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Abstract. Motivated by applications in production planning and stor-
age allocation in hierarchical databases, we initiate the study of covering
partially ordered items (cpo). Given a value k ∈ N, and a directed graph
G = (V,E) where each vertex has a size in {0, 1, . . . , k}, we seek a collec-
tion of subsets of vertices C1, . . . , Ct that cover all the vertices, such that
for any 1 ≤ j ≤ t, the total size of vertices in Cj is bounded by k, and
there are no edges from V \ Cj to Cj . The objective is to minimize the
number of subsets t. cpo is closely related to the rule caching problem
(rcp) that has been widely studied in the networking area. The input
for rcp is a directed graph G = (V,E), a profit function p : V → Z+

0 ,
and k ∈ N. The output is a subset S ⊆ V of maximum profit such that
|S| ≤ k and there are no edges from V \ S to S.
Our main result is a 2-approximation algorithm for cpo on out-trees,
complemented by an asymptotic 1.5-hardness of approximation result.
We also give a two-way reduction between rcp and the densest k-
subhypergraph problem, surprisingly showing that the problems are
equivalent w.r.t. polynomial-time approximation within any factor ρ ≥ 1.
This implies that rcp cannot be approximated within factor |V |1−ε for
any fixed ε > 0, under standard complexity assumptions. Prior to this
work, rcp was just known to be strongly NP-hard. We further show
that there is no EPTAS for the special case of rcp where the profits
are uniform, assuming Gap-ETH. Since this variant admits a PTAS, we
essentially resolve the complexity status of this problem.

1 Introduction

Partially ordered entities are ubiquitous in the mathematical modeling of
scheduling problems, distributed storage allocation, production planning, and
unified language models. Often, the partial order represents either precedence
constraints or dependencies among entities (or items). Motivated by applications
in production planning [39,2] and distributed storage allocation in hierarchical
databases [45], we introduce the covering partially ordered items (cpo) problem.
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An instance of cpo consists of a directed graph G = (V,E), a value k ∈ N, and
a size function s : V → [0 : k].4 A configuration is a subset of vertices U ⊆ V
such that s(U) ≤ k,5 and U is closed under precedence constraints; that is, for
any u ∈ U and (z, u) ∈ E it holds that z ∈ U . A feasible solution is a set of
configurations C1, . . . , Ct that covers V , namely

⋃
j∈[1:t] Cj = V . The cardinality

of the solution is t, the number of configurations. The goal is to find a feasible
solution of minimum cardinality.

cpo can be applied to optimize the distributed storage of large hierarchical
data in unified medical language systems (UMLS) [45]. UMLS data is often dis-
tributed over several databases of bounded size. Due to the hierarchical nature
of the medical taxonomy, each database needs to be closed under this hierarchy
relation. The problem of minimizing the number of distributed databases of the
UMLS data translates to a cpo problem instance.

Another application of cpo arises in production planning for steel mills that
employ continuous casting [39,2]. The steel-making process has high energy con-
sumption. One way to save energy is by employing continuous casting and direct
charging. In this routine, the molten steel is solidified into slabs and rolled into
finished products of various sizes continuously, with no need to reheat the steel in
the process. Each finished product requires specific casting, rolling, and thermal
treatments in a given order, which can be modeled by a directed acyclic graph
(DAG). A main challenge is to assign the finished products to batches whose
size is dictated by the size of the ladle furnace while minimizing the amount of
repeated operations. This gives rise to an instance of cpo.

A natural greedy approach for solving cpo is to repeatedly find, among all
subsets of vertices that can be feasibly assigned to a single configuration, a subset
that maximizes the size of yet unassigned vertices. This single configuration
problem is a variant of the well known rule caching problem (rcp) that has been
studied extensively [10,43,37,19,24,38,23,15,6,34,25,14,42,33,32,44]. An instance
of rcp consists of a directed graph G = (V,E), a profit function p : V → Z+

0 ,
and a value k ∈ N. We seek a subset of vertices U ⊆ V which is closed under
precedence constraints, such that |U | ≤ k, and p(U) =

∑
u∈U p(u) is maximized.

In Appendix A we describe central applications of rcp in networking and the
blockchain technology.

Prior to this work rcp was just known to be strongly NP-hard [4,31]. Our
initial attempt towards solving cpo was to find a good approximation for rcp.
Surprisingly, we were able to show an equivalence between rcp and the dens-
est k-subhypergraph (dksh) problem w.r.t. approximability. The input for dksh
consists of a hypergraph G = (V,E) and a value k ∈ N. The goal is to find a
subset of vertices S ⊆ V of cardinality k that maximizes the number (or weight)
of induced hyperedges (a more formal definition is given in Appendix C).6

Unfortunately, dksh is known to be hard to approximate within a factor of
|V |1−ε, for ε ∈ (0, 1), assuming the Small Set Expansion Conjecture (by combin-

4 For i, j ∈ Z+
0 , we denote by [i : j] the set of integers {i, i + 1, . . . , j}.

5 For a set A, a function f : A→ X, and B ⊆ A, define f(B) =
∑

b∈B f(b).
6 dksh has also been widely studied (see, e.g., [7,17,8] and the references therein).
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ing the results of [26] and [17]). This implies the same hardness of approximation
for rcp (see Section 1.1). Given this hardness result, we expect cpo to be hard
to approximate on general graphs. Thus, we consider the special case of cpo
where G is an out-tree. We call this problem covering partially ordered items
on out-trees (ct). To the best of our knowledge, ct is studied here for the first
time. We note that when G is an in-tree cpo is trivial since the problem has a
feasible (and unique) solution iff the total size of the vertices is at most k.

