(A) = δJ(s) or δJ(A) = δJ(t).

Now suppose that for any st-set A with dH(A) = 2, we have that δH(A) = δJ(s) or δH(A) =
δJ(t). We will show that H is a feasible solution for I. For any st-set A such that δH(A) ̸= δJ(s)
and δH(A) ̸= δJ(t), we have that dH(A) ≥ 3. Since H includes the forced edges sx, sy, zt, and wt,
we also know that δH(s) = δJ(s) and δH(t) = δJ(t). Thus, we have that dH(A) ≥ min{3, dJ(A)}
for all A such that A is an st-set. By Lemma A.1, H is a feasible solution for I.

Proof of Lemma 3.4. Suppose that H is a feasible solution for I, but suppose to the contrary that
R is not a 3-connected subset in H. Then there is a vertex set A such that dH(A) = 2 and
R∩A,R \A ̸= ∅. By Lemma A.2, A cannot be an st-set. Hence, without loss of generality, assume
that s, t ∈ A. Now we consider several cases, see Fig. 3(a,b,c,d).

(a) |R ∩ A| = 1, say R ∩ A = {x}; see Fig. 3(a). Then {sy, tz, tw} ⊆ δH(A), contradicting that
dH(A) = 2.

(b) |R ∩A| = 3, say R \A = {w}; see Fig. 3(b). Vertex set A \ {t} is an st-set with dH(A \ {t}) =
dH(A) = 2, contradicting (by Lemma A.2) that H is a feasible solution.

(c) |R ∩ A| = 2 and |R ∩ {x, y}| = |R ∩ {z, w}| = 1, say R ∩ A = {x, z}; see Fig. 3(c). Then
dH(A \ {t}) = dH(A) = 2, contradicting (by Lemma A.2) that J is a feasible solution.

(d) R ∩A = {x, y} or R ∩A = {z, w}, say R ∩A = {x, y}; see Fig. 3(d). Then A \ {t} is an st-set
with dH(A \ {t}) = dH(A)− 2 = 0, contradicting that H is a feasible solution.

In all cases we have a contradiction, thus the lemma holds.

Proof of Lemma 3.5. Suppose that R is a 3-connected subset in H, but suppose to the contrary
that H is not a feasible solution. Then by Lemma A.2 there is an st-set A with dH(A) = 2 such
that δH(A) ̸= δJ(s) and δH(A) ̸= δJ(t). Since R is a 3-edge-connected subset in H, we must have
R ∩ A = ∅ or R ⊂ A. Without loss of generality, assume that R ∩ A = ∅ (see Fig. 3(e)); otherwise
we interchange the roles of s and t. But then, sx, sy ∈ δH(A), so we get the contradiction that
δH(A) = {sx, sy} = δJ(s).

20

Proof of Theorem 1.1. We reduce the 3-RSND instance to an instance of SND. LetD = {d1, d2, . . . , dℓ}
be the set of all ℓ vertex demands in the input 3-RSND instance (where each di ∈ D corresponds
to a demand of the form (x, y, r), where x, y are vertices in G and r ≤ 3). We will create a new set
of ordinary demands, D′, that characterizes the problem.

First note that G is 2-connected, so all 1- and 2-demands in the input are ordinary demands.
We add them to D′. We also add all ordinary 3-demands from the input to D′. By Theorem 3.1,
each relative 3-demand di ∈ D is characterized by a set of ordinary 3-demands, Di. Thus, for
each relative 3-demand di ∈ D, we add all demands in Di to D′. Demand set D′ characterizes the
3-RSND instance, meaning that any optimal solution to the 3-RSND instance must also satisfy
D′. All demands in D′ are ordinary so we can run Jain’s 2-approximation SND algorithm ([26])
on G under demands D′. By Theorem 3.1, we only add a polynomial number of demands to D′,
so the reduction (and the algorithm) runs in polynomial time. This gives us a 2-approximation for
3-RSND.

B Proof of Theorem 4.2 (Structure Theorem)

B.1 Connectivity Lemmas for Input Graph G

To prove Theorem 4.2, we will first need lemmas that describe the connectivity in G between s and
any h-component, and between any h-component and t. We will say that the level h chain is the
ordered sequence of all h-components, labelled Rh

0 , . . . , R
h
p (where s ∈ Rh

0 and t ∈ Rh
p). Note that

although all components in the level h chain are h-components, each h-component may have a left
or right separator with size less than h. Let E(Rh

i) denote the set of edges with both endpoints in
component Rh

i . We define the subchain of a level h chain that starts at Gh
i and ends at Gh

j (where

i ≤ j) to be the subgraph of G induced by ∪j
k=iR

h
k . An edge e is in a subchain that starts at Gh

i

and ends at Gh
j if e ∈ ∪j

k=iE(Rh
k) or e ∈ ∪j−1

k=iS
h
k . We define a subchain that starts at Hh

i and ends

at Hh
j similarly. We may also use vertex sets V h

(j,r) to define the start and end of a subchain.

Lemma B.1. Fix level h of the hierarchical k-chain decomposition, and consider the subchain that
starts at s and ends at an h-component. Let Rh

i be this h-component. Then, in G, there is a path
from s to each vertex in V h

(i,r); these paths only use edges within the level h subchain that begins at

Gh
0 and ends at Gh

i .

Proof. Graph G is 2-edge connected, so the lemma statement is true when Rh
i contains t (that is,

when V h
(i,r) = {t}). Thus we will assume t /∈ Rh

i . First we will show that for each h-component

Rh
j such that t /∈ Rh

j , there is a path in G from V h
(j,ℓ) to each vertex in V h

(j,r). Fix such an h-

component Rh
j , and suppose that component Rh−1

m is the parent of Rh
j in the hierarchical k-chain

decomposition. Suppose for the sake of contradiction that there is no path in G from V h
(j,ℓ) to a

vertex v ∈ V h
(j,r). Let Sv be the set of edges in Sh

j that are incident on v. Then, Sh
j \ Sv is a

(V h
(j,ℓ), V

h−1
(m,r))-separator with size strictly less than |Sh

j |. This means that Sh
j is not minimal and

therefore not an important separator, giving a contradiction.
We have shown that in each h-component Rh

j such that t /∈ Rh
j , there is a path in G from V h

(j,ℓ)

to each vertex in V h
(j,r). Therefore, for every component Rh

i , there is a path in G from s to each

vertex in V h
(i,r), using only edges within the subchain. This can be seen via a proof by induction on

the number of components into the level h subchain that begins at Rh
0 and ends at Rh

i .

We now give a similar lemma describing the connectivity between any h-component and t.

21

Lemma B.2. Fix level h of the hierarchical k-chain decomposition, and consider the subchain that
starts at an h-component and ends at t. Let Rh

i be this h-component. Then, in G, there is a path
from each vertex in V h

(i,ℓ) to t; these paths only use edges within the level h subchain that begins at

Gh
i and ends at Gh

p .

Proof. Graph G is 2-edge connected, so the lemma statement is true when Rh
i contains s (that is,

when V h
(i,ℓ) = {s}). Thus we will assume s /∈ Rh

i . First we will show that for each h-component

Rh
j such that s /∈ Rh

j , there is a path in G from each vertex in V h
(j,ℓ) to V h

(j,r). Fix such an h-

component Rh
j , and suppose that component Rh−1

m is the parent of Rh
j in the hierarchical k-chain

decomposition. Suppose for the sake of contradiction that there is no path in G from a vertex
v ∈ V h

(j,ℓ) to V h
(j,r). Let Sv be the set of edges in Sh

j−1 that are incident on v. Then, Sh
j−1 \ Sv is a

(V h
(j−1,ℓ), V

h−1
(m,r))-separator with size strictly less than |Sh

j−1|. This means that Sh
j−1 is not minimal

and therefore not an important separator, giving a contradiction.
We have shown that in each h-component Rh

j such that s /∈ Rh
j , there is a path in G from each

vertex in V h
(j,ℓ) to V h

(j,r). Therefore, for every component Rh
i , there is a path in G from V h

(i,ℓ) to t,
using only edges within the subchain. This can be seen via a proof by induction on the number of
components into the level h chain that beings at Rh

i and ends at Rh
p .

B.2 Only If

We are now ready to prove that the properties stated in Theorem 4.2 are necessary in any feasible
solution. Let Property 1 denote the first demand set given in Theorem 4.2—that is, the set{
(X,Y, d) : X ⊆ V h

(i,ℓ), Y ⊆ V h
(i,r), (X,Y) ̸= (V h

(i,ℓ), V
h
(i,r)), d = max(0, k + |SX | + |SY | − |Sh

i−1| −
|Sh

i |)
}
. Let Property 2 denote the demand (V h

(i,ℓ), V
h
(i,r), h+ 1) and Property 3 denote the demand

(V h
(i,ℓ), V

h
(i,r), k − 1) in the union.

Important Separators. Suppose that subgraph H is a feasible solution, but suppose for the
sake of contradiction that at level h in the hierarchical k-chain decomposition, there is an important
separator Sh

i such that an edge e ∈ Sh
i is not in H. Then, the edge set E′ = Sh

i \ {e}, which has
size at most k − 2, separates s and t in H but not in G. By Lemmas B.1 and B.2, in G \E′, there
is a path from s to each vertex in V h

(i,r) and a path from each vertex in V h
(i+1,ℓ) to t. The edge e is

incident on a vertex in V h
(i,r) and a vertex in V h

(i+1,ℓ). Therefore, putting everything together, there

is a path from s to t in G \E′. In H however, there is no path from V h
(i,r) to V h

(i+1,ℓ), and therefore

there is no path from s to t in H \E′. This contradicts the assumption that H is a feasible solution.

Property 1. Now suppose H is feasible, but suppose for the sake of contradiction that at least
one of the RSND demands in Property 1 is not satisfied in subgraph Hh

i . Specifically, fix subgraph
Hh

i , let X and Y be vertex sets such that X ⊆ V h
(i,ℓ), Y ⊆ V h

(i,r), and (X,Y) ̸= (V h
(i,ℓ), V

h
(i,r)), and

let d = max(0, k + |SX | + |SY | − |Sh
i−1| − |Sh

i |). Suppose that the RSND demand (X,Y, d) is not
satisfied in Hh

i . That is, there exists a fault set Fi with |Fi| < d such that there is a path from
X to Y in Gh

i \ Fi but there is no path from X to Y in Hh
i \ Fi. Since we are assuming that the

RSND demand (X,Y, d) is not satisfied in Hh
i , we can assume that d > 0 (since a demand of 0 is

always satisfied). Therefore we assume d = k + |SX |+ |SY | − |Sh
i−1| − |Sh

i | > 0.
We now show that there exists a fault set F with |F | < k such that s and t are connected in

G \ F but not in H \ F . Let F = (Sh
i−1 \ SX) ∪ (Sh

i \ SY) ∪ Fi. By Lemma B.1, and by the fact
that all edges in SX are still in G \ F , there is a path in G \ F from s to each vertex in X, using

22

only edges before Gh
i in the level h chain. There is a path from X to Y in Gh

i \Fi (and in Gh
i \F).

By Lemma B.2, and by the fact that all edges in SY are still in G \ F , we also have that there is a
path in G\F from each vertex in Y to t that only uses edges after Gh

i in the level h chain. Putting
it all together, there is a path from s to t in G \ F . Note that because X and Y are not connected
in H \ F , there is no st path in H \ F . Now we give an upper bound on the size of F :

|F | ≤ (|Sh
i−1| − |SX |) + (|Sh

i | − |SY |) + (d− 1)

= |Sh
i−1| − |SX |+ |Sh

i | − |SY |+ k + |SX |+ |SY | − |Sh
i−1| − |Sh

i | − 1

= k − 1.

We have shown that |F | ≤ k − 1. Thus, our construction of F contradicts the assumption that
H is feasible, so all RSND demands in the set

{
(X,Y, d) : X ⊆ V h

(i,ℓ), Y ⊆ V h
(i,r), (X,Y) ̸=

(V h
(i,ℓ), V

h
(i,r)), d = max(0, k + |SX | + |SY | − |Sh

i−1| − |Sh
i |)
}

on Gh
i are satisfied in Hh

i in all fea-
sible solutions.

Property 2. Now, suppose H is feasible, but suppose for the sake of contradiction that the
RSND demand in Property 2, (V h

(i,ℓ), V
h
(i,r), h+ 1), is not satisfied in a fixed subgraph Hh

i . That is,

there exists a fault set Fi with |Fi| < h + 1 ≤ k such that there is a path from V h
(i,ℓ) to V h

(i,r) in

Gh
i \ Fi but there is no path from V h

(i,ℓ) to V h
(i,r) in Hh

i \ Fi. By Lemma B.1, there is a path from s

to each vertex in V h
(i,ℓ) in G \ Fi, using only edges before Gh

i in the level h chain. There is a path

from at least one vertex in V h
(i,ℓ) to a vertex in V h

(i,r) in Gh
i \ Fi. By Lemma B.2, there is a path

from each vertex in V h
(i,r) to t in G \ Fi, using only edges after Gh

i in the level h chain. Putting it

all together, there is a path from s to t in G \ F . However, there is no path from V h
(i,ℓ) to V h

(i,r) in

Hh
i \Fi, so there is no st path in H \Fi. This contradicts the assumption that H is feasible, so the

RSND demand (V h
(i,ℓ), V

h
(i,r), h+ 1) on Gh

i must be satisfied in Hh
i in all feasible solutions.