1.1 Our results

Our first result is an approximation algorithm for ct. Recall that, for α ≥ 1, A
is an α-approximation algorithm for a minimization (maximization) problem Π
if, for any instance of Π, the output of A is at most α (at least 1/α) times the
optimum.

Theorem 1.1. There is a polynomial time 2-approximation algorithm for ct.

While out-trees have a simple structure, allowing for a greedy-based bottom-
up approach in solving ct, the analysis of our approximation algorithm is non-
trivial and requires extra care to make sure that the approximation bound has
no additive terms (see below).

ct generalizes the classical bin packing (bp) problem. The input for bp is a
set of items and a value k ∈ N. Each item has a size in [0 : k], and the goal is
to assign the items into a minimum number of bins of capacity k.7 An instance
of bp is reduced to an instance of ct on a star graph by generating a leaf for
each item of the bp instance and adding a root vertex of size zero. This trivial
reduction implies that ct is strongly NP-hard [16].

Interestingly, we show that in contrast to bp, ct does not admit an asymp-
totic polynomial-time approximation scheme (APTAS), or even an asymptotic
approximation strictly better than 3

2 . This separates ct from bp which admits
also an additive logarithmic approximation [18].

Theorem 1.2. For any α < 3
2 , there is no asymptotic α-approximation for ct

unless P=NP.

Next, we study the hardness of rcp.

Theorem 1.3. For any ρ ≥ 1, there is a ρ-approximation for rcp if and only
if there is a ρ-approximation for dksh.

Corollary 1.4. Assuming the Small Set Expansion Hypothesis (SSEH) and NP
̸= BPP, for any ε > 0 there is no |V |1−ε-approximation for rcp.

We give a tight lower bound also for the previously studied special case of
uniform rcp (u-rcp) [4,3].8 In u-rcp the vertices have uniform (unit) profits

7 We use the definition of bp as given in [16]. In an alternative definition found in the
literature, bin capacities are normalized to one, and item sizes are in [0, 1].

8 In [4], u-rcp is called uniform directed all-neighbor knapsack problem.
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(i.e., p(v) = 1 ∀v ∈ V ). While u-rcp is known to admit a PTAS [4,3], the
question of whether the problem admits an EPTAS or even an FPTAS remained
open.9 Our next result gives a negative answer to both of these questions, posed
in [4,3].

Theorem 1.5. Assuming Gap-ETH, there is no EPTAS for u-rcp.

Finally, we show that rcp remains essentially just as hard when the in-degrees
and out-degrees are bounded.

Theorem 1.6. A ρ-approximation algorithm for rcp instances with in-degrees
and out-degrees bounded by 2, for any ρ ≥ 1, implies a ρ-approximation for rcp.

Due to space constraints, we include in the paper body only the proof of
Theorem 1.1 and defer the proofs of the other theorems to the Appendix.

Techniques: Our algorithm for ct covers the vertices in a given out-tree T in
a bottom-up fashion, starting from the leaves. The key players in this process
are vertices called anchors which define the candidate subtrees for covering in
each iteration. Interestingly, we show that the subtree associated with a specific
anchor a (including also all of a’s ancestors) can be covered efficiently by using
the naive NextFit algorithm.

To eliminate additive terms in the approximation guarantee (i.e., obtain an
absolute ratio of 2), a crucial step in the algorithm is to distinguish in each call
to NextFit between the case where NextFit outputs an even vs. odd number of
configurations. In the latter case, we discard the last configuration and cover the
corresponding leftover vertices in a later iteration of the algorithm.

The crux of the analysis is to charge the number of subsets (i.e., configura-
tions) used by the algorithm separately to each anchor. Consider a subtree of
an anchor a, of total size sa(a), covered at some iteration. Observing that each
subset including vertices in this subtree must include also all the ancestors of
a, we are able to show that the total number of subsets used is at most twice⌊

sa(a)
k−h(a)+1

⌋
, where h(a) is the total size of the ancestors of a in T (including a).

To complete the analysis, we lower bound the number of subsets used in any
feasible solution. This is done via an intricate calculation bounding the number
of occurrences of each vertex v in the subtree of an anchor a in any feasible cover,
which is the heart of the analysis. Our Greedy approach may be useful for other
cpo classes of instances in which the input graph G has a tree-like structure
(e.g., graphs of bounded treewidth).

Our proofs of hardness for ct and rcp use sophisticated constructions, most
notably, to show a two-way reduction between rcp and dksh (in Appendices C
and D) and the hardness of rcp with bounded degrees (see Appendix F).

Organization: Section 2 presents our approximation algorithm for ct and the
proof of Theorem 1.1, and Section 3 includes some open problems. In Appendix A
we describe common applications of rcp, and Appendix B gives the hardness

9 We give formal defintions relating to approximation schemes in Appendix E.
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result for ct (proof of Theorem 1.2). Appendices C and D show the equivalence
between rcp and dksh (proofs of Theorem 1.3 and Corollary 1.4). Appendix E
shows that there is no EPTAS for u-rcp (Theorem 1.5), and Appendix F proves
the hardness of rcp on graphs of in-degrees and out-degrees bounded by 2 (The-
orem 1.6). Finally, some missing proofs are given in Appendix G.