Property 3. Finally, suppose H is feasible, but suppose for the sake of contradiction that the
RSND demand in Property 3, (V h

(i,ℓ), V
h
(i,r), k − 1), is not satisfied in a fixed subgraph Hh

i . Then

there exists a fault set Fi with |Fi| < k − 1 such that there is a path from V h
(i,ℓ) to V h

(i,r) in Gh
i \ Fi

but there is no path from V h
(i,ℓ) to V h

(i,r) in Hh
i \ Fi. By Lemmas B.1 and B.2, there is a path from

s to t in G \ Fi. However, there is no path from V h
(i,ℓ) to V h

(i,r) in Hh
i \ Fi, so there is no st path in

H \Fi. This contradicts the assumption that H is feasible, so the RSND demand (V h
(i,ℓ), V

h
(i,r), k−1)

on Gh
i must be satisfied in Hh

i in all feasible solutions.

B.3 If

We now prove that the properties stated in Theorem 4.2 are sufficient. In this section, we will let
H be a subgraph of G such that all edges in S are in H and all RSND demands in the statement of
Theorem 4.2 are satisfied forall subgraphs Hh

i . For all possible fault sets F ⊆ E such that |F | < k,
we will show that if s and t are connected in G \ F , they must also be connected in H \ F . Going
forward, fix F ⊆ E to be a fault set such that |F | < k.

B.3.1 Connectivity Lemmas for Subgraph H

We first give the equivalent of Lemmas B.1 and B.2 for connectivity in H. The following lemmas
describe the connectivity in H between s and any h-component, and between any h-component

23

and t.

Lemma B.3. Let H be a subgraph of G, and suppose that all properties in the statement of
Theorem 4.2 are satisfied by each subgraph Hh

i . Fix level h of the hierarchical k-chain decomposition,
and fix a subgraph Hh

i in the level h chain. Then, in H, there is a path from s to each vertex in
V h
(i,r); these paths only use edges within the level h subchain that begins at Hh

0 and ends at Hh
i .

Proof. First we show that for any subgraph Hh
j , there is a nonzero RSND demand from the vertex

set V h
(j,ℓ) to each vertex v ∈ V h

(j,r) that is satisfied in Hh
j . That is, for all v ∈ V h

(j,r), the RSND

demand
(
V h
(j,ℓ), v, d

)
with d > 0 on Gh

j is satisfied in Hh
j . This would mean that there is a path in

Hh
j from V h

(j,ℓ) to v since there is a path in Gh
j from V h

(j,ℓ) to v (from Lemma B.1).

We have two cases: If {v} = V h
(j,r), then the RSND demand

(
V h
(j,ℓ), v, h+ 1) on Gh

j is a nonzero

demand satisfied in Hh
j . Now suppose that {v} ̸= V h

(j,r). To show that a nonzero RSND demand

from X = V h
(j,ℓ) to Y = {v} is satisfied in Hh

j , we plug |SX | = |Sh
j−1| and |SY | ≥ 1 into the formula

d = max(0, k + |SX |+ |SY | − |Sh
j−1| − |Sh

j |). We plug in |SY | ≥ 1 because v is adjacent to at least

one edge in Sh
j :

d = max(0, k + |SX |+ |SY | − |Sh
j−1| − |Sh

j |)
≥ k + |SX |+ |SY | − |Sh

j−1| − |Sh
j |

≥ k + |Sh
j−1|+ 1− |Sh

j−1| − |Sh
j |

= k + 1− |Sh
j |

> 0. (|Sh
j | ≤ k − 1)

We have shown that there is a positive RSND demand from V h
(j,ℓ) to each vertex in V h

(j,r). By Lemma

B.1, we have that in subgraph Gh
j , there is a path from V h

(j,ℓ) to each vertex in V h
(j,r). Therefore,

in Hh
j , there must be a path from V h

(j,ℓ) to each vertex in V h
(j,r). This also implies that in H, each

vertex in V h
(i,r) is reachable from s, using only edges within the subchain from Hh

0 to Hh
i . This can

be seen via a proof by induction on the number of components into the level h subchain that starts
at Hh

0 and ends at Hh
i .

We now give a similar lemma describing the connectivity between any h-component and t.

Lemma B.4. Let H be a subgraph of G, and suppose that all properties in the statement of
Theorem 4.2 are satisfied by each subgraph Hh

i . Fix level h of the hierarchical k-chain decomposition,
and fix a subgraph Hh

i in the level h chain. Then, in H, there is a path from each vertex in V h
(i,ℓ)

to t; these paths only use edges within the level h subchain that begins at Hh
i and ends at Hh

p .

Proof. First we show that for all v ∈ V h
(j,ℓ), the RSND demand

(
v, V h

(j,r)d
)
with d > 0 on Gh

j is

satisfied in Hh
j . This would mean that there is a path in Hh

j from v to V h
(j,r) since there is a path

in Gh
j from v to V h

(j,r) (from Lemma B.2).

We have two cases: If {v} = V h
(j,ℓ), then the RSND demand

(
v, V h

(j,r), h+ 1) on Gh
j is a nonzero

RSND demand satisfied in Hh
j . To show that a nonzero RSND demand from X = {v} to Y = V h

(j,r)

on Gh
j is satisfied in Hh

j , we plug |SX | ≥ 1 and |SY | = |Sh
j | into the formula d = max(0, k+ |SX |+

24

|SY | − |Sh
j−1| − |Sh

j |):

d = max(0, k + |SX |+ |SY | − |Sh
j−1| − |Sh

j |)
≥ k + |SX |+ |SY | − |Sh

j−1| − |Sh
j |

≥ k + 1 + |Sh
j | − |Sh

j−1| − |Sh
j |

= k + 1− |Sh
j−1|

> 0. (|Sh
j−1| ≤ k − 1)

We have shown that there is a positive RSND demand from each vertex in V h
(j,ℓ) to V h

(j,r). By

Lemma B.2, we have that in subgraph Gh
j , there is a path from each vertex in V h

(j,ℓ) to V h
(j,r).

Therefore, in Hh
j , there must be a path from each vertex in V h

(j,ℓ) to V h
(j,r). This also implies that

in H, there is a path from each vertex in V h
(i,ℓ) to t, using only edges within the subchain from Hh

i

to Hh
p . This can be seen via a proof by induction on the number of components into the level h

subchain that starts at Hh
i and ends at Hh

p .

B.3.2 Analyzing Fault Sets via the Hierarchical Chain Decomposition

We say that an edge e is inside a subgraph Gh
i in the hierarchical k-chain decomposition if e ∈

E(Rh
i). That is, an edge is in a subgraph Gh

i if the edge has both endpoints in Rh
i . Edges in the

left or right separator of Gh
i are not considered to be inside Gh

i . We now consider two cases for the
locations of the edge faults in the hierarchical k-chain decomposition. In Case 1, all fault edges in
F are inside the same (k − 1)-component in the decomposition. In Case 2, there is some level h
such that the edges in F are not all inside the same h-component, but at level h− 1, the edges in
F are inside a single (h− 1)-component.

Case 1. We first consider Case 1, which is much simpler, and prove that there is an st path in
H \ F under this case. Suppose we are in Case 1, and let Rk−1

i be the (k − 1)-component that
contains all of F .

Lemma B.5. Suppose that Case 1 applies in the hierarchical k-chain decomposition; that is, each
edge in F is inside the same (k − 1)-component Rk−1

i . Suppose also that there is an st path in
G \ F . Then, there is an st path in H \ F .

Proof. In Gk−1
i , there are at least k edge-disjoint paths from V k−1

(i,ℓ) to V k−1
(i,r) (otherwise, Gk−1

i would

have a (V k−1
(i,ℓ) , V

k−1
(i,r))-separator with size at most k−1, contradicting the structure of the hierarchical

decomposition). In addition, the subgraph Hk−1
i satisfies the RSND demand (V k−1

(i,ℓ) , V
k−1
(i,r) , h + 1)

on Gk−1
i , where h + 1 = k. Therefore, in Hk−1

i , there are also at least k edge-disjoint paths from
V k−1
(i,ℓ) to V k−1

(i,r) . Since F has size at most k − 1, there must be a path in Hk−1
i \ F from V k−1

(i,ℓ) to

V k−1
(i,r) . By Lemma B.3, there is a path from s to each vertex in V k−1

(i,ℓ) , and by Lemma B.4 there is

a path from each vertex in V k−1
(i,r) to t. Combining all aforementioned paths gives a path from s to

t in H \ F .

Case 2. We now consider Case 2, which is more complex. In Case 2 there is some level h such
that the edges in F are not all inside the same h-component, but at level h− 1, the edges in F are
inside a single h−1-component. Let Rh−1

j be this (h−1)-component. Going forward, we will focus
on what we will call the fault subchain of G.

25

Definition 5. The fault subchain of G is the (V h−1
(j,ℓ) , V

h−1
(j,r)) h-chain of Rh−1

j . Let R0, . . . , Rp be the
h-components of the fault subchain, and let S0, . . . , Sp−1 be the important separators adjacent to
components in the fault subchain. Note that the left and right separators of Rh−1

j are not included
in the fault subchain.

We will show that there is a path from V(0,ℓ) to V(p,r) in the fault subchain after all faults are
removed. With Lemmas B.3 and B.4, this will be enough to prove that there is an st path in H \F
given an st path in G \ F .

We first give some useful notation and definitions. We denote the prefix subchains of the fault
subchain as follows. Let Li be all vertices in ∪i

k=0Rk. Let L
G
i be the subgraph of G induced by Li,

and let LH
i be the subgraph of H induced by Li. Let fi be the number of edge faults in LG

i .
Let i ≤ m. In general, we will say that an edge e ∈ Sm in the fault subchain is “reachable”

from a vertex set X ⊆ V(i,ℓ) in LG
m \F (in LH

m \F) if there is a path in LG
m \F (in LH

m \F) from X

to the vertex in V(m,r) that is incident on e, and the path only uses edges in the subchain from Gh
i

to Gh
m. Note that e can be considered reachable even if e ∈ F . We will also use SG

i (SH
i) to denote

the set of edges in Si that are reachable from V(0,ℓ) in LG
i \ F (in LH

i \ F). That is, an edge e is in

SG
i (in SH

i) if in LG
i \ F (in LH

i \ F), there is a path from V(0,ℓ) to the vertex in V(i,r) incident on

e. In the next lemma, we prove a lower bound for the size of SG
i .

Lemma B.6 (Lower bound on |SG
i |). Suppose there is an st path in G \ F . Let LG

i be a prefix
subchain of the fault subchain such that i ̸= p, and let fi be the number of edge faults in LG

i . The
edge set SG

i has size at least h− fi.

Proof. Let Fi ⊆ F be the set of fault edges in the subchain LG
i , where i ̸= p. Suppose for the sake

of contradiction that |SG
i | < h− fi. Observe that the edge set Fi ∪SG

i separates V(0,ℓ) = V h−1
(j,ℓ) and

V(p,r) = V h−1
(j,r) . However, Fi∪SG

i has size at most fi+(h−fi−1) = h−1. This means that Fi∪SG
i

is a (V h−1
(j,ℓ) , V

h−1
(j,r))-separator with size at most h − 1. This is a contradiction, since Rh−1

j , which is

an (h− 1)-component, cannot have a (V h−1
(j,ℓ) , V

h−1
(j,r))-separator with size h− 1 or less. We therefore

have that SG
i has size at least h− fi.

For any subgraph Gh
i in the fault subchain such that 0 < i < p, we give a lower bound on the

number of edge disjoint paths between any two vertex sets X ⊆ V(i,ℓ) and Y ⊆ V(i,r).

Lemma B.7 (Edge-disjoint paths lower bound). Let Ri be an h-component in the fault subchain
such that i ̸= 0 and i ̸= p. Let X ⊆ V(i,ℓ) and Y ⊆ V(i,r), and let SX and SY be the edges in Si−1

and in Si that are incident on vertices in X and in Y , respectively. Let d = max(0, k + |SX | +
|SY | − |Si−1| − |Si|). In subgraph Gh

i , there are at least d− k + h edge disjoint paths from X to Y .

Proof. Suppose for the sake of contradiction that there are at most d−k+h−1 edge disjoint paths
from X to Y in subgraph Gh

i , where i ̸= 0 and i ̸= p. Then there exists an edge set E′ with size at
most d − k + h − 1 such that X and Y are disconnected in Gh

i \ E′. Let EX = Si−1 \ SX and let
EY = Si \ SY . Observe that E′ ∪ EX ∪ EY separates V(0,ℓ) = V h−1

(j,ℓ) and V(p,r) = V h−1
(j,r) . We give an

upper bound on the number of edges in E′ ∪ EX ∪ EY :

|E′ ∪ EX ∪ EY | = |E′|+ |EX |+ |EY |
≤ (d− k + h− 1) + (|Si−1| − |SX |) + (|Si| − |SY |)
= k + |SX |+ |SY | − |Si−1| − |Si| − k + h− 1 + |Si−1| − |SX |+ |Si| − |SY |
= h− 1.

26

We have shown that E′ ∪ EX ∪ EY is a (V h−1
(j,ℓ) , V

h−1
(j,r))-separator with size at most h − 1. This

is a contradiction, since Rh−1
j cannot have a (V h−1

(j,ℓ) , V
h−1
(j,r))-separator with size h − 1 or less. We

therefore have that there are at least d− k + h edge disjoint paths from X to Y .

The following lemma is the crux of the argument for the sufficient condition. The lemma
gives guarantees on the size of SH

i when i ̸= p. Later, we will use this lemma to argue that at
least one vertex in V(p,r) is reachable from V(0,ℓ) in the fault subchain, after the removal of faults.
Going forward, we will let ri = k − 1 − fi be the maximum number of edge faults that are in
(∪p−1

k=iSk) ∪ (∪p
k=i+1E(Rk)) (that is, the maximum number of edge faults that are not in LG

i).

Lemma B.8 (Properties of SH
i when i ̸= p). Suppose there is an st path in G \ F . Let LG

i be a
prefix subchain such that i ̸= p, and let ri = k − 1− fi. Then, at least one of the following is true:

1. SH
i = SG

i

2. |SH
i | ≥ ri + 1.

Proof. We give a proof by induction on i, where Ri is a component of the fault subchain.