2 Approximation Algorithm for ct

In this section, we present our approximation algorithm for ct. We start with
some definitions and notations. Let T = (V,E) be an out-tree rooted at a vertex
r ∈ V . Recall that in an out-tree all edges are oriented outwards from r. Thus,
for an edge (u, v) ∈ E, vertex u precedes v on the (unique) path from r to v. We
say that u is the parent of v and v is a child of u. More generally, if u is on the
(unique) path from r to v then u is an ancestor of v and v is a descendant of
u. A vertex v is considered an ancestor of itself but not a descendant of itself.
Define h(v) to be the total size of the vertices on the path from r to v, which
equals the total size of the ancestors of v.

For U ⊆ V , let T [U ] be the subgraph of T induced by U . If T [U ] is connected,
then we say that T [U ] is a subtree of T . Note that in this case T [U ] is also an
out-tree. From now on, we consider only induced subgraphs that are connected,
namely subtrees of T . If r ∈ U , then T [U ] is a subtree of T rooted at r.

For an out-tree T = (V,E) and a subset of vertices U ⊆ V , let AncsT (U) be
the set of the ancestors in T of the vertices in U , and let DescT (U) be the set
of the descendants in T of the vertices in U . Note that if T [U ] is a subtree of T
rooted at r, then AncsT (U) = U . In case U is a singleton set, we omit the set
notation; that is, for v ∈ V , let AncsT (v) be the set of the ancestors of v in T ,
and let DescT (v) be the set of the descendants of v in T .

We note that if there is a vertex v ∈ V for which h(v) > k then there is
no feasible solution. Also, if there is a leaf ℓ of T for which h(ℓ) = k then any
solution must include the set AncsT (ℓ) (of size k), and after adding this set to
the solution, we can remove ℓ and all of its ancestors which are not ancestors of
any other leaf. Thus, w.l.o.g. we assume that for any vertex v ∈ V it holds that
h(v) < k. Also, we note that if there is a leaf ℓ of T of size s(ℓ) = 0 then we
can remove ℓ, solve for the resulting tree and then add ℓ to a subset in the cover
that includes the parent of ℓ in T . Thus, w.l.o.g. we assume that for any leaf ℓ
of T , s(ℓ) > 0.

The algorithm for computing a cover is iterative. In each iteration, we com-
pute a partial cover as described below. We then continue to the next iteration
with the subtree rooted at r induced by the uncovered vertices and their an-
cestors. The algorithm terminates when either the set of uncovered vertices is
empty or the total size of the vertices of the remaining subtree (rooted at r) is
at most k, in which case these vertices form the last set in the cover.

In each iteration t of the algorithm, we compute a subset of vertices At ⊂
V that we call anchors. We then compute a cover of some (potentially all)
descendants of the anchors in At, and proceed to the next iteration.

Algorithm 1 is the pseudo code of the iterative algorithm. Initially, V1 = V .
Consider the t-th iteration, for t ≥ 1. If s(Vt) ≤ k then the algorithm terminates.
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Otherwise, define At as the set of all the vertices v ∈ Vt such that (i) the total
size of the descendants of v in T [Vt] is more than k−h(v), and (ii) the total size of
the descendants of every child u of v in T [Vt] is at most k−h(u) = k−h(v)−s(u).

Procedure NextFit given in Algorithm 2 is called for every a ∈ At. The
input to Procedure NextFit is the tree Ta defined as the rooted subtree that
consists of the path from r to a and the descendants of a in the subtree T [Vt(a)]
(see Figure 1a). When called for an anchor a, Procedure NextFit (Algorithm 2)
computes a cover of some (potentially all) descendants of a. The number of sets
returned in this procedure call is even, and the total size of the descendants of a
that are not covered by the sets returned by Procedure NextFit is at most k −
h(a). Let Ut ⊆ Vt be the set of all descendants of anchors in At that were covered
in iteration t, together with all their ancestors. If Vt = Ut, then the algorithm
terminates. Otherwise, we let Vt+1 be the set of ancestors of the vertices Vt \Ut

in T [Vt] and continue to iteration t + 1. Let A =
⋃

t At = {a1, a2, . . .} be the

Algorithm 1 Feasible cover computation

Input : An out-tree T = (V,E) rooted at r and an integer k > 0
Output : A feasible cover C = C1, . . . , Cc

1: V1 ← V
2: C ← ∅
3: t← 1
4: while s(Vt) > k do
5: Xt ←

{
u ∈ Vt | s(DescT [Vt](u)) ≤ k − h(u)

}
6: At ← {v ∈ Vt \Xt | all the children of v in T [Vt] are in Xt}
7: Ut ← ∅ ▷ Ut stores the vertices covered in iteration t
8: for a ∈ At do
9: Ta ← T [AncsT [Vt](a) ∪DescT [Vt](a)]

10: Q1, . . . , Qm ← NextFit(a, Ta, k)
11: Add Q1, . . . , Qm to C ▷ Add the partial cover computed by NextFit
12: Ut ← Ut ∪Q1 ∪ · · · ∪Qm

13: if Vt \ Ut ̸= ∅ then
14: Vt+1 ← AncsT [Vt](Vt \ Ut)
15: else
16: Vt+1 ← ∅
17: t← t + 1
18: if Vt ̸= ∅ then ▷ The last set in the cover
19: Add Vt to C

return C

set of anchors computed in all the iterations. For an anchor a ∈ A, let t(a) be
the iteration in which a was added to the set of anchors. Note that any leaf ℓ of
T appears in exactly one subset in C. Thus, the iteration in which ℓ is covered is
uniquely defined.

Definition 2.1. Let a ∈ A be an anchor.