Base Case. Consider R0 of the fault subchain. We will show that either SH
0 = SG

0 or
|SH

0 | ≥ r0 + 1. Let FR = F ∩ E(R0) be the set of fault edges with both endpoints in R0, and let
fR = |FR|. We will use S−1 to denote the left separator of V(0,ℓ).

Using the RSND demands given in the Theorem 4.2 statement, we will show that for certain
vertex subsets Y ⊆ V(0,r), there exists an RSND demand (V(0,ℓ), Y, d) on Gh

0 such that d > fR.

Using the RSND demands from V(0,ℓ) to these subsets Y ⊆ V(0,r), we will show that SH
0 = SG

0 or

|SH
0 | = r0 +1. Recall that for a vertex set Y ⊆ V(0,r), SY is the set of edges in S0 that are incident

on vertices in Y . We will first show that for all subsets Y ⊆ V(0,r) such that |SY | ≥ h − r0, there
exists an RSND demand, (V(0,ℓ), Y, d), such that d > fR. If Y = V(0,r), then the RSND demand

(X,Y, k − 1) is satisfied in Hh
0 , regardless of the value of |SY |. Since fR ≤ k − 2 (recall that the

edge faults are not all inside the same h-component in the fault subchain), we have that the RSND
demand (X,Y, fR + 1) is satisfied in Hh

0 . Now we consider Y such that Y ̸= V(0,r). In this case,
let Y ⊆ V(0,r) such that |SY | ≥ h − r0, and let X = V(0,ℓ). Since the fault subchain is made up of
at least two h-components, |S0| = h. Plugging in |SX | = |S−1|, |SY | ≥ h − r0, and |S0| = h into
d = max(0, k + |SX |+ |SY | − |S−1| − |S0|), we have the following:

d = max(0, k + |SX |+ |SY | − |S−1| − |S0|)
≥ k + |SX |+ |SY | − |S−1| − |S0|
≥ k + (h− r0)− (h) (|SX | = |S−1|, |SY | ≥ h− r0, |S0| = h)

= k − r0

= k − k + 1 + f0 (r0 = k − 1− f0)

= f0 + 1

≥ fR + 1. (f0 ≥ fR)

We have that if |SY | ≥ h− r0, the RSND demand (V(0,ℓ), Y, fR + 1) on Gh
0 is satisfied by Hh

0 . Now

we consider two cases and show that in the first case (1), |SH
0 | ≥ r0 +1 and in the second case (2),

SH
0 = SG

0 .

27

• (1) Suppose first that |SG
0 | > r0. This means that S0 \ SG

0 , the set of edges in S0 not
reachable from V(0,ℓ) in Gh

0 \FR, has size at most |S0|−r0−1 = h−r0−1. Let Y ⊆ V(0,r) such

that |SY | ≥ h− r0. Then, SY must contain at least one edge in SG
0 , so at least one vertex in

Y is incident on an edge in SG
0 . Thus, there is a path from V(0,ℓ) to Y in Gh

0 \ FR. We have

shown that for all Y ⊆ V(0,r) such that |SY | ≥ h − r0, there is a path in Gh
0 \ F from V(0,ℓ)

to Y . We also have that the RSND demands {(V(0,ℓ), Y, fR + 1) : Y ⊆ V(0,r), |SY | ≥ h − r0}
on Gh

0 are satisfied in Hh
0 . Therefore, in Hh

0 \ FR, there is also a path from V(0,ℓ) to a set
Y ⊆ V(0,r) if |SY | ≥ h− r0.

Suppose for the sake of contradiction that |SH
0 | < r0 + 1. This means that S0 \ SH

0 has size
at least h − r0. The set S0 \ SH

0 is not reachable from V(0,ℓ) in Hh
0 \ FR. However, since

|S0 \ SH
0 | ≥ h− r0, there must be a path in Hh

0 \ FR from X to U , where U is set of vertices
incident on at least one edge in S0 \ SH

0 . This is a contradiction, so we have that SH
0 must

have size at least r0 + 1.

• (2) Now suppose that |SG
0 | ≤ r0. This means that S0 \ SG

0 has size at least h− r0. Let e
be an edge in SG

0 . Additionally, let EU ⊆ S0 \ SG
0 such that EU has size at least h− r0 − 1.

Let Se = {e} ∪ EU . Let Ye be the set of vertices in V(0,r) that are incident on at least one
edge in Se, and let ve be the vertex in Ye incident on e. Let SYe be the set of edges in S0

that are incident on a vertex in Ye (note that Se ⊆ SYe). Since Se has size at least h − r0
and |SYe | ≥ |Se|, the RSND demand (V(0,ℓ), Ye, fR + 1) on Gh

0 is satisfied in Hh
0 . Edge e is

the only edge in Se that is reachable from V(0,ℓ) in Gh
0 \ FR, which means that ve is the only

vertex in Ye that is reachable from V(0,ℓ) in Gh
0 \FR. The RSND demand (V(0,ℓ), Ye, fR +1) is

satisfied in Hh
0 . The only way for this demand to be satisfied is if there is a path from V(0,ℓ)

to ve (and thus to e) in Hh
0 \FR. Applying this argument to all e ∈ SG

0 , in Hh
0 there must be

a path from V(0,ℓ) to each edge in SG
0 , so SH

0 = SG
0 .

We have shown that if |SG
0 | ≥ r0 + 1 then |SH

0 | ≥ r0 + 1, and that if |SG
0 | ≤ r0 then SH

0 = SG
0 .

Inductive Step. We will now show that when i ̸= p, if the lemma is true for Ri−1, then it
also holds for Ri. Let FS = F ∩ Si−1 be the set of fault edges in the left separator of Ri. Let
FR = F ∩ E(Ri), fS = |FS | and fR = |FR|. We also let X be the set of vertices in V(i,ℓ) that are

incident on at least one edge in SH
i−1 \FS . A vertex v ∈ V(i,ℓ) is in X if there is a path from V(0,ℓ) to

v in G \ F that only uses edges in LG
i−1 ∪ Si−1. We also let SX be the set of edges in Si−1 incident

on a vertex in X. Note that Si−1 \ FS ⊆ SX . Recall that fi−1 is the number of faults in LG
i−1, and

that ri−1 = k − 1 − fi−1. We have two cases by the inductive hypothesis: (1) SH
i−1 = SG

i−1 or (2)
|SH

i−1| ≥ ri−1 + 1.

• (1) Suppose first that SH
i−1 = SG

i−1. As in the base case, we first show that for all Y ⊆ V(i,r)

such that |SY | ≥ h−ri, there exists an RSND demand (X,Y, d), with d > fR, that is satisfied
in Hh

i . Again, if (X,Y) = (V(i,ℓ), V(i,r)), then the RSND demand (X,Y, fR + 1) is satisfied in

Hh
i . Now we consider X and Y such that (X,Y) ̸= (V(i,ℓ), V(i,r)). In this case, let Y ⊆ V(i,r)

such that |SY | ≥ h − ri. Since i − 1 ̸= p, by Lemma B.6 we have that |SG
i−1| ≥ h − fi−1.

Therefore, |SX | ≥ |SH
i−1 \FS | = |SG

i−1 \FS | ≥ |SG
i−1|−fS ≥ h−fi−1−fS . Also note that since

0 < i < p, we have that |Si−1| = |Si| = h. Plugging in |SX | ≥ h − fi−1 − fS , |SY | ≥ h − ri,

28

and |Si−1| = |Si| = h into d = max(0, k + |SX |+ |SY | − |Si−1| − |Si|), we get the following:

d = max(0, k + |SX |+ |SY | − |Si−1| − |Si|)
≥ k + |SX |+ |SY | − |Si−1| − |Si|
≥ k + (h− fi−1 − fS) + (h− ri)− |Si−1| − |Si| (|SX | ≥ h− fi−1 − fS , |SY | ≥ h− ri)

= k + h− fi−1 − fS + h− ri − (h)− (h) (|Si−1| = |Si| = h)

= k − fi−1 − fS − ri

= k − fi−1 − fS − k + 1 + fi−1 + fS + fR (ri = k − 1− fi−1 − fS − fR)

= fR + 1.

We have shown that if Y ⊆ V(i,r) and |SY | ≥ h− ri, the RSND demand (X,Y, fR + 1) on Gh
i

is satisfied by Hh
i . The rest of the argument is identical to that of the Base Case.

• (2) Now suppose that |SH
i−1| ≥ ri−1 + 1. We will first show that for all Y ⊆ V(i,r) such

that |SY | ≥ h − ri, there are at least fR + 1 edge-disjoint paths in Gh
i from X to Y . Then,

as in the previous case, we will show that for all Y ⊆ V(i,r) such that |SY | ≥ h − ri, the

RSND demand (X,Y, fR + 1) on Gh
i is satisfied in Hh

i . Since 0 < i < p, by Lemma B.7
there are at least d − k + h edge-disjoint paths from X ⊆ V(i,ℓ) to Y ⊆ V(i,r) in Gh

i , where

d = max(0, k + |SX |+ |SY | − |Si−1| − |Si|). Additionally, |SX | ≥ |SH
i−1| − fS ≥ ri−1 + 1− fS .

Plugging in |SX | ≥ ri−1 + 1 − fS , |SY | ≥ h − ri, and |Si−1| = |Si| = h into d = max(0, k +
|SX |+ |SY | − |Si−1| − |Si|), we get the following:

d− k + h = max(0, k + |SX |+ |SY | − |Si−1| − |Si|)− k + h

≥ k + |SX |+ |SY | − |Si−1| − |Si| − k + h

≥ (ri−1 + 1− fS) + (h− ri)− |Si−1| − |Si|+ h
(|SX | ≥ ri−1 + 1− fS , |SY | ≥ h− ri)

= ri−1 + 1− fS + h− ri − (h)− (h) + h (|Si−1| = |Si| = h)

= ri−1 + 1− fS − ri

= (ri + fR + fS) + 1− fS − ri (ri−1 = ri + fR + fS)

= fR + 1.

We have shown that if Y ⊆ V(i,r) and |SY | ≥ h− ri, then d−k+h ≥ fR+1. This means that

in Gh
i there are at least fR+1 edge disjoint paths from X to Y if Y ⊆ V(i,r) and |SY | ≥ h−ri.

Therefore, in Gh
i \ FR, there is a path from X to all Y ⊆ V(i,r) such that |SY | ≥ h − ri. As

before, if (X,Y) = (V(i,ℓ), V(i,r)), then the RSND demand (X,Y, fR + 1) is satisfied in Hh
i .

We now show that this demand is also satisfied when (X,Y) ̸= (V(i,ℓ), V(i,r)):

d− k + h ≥ fR + 1 =⇒ d ≥ fR + 1 + k − h

≥ fR + 1. (k − h > 0)

Thus, if Y ⊆ V(i,r) with |SY | ≥ h−ri, then the RSND demand (X,Y, fR+1) on Gh
i is satisfied

by Hh
i . This, combined with the fact that in Gh

i \FR there is a path from X to all Y ⊆ V(i,r)

such that |SY | ≥ h− ri, implies that there is a path in Hh
i \FR from X to all Y ⊆ V(i,r) such

that |SY | ≥ h − ri. Now, suppose for the sake of contradiction that |SH
i | ≤ ri. This means

that Si \ SH
i has size at least h − ri. The set Si \ SH

i is not reachable from X in Hh
i \ FR.

However, since |Si \ SH
i | ≥ h − ri, there must be a path in Hh

i \ F from X to U , where U

29

is the set of vertices incident on at least one edge in Si \ SH
i . This is a contradiction. We

therefore have that |SH
i | ≥ ri + 1.

We have shown that for all i such that i ̸= p, either SH
i = SG

i or |SH
i | ≥ ri + 1.

Now we use Lemma B.8 to show that there is a path in the fault subchain from V(0,r) to at least
one vertex in V(p,r). The proof uses arguments similar to those in Lemma B.8.

Lemma B.9. Suppose there is an st path in G \F . There is a path from V(0,r) to V(p,r) in LH
p \F .

Proof. Note that since F is not contained in a single h-component, the fault subchain has at least
two components, so component Rp−1 must exist. Let FS = F ∩ Sp−1, FR = F ∩E(Rp), fS = |FS |,
and fR = |FR|. Let X be the set of vertices in V(p,ℓ) that are incident on at least one edge in

SH
p−1 \ FS . In addition, let SX be the set of edges in Sp−1 incident on a vertex in X, and let Sp

denote the right separator of Rp. By Lemma B.8, one of the following holds: (1) |SH
p−1| = |SG

p−1|
or (2) |SH

p−1| ≥ rp−1 + 1.

• (1) Suppose first that |SH
p−1| = |SG

p−1|. There is an st path in G \ F ; therefore, there is a

path in Gh
p \ FR from X to V(p,r). We now show that the RSND demand (X,V(p,r), fR + 1)

on Gh
p is satisfied in Hh

p . If X = V(p,ℓ), the RSND demand (X,V(p,r), fR + 1) is satisfied.

Now suppose X ̸= V(p,ℓ). By Lemma B.6, we have that |SG
p−1| ≥ h − fp−1. We therefore

have that |SX | ≥ |SH
p−1 \ FS | = |SG

p−1 \ FS | ≥ h − fp−1 − fS . Let Y = V(p,r). We plug in
|SX | ≥ h−fp−1−fS , |SY | = |Sp|, and |Sp−1| = h into d = max(0, k+|SX |+|SY |−|Sp−1|−|Sp|):

d = max(0, k + |SX |+ |SY | − |Sp−1| − |Sp|)
≥ k + |SX |+ |SY | − |Sp−1| − |Sp|
≥ k + (h− fp−1 − fS)− (h) (|SX | ≥ h− fp−1 − fS , |SY | = |Sp|, |Sp−1| = h)

= k − fp−1 − fS

≥ k − k + 1 + fS + fR − fS (fp−1 ≤ k − 1− fS − fR)

= fR + 1.