– If v ∈ DescTa
(a) is an ancestor of a leaf ℓ of T that is covered in iteration

t(a) then we say that v is anchored at a.
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Algorithm 2 Next-Fit packing

1: procedure NextFit(a, Ta, k)
Input : An anchor a ∈ A, the subtree Ta and an integer k > 0
Output : A feasible cover Q1, . . . , Qm of some (potentially all) vertices in DescTa(a)

2: Let u1, . . . , ud be the children of a in Ta

3: m← 1
4: Qm ← AncsTa(a)
5: for s = 1 to d do
6: if s(Qm) + s(DescTa(us)) ≤ k then
7: Qm ← Qm ∪DescTa(us)
8: else
9: m← m + 1

10: Qm ← AncsTa(a) ∪DescTa(us)
11: if m is odd then ▷ Remove the subset Qm if m is odd
12: m← m− 1 ▷ Note that m > 1

return Q1, . . . , Qm

(a) The subtree Ta (b) The subtree Sa

Fig. 1: The subtrees Ta defined in Algorithm 1, and Sa defined in the proof of
Lemma 2.5.

– If v ∈ DescTa
(a) is not anchored at a then we say that v is a leftover vertex

of a.

– Let sa(a) denote the total size of the vertices that are anchored at a, and
lo(a) denote the total size of the leftover vertices of a.

Clearly, sa(a) + lo(a) = s(DescTa
(a)). Our assumption that for every leaf ℓ of

T , s(ℓ) > 0, implies that (i) sa(a) > 0 and (ii) if there are leftover vertices then
lo(a) > 0.

The proofs of the next lemmas are in Appendix G.

Lemma 2.2. Let v ∈ DescTa
(a), and let us be the (unique) child of a that is

also an ancestor of v. If v is a leftover vertex of a then all the vertices in the
subtree of Ta rooted at v, as well as the vertices along the path from us to v,
are also leftover vertices of a. If v is anchored at a then all the vertices in the
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subtree of Ta rooted at v, as well as the vertices along the path from us to v, are
also anchored at a.

Lemma 2.3. For any two anchors a, a′ ∈ A, the sets of vertices anchored at a
and a′ are disjoint.

Define a “parent-child” relation among anchors as follows. For two anchors a
and b, we say that a is the anchor-parent of b and b is the anchor-child of a if (i)
a is an ancestor of b in T , and (ii) the path from a to b (in T ) does not contain
any anchors other than a and b. Note that if anchor a is an anchor-parent of
b then t(a) > t(b); that is, the iteration t(a) in which a is added to the set of
anchors is after iteration t(b). This follows from the definition of At. For anchor
a ∈ A, let AC(a) ⊂ DescT (a)∩A be the set of anchor-children of a. We extend
this definition for all v ∈ V , and let AC(v) ⊂ DescT (v) ∩ A be all the anchors
b ∈ DescT (v) ∩ A such that the path from v to b (in T ) does not contain any
anchors other than b and (possibly) v. For v ∈ V , let AD(v) = DescT (v) ∩ A
be the set of anchors that are also descendants of v. A top anchor is an anchor
that is not an anchor-child of any other anchor. Let topA ⊆ A denote the set
of top anchors. Note that if the root r is an anchor then topA = {r}.

Lemma 2.4. The number of subsets in the solution computed by Algorithm 1
is upper bounded by

α+
∑
a∈A

2

⌊
sa(a)

k − h(a) + 1

⌋
,

where

α =


1 ∃a ∈ topA s.t. lo(a) > 0

1 ∃ leaf ℓ ∈ V s.t. AncsT (ℓ) ∩ topA = ∅
0 otherwise

Proof. Let Q = Q1, . . . , Qd be the solution computed by the algorithm. Fix
a ∈ A, and let Qa be the subsets in Q that were returned by Procedure NextFit
(Algorithm 2) when it computed a feasible cover of the vertices in DescTa

(a).
Note that the union of all the subsets in Qa is the set of vertices anchored
at a (whose total size is sa(a)) together with all the ancestors of a. Also, Qa

consists of at least two subsets, and a vertex anchored at a cannot appear in
more than one subset in Qa. Consider the subsets in Qa in the order in which
they were computed by Algorithm 2. It follows from Procedure NextFit that the
total size of the vertices in any pair of consecutive subsets in this ordered list is
at least k − h(a) + 1. Since the total size of vertices anchored at a is sa(a), the

number of such disjoint pairs is upper bounded by
⌊

sa(a)
k−h(a)+1

⌋
. By Line 11 of

Procedure NextFit, the number of sets in Qa is even, and thus the total number

of subsets in Qa is upper bounded by 2
⌊

sa(a)
k−h(a)+1

⌋
. The total upper bound is

given by summing this bound over all anchors a ∈ A. We may have one additional
subset if the algorithm is terminated when |Vt| > 0. By our construction and
Lemma 2.2, this may happen iff there exists a leaf ℓ that is not anchored at any
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anchor. If such a leaf ℓ exists then one of the following two conditions must be
satisfied: (i) ℓ has no ancestor that is an anchor, or (ii) ℓ is a leftover vertex of
the (unique) top anchor a that is an ancestor of ℓ, in which case lo(a) > 0. The
lemma follows. ⊓⊔

We now prove a lower bound on the number of subsets in any feasible solution
and in particular in the optimal solution. Let P = P1, . . . , Pp be a feasible
solution. Since every subset in P is closed under ancestor relation, some vertices
may appear in multiple subsets. We refer to each such appearance of a vertex
v as an occurrence of v, and associate the size s(v) to each of its occurrences.
For an anchor a ∈ A, let P(a) be the set of all the subsets in P that contain
vertices anchored at either a or a descendant of a. For an anchor a ∈ A, let
U(a) ⊆ DescT (a) be the set of all vertices such that each vertex is both a
descendant of a and an ancestor of a vertex anchored at either a or a descendant
of a.

Lemma 2.5. For every a ∈ A, the number of subsets in P(a) is at least

LB(a) =
∑

b∈AD(a)∪{a}

⌊
sa(b)

k − h(b)

⌋
.

If the lower bound is tight then all the leaves that are in the subsets in P(a) must
be anchored at either a or a descendant of a.

Proof. To prove the lower bound of LB(a) on the number of subsets in P(a)
for every a ∈ A, we prove a slightly stronger lower bound of (k − h(a))LB(a)
on the total size of the occurrences of vertices in U(a) in subsets in P(a). Since
any subset that contains a descendant of a must contain also the ancestors of
a (including a), whose total size is h(a), the total size of the vertices in U(a)
that can be in a single subset in P(a) is no more than k − h(a). Thus, a lower
bound of (k − h(a))LB(a) on the total size of the occurrences of vertices in
U(a) ⊆ DescT (a) in subsets in P(a) implies a lower bound of LB(a) on the
number of subsets in P(a) (and on the number of occurrences of anchor a).

The lower bound on the total size of the occurrences of vertices in U(a) in
subsets in P(a) also implies that if the lower bound is tight then all the leaves
that are in the subsets in P(a) must be anchored at either a or a descendant
of a. To see this, note that if any subset in P(a) contains a leaf ℓ that is not
anchored at an anchor in AD(a) ∪ {a} then ℓ /∈ U(a), also s(ℓ) > 0 by our
assumption. It follows that the total size of the subsets in P(a) is strictly more
than (k − h(a))LB(a). Clearly, this implies that the number of subsets in P(a)
is strictly more than LB(a).

The proof is by induction starting from the bottom anchors in T , which are
the anchors with no anchor-children. For the induction base, consider a bottom
anchor a. Note that in this case U(a) is the set of all vertices anchored at a.
The subsets in P(a) cover all the vertices anchored at a; thus, the total size of
the occurrences of these vertices in the subsets in P(a) is at least sa(a). Clearly,
sa(a) ≥ (k − h(a))

⌊
sa(a)

k−h(a)

⌋
= (k − h(a))LB(a).

9



For the inductive step, consider an anchor a and assume that the lemma
holds for every anchor b ∈ AC(a). Specifically, for every anchor b ∈ AC(a), the
total size of the occurrences of vertices in U(b) in subsets in P(b) is at least
(k − h(b))LB(b). Note that P(b) ⊆ P(a) and U(b) ⊆ U(a). Let Sa the subtree
of T rooted at a given by the union of the paths from a to each of its anchor-
children, excluding the anchor-children (see Figure 1b). Note that the vertices
of Sa as well as the vertices in AC(v) are in U(a).

Claim 2.6 For every vertex v of Sa, the total size of the occurrences
of vertices in DescT (v) ∩ U(a) in subsets in

⋃
b∈AC(v) P(b) is at least

(k − h(v))
∑

b∈AC(v) LB(b).

Proof (of Claim 2.6). We prove the claim vertex by vertex, scanning the vertices
of Sa bottom-up. Consider a leaf v of Sa. By the definition of Sa, its children
are anchors in AC(v). By the induction hypothesis of Lemma 2.5, for every
anchor b ∈ AC(v) the total size of the occurrences of vertices in U(b) in the
subsets in P(b) is at least (k − h(b))LB(b). The total size of such occurrences
that are contained in any single subset of P(b) is at most k − h(b), since any
such subset must also contain the ancestors of b (including b) whose size is h(b).
It follows that the number of occurrences of b in these subsets in P(b) is at
least LB(b), and the total size of these occurrences is at least s(b) ·LB(b). Note
that for any pair of anchors b, b′ ∈ AC(v), the sets U(b) and U(b′) are disjoint.
Summing over all the anchor-children of v, we have that the total size of the
occurrences of vertices in DescT (v)∩U(a) in the subsets in

⋃
b∈AC(v) P(b) is at

least
∑

b∈AC(v) LB(b) ((k − h(b)) + s(b)) = (k − h(v))
∑

b∈AC(v) LB(b). The last

equality holds since for every b ∈ AC(v), h(v) + s(b) = h(b).
The lower bound for an internal vertex of Sa is obtained similarly. Note that

a child u of v is either an anchor or a vertex of Sa. If u is an anchor, that is
u ∈ AC(v), then as shown above, the total size of the occurrences of u and
its descendants in U(u) in the subsets in P(u) is (k − h(u) + s(u))LB(u) =
(k − h(v))LB(u). Suppose that u is a vertex of Sa. Since u is a child of v and
the vertices are scanned bottom-up the lower bound holds for u, and the to-
tal size of the occurrences of vertices in DescT (u) ∩ U(a) in the subsets in⋃

b∈AC(u) P(b) is (k − h(u))
∑

b∈AC(u) LB(b). The total size of such occurrences

that is contained in any single subset in
⋃

b∈AC(u) P(b) is at most k − h(u),

thus; the number of occurrences of u in these subsets is at least
∑

b∈AC(u) LB(b),

and the total size of these occurrences is at least s(u) ·
∑

b∈AC(u) LB(b). We

get that the total size of the occurrences of u and the vertices in DescT (u) ∩
U(a) in the subsets in