We have shown that the RSND demand (X,V(p,r), fR + 1) on Gh
p is satisfied in Hh

p . Since

there is a path in Gh
p \ FR from X to V(p,r), this means there must also be a path in Hh

p \ FR

from X to V(p,r). This, with Lemma B.8, implies a path from V(0,ℓ) to V(p,r).

• (2) Now suppose that |SH
p−1| ≥ rp−1 + 1. This means that |SX | ≥ rp−1 + 1− fS . We will

first show that in Gh
p , there are at least fR + 1 edge-disjoint paths from X to V(p,r). Suppose

for the sake of contradiction that there are at most fR edge-disjoint paths X to V(p,r). Then

there exists a set E′ size at most fR such that X and V(p,r) and not connected in Gh
p \ E′.

Let EX = Sp−1 \ SX . Observe that E′ ∪ EX separates V(0,ℓ) = V h−1
(j,ℓ) and V(p,r) = V h−1

(j,r) . We

give an upper bound on the number of edges in E′ ∪ EX :

|E′ ∪ EX | = |E′|+ |EX |
≤ fR + (|Sp−1| − |SX |)
≤ fR + h− rp−1 − 1 + fS (|Sp−1| = h, |SX | ≥ rp−1 + 1− fS)

≤ fR + h− fR − fS − 1 + fS (rp−1 ≥ fR + fS)

= h− 1.

30

We have shown that E′ ∪ EX is a (V h−1
(j,ℓ) , V

h−1
(j,r))-separator with size at most h − 1. This is

a contradiction, since Rh−1
j cannot have a (V h−1

(j,ℓ) , V
h−1
(j,r))-separator with size h − 1 or less.

We therefore have that there are at least fR + 1 edge disjoint paths from X to V(p,r) in Gh
p .

This means that in Gh
p \ FR, there is a path from X to V(p,r). We now show that the RSND

demand (X,V(p,r), fR + 1) is satisfied in Hh
p . As before, if X = V(p,ℓ), then the demand is

satisfied. Suppose X ̸= V(p,ℓ). Plugging in |SX | ≥ rp−1 + 1− fS , |SY | = |Sp|, and |Sp−1| = h
into d = max(0, k + |SX |+ |SY | − |Sp−1| − |Sp|), we get the following:

d = max(0, k + |SX |+ |SY | − |Sp−1| − |Sp|)
≥ k + |SX |+ |SY | − |Sp−1| − |Sp|
≥ k + (rp−1 + 1− fS)− h (|SX | ≥ rp−1 + 1− fS , |SY | = |Sp|, |Sp−1| = h)

≥ k + (fR + fS) + 1− fS − h (rp−1 ≥ fR + fS)

= fR + 1 + k − h

≥ fR + 1. (k − h > 0)

We have shown that the RSND demand (X,V(p,r), fR + 1) on Gh
p is satisfied by Hh

p . Since

there is a path in Gh
p \ FR from X to V(p,r), this means that there must also be a path in

Hh
p \FR from X to V(p,r). This, with Lemma B.8, implies there is a path from V(0,ℓ) to V(p,r).

Corollary B.10. Suppose that Case 2 applies in the hierarchical k-chain decomposition; that is,
there is some level h such that the edges in F are not all inside the same h-component, but at level
h− 1, the edges in F are inside a single (h− 1)-component. Suppose there is an st path in G \ F .
Then, there is an st path in H \ F .

Proof. Suppose neither s nor t is in the fault subchain. By Lemma B.3, there is a path in H \ F
from s to each vertex in V(0,ℓ), using only edges in the level h subchain starting at s and ending at

V(0,ℓ). Since there must be a path from V(0,ℓ) to V(p,r) in LG
p \F , by Lemma B.9, there is also a path

from V(0,ℓ) to V(p,r) in LH
p \ F . Finally, by Lemma B.4, there is a path in H \ F from each vertex

in V(p,r) to t, using only edges in the level h subchain starting at V(p,r) and ending at t. Combining
all aforementioned paths gives a path in H \ F from s to t. If s or t is in the fault subchain, then
a similar argument shows that there is an st path in H \ F .

With both Lemma B.5 (Case 1) and Corollary B.10 (Case 2), we have shown that if H satisfies
the set of demands specified in Theorem 4.2, then H is a feasible solution to SD-k-RSND.

C Proof of Lemma 4.3

Proof of Lemma 4.3. Fix level h of the hierarchical k-chain decomposition. For each i, let Hh
i

denote the subgraph of H induced by Rh
i , and let Gh

i denote the subgraph of G induced by Rh
i .

We will show that H satisfies the conditions stated in Theorem 4.2, and hence is feasible. By
construction, H contains S, or all edges in the important separators. First we show that the set
of RSND demands

{
(X,Y, d) : X ⊆ V h

(i,ℓ), Y ⊆ V h
(i,r), (X,Y) ̸= (V h

(i,ℓ), V
h
(i,r)), d = max(0, k + |SX |+

|SY | − |Sh
i−1| − |Sh

i |)
}
on Gh

i are satisfied in Hh
i .

Let X ⊆ V h
(i,ℓ), Y ⊆ V h

(i,r), and d = max(0, k + |SX | + |SY | − |Si−1| − |Si|), as in Theorem 4.2.

First we show that for all X,Y pairs such that d = 1, the RSND demand (X,Y, d) on Gh
i is satisfied

31

in Hh
i . If there is a path from X to Y in Gh

i , we include in Hh
i a path from X to Y . Therefore,

the demand (X,Y, 1) is satisfied.
Now we show that for all X,Y pairs such that 1 < d < k, the RSND demand (X,Y, d) on

Gh
i is satisfied in Hh

i . We include in Hh
i all edges selected via the SD-d-RSND algorithm on

contracted X and contracted Y with demand d. Therefore, the demand (X,Y, d) is satisfied. We
have shown that if d < k, then the RSND demand (X,Y, d) is satisfied. Since the demand for all
X,Y pairs such that (X,Y) ̸= (V h

(i,ℓ), V
h
(i,r)) is at most k−1, we have shown that the set of demands{

(X,Y, d) : X ⊆ V h
(i,ℓ), Y ⊆ V h

(i,r), (X,Y) ̸= (V h
(i,ℓ), V

h
(i,r)), d = max(0, k+ |SX |+ |SY |−|Sh

i−1|−|Sh
i |)
}

on Gh
i is satisfied in Hh

i .
Now we show that the RSND demand

(
V h
(i,ℓ), V

h
(i,r), k− 1

)
on Gh

i is satisfied in Hh
i . We include

in Hh
i all edges selected via the SD-(k − 1)-RSND algorithm on contracted V h

(i,ℓ) and contracted

V h
(i,r) with demand k − 1. Therefore, the demand (V h

(i,ℓ), V
h
(i,r), k − 1) is satisfied.