⋃
b∈AC(u) P(b) is (k − h(u) + s(u))

∑
b∈AC(u) LB(b) =

(k − h(v))
∑

b∈AC(u) LB(b). For any pair u, u′ of children of v, the sets DescT (u)

and DescT (u
′) are disjoint. Summing over all the children of v, we get that the

total size of the occurrences of vertices in DescT (v) ∩ U(a) in the subsets in⋃
b∈AC(v) P(b) is at least (k − h(v))

∑
b∈AC(v) LB(b). ⊓⊔

Next, we consider vertices that are anchored at a. By the definition of P(a),
each such vertex v must occur at least once in subsets in P(a); also, v ∈ U(a).
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Note that v may be an ancestor of an anchor b ∈ AD(a). This may happen in
case v is a vertex of Sa, and also in case a leftover vertex of an anchor b ∈ AD(a)
is anchored at a, and v is on the path from a to b. In case v is an ancestor of
an anchor b ∈ AD(a), our induction hypothesis and Claim 2.6 already imply a
lower bound on the number of its occurrences in subsets in P(a). Specifically,
in case v ∈ AD(a), our induction hypothesis implies a lower bound of LB(v) on
the number of its occurrences, and in case v /∈ AD(a) and AC(v) ̸= ∅, Claim 2.6
implies a lower bound of

∑
b∈AC(v) LB(b) on the number of its occurrences. We

prove that v must occur at least once more in subsets in P(a), in addition to
this implied lower bound. This results in addition of sa(a) to the total size of
the occurrences of vertices anchored at a in the subsets in P(a).

Claim 2.7 For every vertex v anchored at a, the number of occurrences of v in
the subsets in P(a) is at least

1 v /∈ AncsT (AD(a))

1 + LB(v) v ∈ AD(a)

1 +
∑

b∈AC(v) LB(b) otherwise

Proof (of Claim 2.7). If v is anchored at a then it must be an ancestor of a leaf
ℓ of T that is anchored at a. Certainly, v must occur in the subset in P(a) that
covers ℓ. If v is not an ancestor of an anchor b ∈ AD(a), we are done.

If v is an anchor and thus v ∈ AD(a), and the number of occurrences of v in
the subsets in P(v) is strictly more than LB(v), then we are done. Otherwise, the
lower bound LB(v) is tight, and by the induction hypothesis of Lemma 2.5, all
the leaves that are in the subsets in P(v) must be anchored at v or a descendant
of v. Thus, none of these subsets can cover ℓ. It follows that v must occur in at
least one more subset in P(a) that covers ℓ.

A similar argument applies also if v /∈ AD(a) and AC(v) ̸= ∅. Let a′ ∈
AD(a) ∩ {a} be the nearest ancestor of v that is an anchor. By Claim 2.6,
the total size of the occurrences of vertices in DescT (v) ∩ U(a′) in subsets in⋃

b∈AC(v) P(b) is at least (k − h(v))
∑

b∈AC(v) LB(b). It follows that the number

of occurrences of v in the subsets in
⋃

b∈AC(v) P(b) is at least
∑

b∈AC(v) LB(b).

If ℓ is not in any of the subsets in
⋃

b∈AC(v) P(b), then v must occur in at

least one more subset in P(a) that covers ℓ, and we are done. Suppose that
this is not the case, and ℓ is in a subset in

⋃
b∈AC(v) P(b). It is not difficult to

verify that the proof of Claim 2.6 implies the lower bound on the total size of
the vertices in a subset of DescT (v) ∩ U(a′). This subset is the union of three

sets: DescT (v) ∩
(⋃

b∈AC(v) U(b)
)
, AC(v), and DescSa′ (v). Clearly, ℓ is not in

any of these three sets. Thus, the total size of the occurrences of vertices in
DescT (v) ∩ U(a) in the subsets in

⋃
b∈AC(v) P(b) ⊂ P(a) is strictly more than

(k − h(v))
∑

b∈AC(v) LB(b). Hence, the number of occurrences of v in the subsets

in
⋃

b∈AC(v) P(b) is strictly more than
∑

b∈AC(v) LB(b). ⊓⊔

By Claims 2.6 and 2.7 and our induction hypothesis we get that the total
size of the occurrences of vertices in DescT (a) ∩ U(a) in the subsets in P(a) is

11



at least

sa(a) + (k − h(a))
∑

b∈AC(a)

LB(b) ≥ (k − h(a))

⌊
sa(a)

k − h(a)

⌋
+

∑
b∈AC(a)

LB(b)


= (k − h(a))

∑
c∈AD(a)∪{a}

⌊
sa(c)

k − h(c)

⌋
= (k − h(a))LB(a)

The first equality holds since LB(b) =
∑

c∈AD(b)∪{b}

⌊
sa(c)

k−h(c)

⌋
. ⊓⊔

Corollary 2.8. The number of subsets in any feasible solution is at least

α+
∑
a∈A

⌊
sa(a)

k − h(a)

⌋
,

where α is defined in Lemma 2.4.