Finally we show that the RSND demand
(
V h
(i,ℓ), V

h
(i,r), h+1

)
on Gh

i is satisfied in Hh
i . Due to the

construction of the hierarchical k-chain decomposition, there are at least h+ 1 edge-disjoint paths
from V h

(i,ℓ) to V h
(i,r) in Gh

i . Thus, to show that the RSND demand is satisfied in Hh
i , it suffices to

show that there are h+1 edge-disjoint paths from V h
(i,ℓ) to V h

(i,r) in Hh
i . In Hh

i , we include the edges

selected via a Min-Cost Flow algorithm from contracted V h
(i,ℓ) to contracted V h

(i,r) with flow h+ 1.

Since there are h + 1 edge-disjoint paths from V h
(i,ℓ) to V h

(i,r) in Gh
i , the Min-Cost Flow instance

must have a feasible solution, and the algorithm will return h+1 edge-disjoint paths from V h
(i,ℓ) to

V h
(i,r) (i.e. the set of edges with non-zero flow).

D Simplification of k-EFTS 2-approximation

As discussed, a 2-approximation for k-EFTS was given by [17]. They showed that while the
“cut-requirement” function defined by k-EFTS was not weakly supermodular (so the algorithm
of [26] could not be applied in a black-box way), it did have a property they dubbed “local weak
supermodularity” which was enough to be able to use [26]. However, this was relatively involved,
and required a careful case analysis of the cut requirement function. We show here that more
standard techniques can be used to achieve the same results in a far more simple manner.

D.1 Weakly F-Supermodular Definition and Properties

First we give some preliminary definitions. Two sets A,B cross if A∩B ̸= ∅ and A∪B ̸= V , and
co-cross if A \B,B \A ̸= ∅. Given A,B ∈ F , we say that f satisfies the:

• supermodular inequality if f(A) + f(B) ≥ f(A ∩B) + f(A ∪B).

• co-supermodular inequality if f(A) + f(B) ≥ f(A \B) + f(B \A).

A set function f is symmetric if f(A) = f(V \A) for all A ⊆ V , and f is:

• crossing supermodular if f satisfies the supermodular inequality whenever A,B cross.

• weakly supermodular if f satisfies the supermodular or the co-supermodular inequality
for all A,B ⊆ V .

Note that if f is symmetric crossing supermodular and A,B co-cross, then (by symmetry) f satisfies
the co-supermodular inequality.

32

(f)

A

B(e)

A

B B

A

(d)

A

(a)

A

B (b)

A

B (c) B

Figure 4: Illustration to the proof of Lemma D.1.

Given a set family F with ∅, V /∈ F , we may want to consider the restriction fF of f to sets
in F . We say that f is weakly F-supermodular if fF is weakly supermodular, namely, if for all
A,B ∈ F at least one of the following holds:

• A ∩B,A ∪B ∈ F and f satisfies the supermodular inequality.

• A \B,B \A ∈ F and f satisfies the co-supermodular inequality.

From Jain’s result it follows that the problem of covering a weakly F-supermodular function admits
approximation ratio 2 (assuming we can solve certain LPs in polynomial time).

Lemma D.1. Let G = (V,E) be a graph, let I ⊆ E, let f be a symmetric crossing supermodular
set function on 2V \ {∅, V }. Then f is weakly F-supermodular for F = {A ⊆ V : dI(A) ≥ 1}.

Proof. Let A,B ∈ F . Then there is an edge in δI(A) and an edge in δI(B). Fig. 4 depicts all
possible locations of (at least one of) such edges. In cases (a,b,c) we have A ∩ B,A ∪ B ∈ F and
A,B cross – hence f satisfies the supermodular inequality. In cases (d,e,f) we have A\B,B \A ∈ F
and A,B co-cross – hence f satisfies the co-supermodular inequality.

Remark: One can show that if f is symmetric crossing supermodular and F is uncrossable
(A ∩ B,A ∪ B ∈ F or A \ B,B \ A ∈ F whenever A,B ∈ F) and ∅, V /∈ F , then f is weakly
F-supermodular. The proof essentially shows that F = {A ⊆ V : dI(A) ≥ 1} is uncrossable. Alter-
natively, we may (roughly) say that if f satisfies both the supermodular and the co-supermodular
inequality (whenever appropriate sets are not ∅, V), then f is weakly F-supermodular.

D.2 k-EFTS 2-Approximation

Now we apply the weakly F-supermodular concept to the k -EFTS problem. Note that k -EFTS is
a particular case of the following meta-problem.

Set Function Cover
Input: A graph G = (V,E) with edge costs, set function f defined on a family F ⊆ 2V .
Output: A min-cost subgraph H of G such that dH(A) ≥ f(A).

33

Let F = 2V \ {∅, V }. It is easy to see via Lemma A.1 that for k-EFTS in particular, we
must cover the set function f(A) = min{k, dG(A)} for A ∈ F . If we already picked a set F of
edges into our solution H, then we need to cover the residual function min{dG(A), k} − dF (A).
We pick all the forced edges – edges that belong to cuts of G with at most k edges. During the
iterative rounding algorithm we might pick additional edges. So let F ⊆ E be a set of edges that
includes all forced edges. Cuts δE(A) with δE(A) ⊆ F cannot and need not be covered, hence the
function we need to cover is the restriction of f(A) = k− dF (A) (for A ∈ 2V \ {∅, V }) to the family
F = {A ⊆ V : dE\F (A) ≥ 1}. In the setting of Lemma D.1, we have here I = E \ F . The function
k − dF (A) is symmetric crossing supermodular, since dF (A) is symmetric and submodular. Hence
by Lemma D.1 the function we need to cover is weakly F-supermodular.

Theorem D.2. The k-EFTS problem admits approximation ratio 2 for arbitrary costs and 1+4/k
for unit costs.

Proof. The set function we need to cover is the restriction of the function f(A) = k − dF (A) to
the set family F = {A ⊆ V : dE\F (A) ≥ 1}. By Lemma D.1, we know that f is weakly F-
supermodular. The rest of the proof is as in [17]: one can solve LPs in polynomial time and thus
apply iterative rounding. In the case of arbitrary costs we can use Jain’s technique [26], while in
the case of unit costs Gabow-Gallagher [23].

34

	Introduction
	Our Results and Techniques
	3-RSND
	SD-k-RSND
	Simplification of k-EFTS

	Preliminaries
	2-Approximation for 3-RSND (and SD-3-RSND)
	Overview
	Cactus Representation and Definitions
	Proof of Theorems 3.2, 3.1, and 1.1

	SD-k-RSND
	Hierarchical Chain Decomposition
	Structure Theorem
	Algorithm and Analysis
	Algorithm
	Analysis

	Proofs from Section 3 (3-RSND)
	Proof of Theorem 4.2 (Structure Theorem)
	Connectivity Lemmas for Input Graph G
	Only If
	If
	Connectivity Lemmas for Subgraph H
	Analyzing Fault Sets via the Hierarchical Chain Decomposition

	Proof of Lemma 4.3
	Simplification of k-EFTS 2-approximation
	Weakly F-Supermodular Definition and Properties
	k-EFTS 2-Approximation