Proof. If topA = {r} then by Lemma 2.5 the number of occurrences of r is at

least LB(r) =
∑

a∈A

⌊
sa(a)

k−h(a)

⌋
. If this lower bound is tight then all the leaves

in subsets in P(r) are anchored at some vertex. If lo(r) > 0, then there is a
leaf of T that is a leftover vertex of r and thus not anchored at any vertex. In
this case, at least one additional subset is needed to cover this leaf. If topA ̸=
{r} then AC(r) = topA. In this case, following the proof of Claim 2.6, we
get that the total size of the occurrences of the descendants of r in subsets in
P is at least (k − s(r))

∑
a∈topA LB(a). This implies that r occurs in at least∑

a∈topA LB(a) =
∑

a∈A

⌊
sa(a)

k−h(a)

⌋
subsets in P. If the bound is tight then all

the leaves in these subsets are anchored vertices. Thus, if there exists a vertex
that is not anchored at any vertex, at least one additional subset is needed. This
occurs when either ∃a ∈ topA s.t. lo(a) > 0, or ∃ leaf ℓ ∈ V s.t. none of the
ancestors of ℓ is an anchor. ⊓⊔

Corollary 2.8 and Lemma 2.4 imply a factor 2 approximation.

3 Open problems

An intriguing open problem is to bridge the gap between our 2-approximation
and 1.5-inapproximability result for ct. Recall that ct is the special case of cpo
on out-trees. While we expect cpo to be hard to approximate on general graphs
(as mentioned above), exploring further the hardness of cpo on various graph
classes remains open.

Another appealing line of research is to investigate the connections between
cpo and a natural covering variant of the dksh problem defined as follows. Given
a hypergraph G = (V,E) and an integer k, find the minimum number of vertex
sets, each of cardinality at most k, such that every hyperedge is fully contained
in one of the sets. We are not aware of earlir studies of this problem, even in the
special case where G is a graph. One interesting direction is to derive nontrivial
hardness results for this problem and show possible implications for cpo.
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A Motivation for rcp

A prime motivation for studying rcp comes from the area of networking
[10,43,37,19,24,38,23,15,6,34,25,14,42,33,32,44]. In a Software-Defined Network
(SDN) traffic flow is governed by a logically centralized controller that utilizes
packet-processing rules to manage the underlying switches [21]. The number
of rules tends to be high while most traffic relies on a small fraction of these
rules [36]. Thus, caching frequently used rules can accelerate the processing time
of the packets. However, standard caching policies cannot be used due to depen-
dencies among rules. One common form of dependency is a partial overlap in the
binary strings representing the rules. For example, consider the rules R1=‘10**’
(where the symbol ‘*’ denotes a wildcard) and R2=‘1000’. Then whenever R1

is placed in the cache, R2 must be placed as well. Indeed, if only R1 is in the
cache then a message with a header ‘1000’ would be matched with R1, causing
a correctness issue in handling this packet. Now, the problem of placing a fea-
sible subset of the rules which handle a maximum total volume of traffic can
modeled as follows. We represent the rules by a DAG G = (V,E), where vi ∈ V
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corresponds to the rule Ri, and there is a directed edge from vi to vj if placing
Rj in the cache implies that Ri is also in the cache. The profit of each vertex
vi ∈ V reflects the volume of traffic handled by the rule Ri. The goal is to select
a subset of vertices of maximum total profit which fits into the cache, that is
closed under precedence constraints.

rcp can be used also to model the maximal extractable value (MEV) problem
in blockchain [27,29,40,1]. Each blockchain transaction is associated with a fee
earned by the miner who creates the block containing this transaction. The set
of transactions is associated with a partial order, and each blockchain prefix has
to be closed under precedence constraints. MEV is the maximum potential profit
that a blockchain miner can gain from transactions that have not been validated.
Computing MEV can be cast as an rcp instance where the vertices of the graph
are the transactions, the edges represent the precedence constraints, the profits
are the associated fees, and the bound k is the number of transactions that fit
in a single block. Other applications of rcp variants arise, e.g., in the mining
industry [28,35] and in scheduling [30,41,13,20,22].

B Hardness Result for CT

Our hardness result for ct is based on a reduction from bin packing with cluster
complement conflict graph (bpcc). An undirected graph G = (V,E) is called a
cluster complement if there is a partition V1, . . . , Vm of V such that for all i ∈ [m]
it holds that Vi is an independent set in G and for all i, j ∈ [m] where i ̸= j
and any v ∈ Vi and u ∈ Vj it holds that {u, v} ∈ E. We now formally define the
bpcc problem.

Definition B.1. The bin packing with cluster complement conflict graph
(bpcc) is defined as follows.
Input: A cluster complement G = (V,E), a weight function w : V → Z+

0 , and
a value k ∈ N.
Configuration: An independent set C ⊆ V in G such that w(C) ≤ k.
Solution: For some m ∈ N, we say that (C1, . . . , Cq) is a solution with cardi-
nality q if the following holds.

– For every i ∈ [q] it holds that Ci is a configuration.
– For all v ∈ V there is i ∈ [q] such that v ∈ Ci.

Objective: Find a solution of minimum cardinality.

Proof of Theorem 1.2: We show a reduction from bpcc to ct. Let I = (G =
(V,E), w, k) be a bpcc instance. Let V1, . . . , Vm be the unique partition of V
into maximal independent sets, which exists and can be found in polynomial
time since G is cluster complement. Then, define the reduced ct instance XI =
(H = (V, E), s,K) as follows

– The vertex set V of XI contains a root r and a vertex ri for every i ∈ [m],
where (r, ri) ∈ E (ri is a child of r for every i ∈ [m]). For every i ∈ [m] and

16



every v ∈ Vi define a leaf ℓv and add an edge (ri, ℓv) ∈ E . Overall, we get a
two-level star graph.

– Define the size function s : V → Z+
0 such that s(r) = 0, for all i ∈ [m] define

s(ri) = 2 · k, and for all i ∈ [m] and v ∈ Vi define s(ℓv) = w(v).
– Define K = 3 · k.

For every C ⊆ V , let

X(C) = {r} ∪
⋃

i∈[m] | C∩Vi ̸=∅

{ri} ∪
⋃
v∈C

{ℓv}. (1)

Claim B.2 For every C ⊆ V if C is a configuration of I then X(C) is a config-
uration of XI .

Proof. Assume that C is a configuration of I. Observe that, by (1), X(C) is
closed under the precedence constraints. Moreover,

s(X(C)) = s(r) +
∑

i∈[m] | C∩Vi ̸=∅

s(ri) +
∑
v∈C

s(ℓv) = 0 + 2k + w(C) ≤ 3 · k = K.

The first equality follows from (1). The second equality holds since C is a
configuration; thus, it is an independent set in G, and it can contain vertices
from at most one Vi, i ∈ [m]. The inequality holds since C is a configuration.
We conclude that X(C) is a configuration of XI . □

For every C ⊆ V let

I(C) =
⋃

ℓv∈C | v∈V

{v}. (2)

Claim B.3 For every C ⊆ V if C is a configuration of XI then I(C) is a
configuration of I.

Proof. Assume that C is a configuration of XI . Then, for all i, j ∈ [m], i ̸= j,
and v ∈ Vi, u ∈ Vj it holds that ℓv /∈ X(C) or ℓu /∈ X(C); otherwise, by the
precedence constraints we must include both ri and rj in C, and we have

s(C) ≥ s(ri) + s(rj) = 4 · k > 3k = K,

i.e., C is not a configuration. Contradiction. Let i ∈ [m] be the unique index
such that Vi ∩ C ̸= ∅ (if there is no such index the proof is trivial). Then,

w(I(C)) =
∑

v∈I(C)

s(ℓv) =
∑

v∈I(C)

s(ℓv)+s(ri)−s(ri) ≤ s(C)−s(ri) ≤ K−2·k = k.

The last inequality holds since C is a configuration of XI . We conclude that
I(C) is a configuration of I by Definition B.1. □
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Let S = (S1, . . . , Sq) be the solution for the ct instance XI . By Claim B.3,
for all i ∈ [q] it holds that I(Si) is a configuration of I; thus, I(S) =
(I(S1), . . . , I(Sq)) is a solution for I, since it contains every v ∈ V at least
once by (2) and the definition of XI . Conversely, let S = (S1, . . . , Sq) be a so-
lution for the bpcc instance I. Then, by Claim B.2 for all i ∈ [q] it holds that
X(Si) is a configuration of XI . Thus, X(S) = (X(S1), . . . , X(Sq)) is a solution
for I, since it contains every v ∈ V at least once by (1). Thus, there is a an
asymptotic α-approximation for bpcc if and only if there is a an asymptotic
α-approximation for ct. Hence, the claim of the theorem follows from Lemma
G.1 in [11]. ⊓⊔

C A Reduction from DkSH to Rule Caching

In this section we give the first direction for the proof of Theorem 1.3 and the
proof of Corollary 1.4. Let I = (G, p, k) denote an rcp instance whereG = (V,E)
is a directed graph, p is the profit function p : V → Z+

0 and k ∈ N specifies the
maximal number of vertices allowed in a feasible solution.

Our result is based on a reduction from the densest k-subhypergraph (dksh)
problem to rcp. We start with some definitions and notations. A hypergraph is
a pair H = (VH , EH) where VH is a set of vertices and EH ⊆ 2VH is a set of
hyperedges, which are subsets of vertices. For some S ⊆ VH , let H[S] = (S,ES

H)
be the induced subhypergraph of S where the hyperedges of the subgraph are
ES

H = {e ∈ EH | e ⊆ S}; that is, all hyperedges contained in S. In the dksh
problem the input is a tuple (H, k,w) where H = (VH , EH) is a hypergraph,
k is an integer parameter, and w : EH → Z≥0 is a weight function on the
hyperedges. A feasible solution is a set of at most k vertices. The objective is to
find a feasible solution S ⊆ VH with maximum total weight of hyperedges in the
subgraph induced by this set, that is w

(
ES

H

)
=

∑
e∈ES

H
w(e).

Informally, the main idea of our reduction is to represent a dksh instance H
as an rcp instance R(H), where each vertex and hyperedge of H are vertices
in the new instance. Furthermore, we duplicate the vertices of H a sufficiently
large number of times (see Figure 2). This ensures that the effect of taking
the hyperedges to the solution of R(H) as vertices of high profit, uses only
a negligible portion of the cardinality bound corresponding to R(H). This is
formalized as Lemma C.1, leading to the proof of Theorem 1.3. In particular,
our hardness result holds already for the special case of rcp where the graph G
is directed-bipartite, and there are only two distinct profits for the vertices.

For the remainder of this section, let H = (H, k,w) be a dksh instance
where H = (VH , EH). For the reduction from dksh to rcp, we now define an
rcp instance based on H. Let m = |EH | and let U = {vi | v ∈ VH , i ∈ [m+1]} be
a set of vertices, where each vertex in VH has m+1 distinct copies; these copies
are considered as distinct vertices in the reduced graph. Let V = U∪EH be a set
of vertices containing all copies of the vertices in VH and all edge-vertices, which
are hyperedges in EH . The reduced graph ofH is a directed graphG(H) = (V,E),
where
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E = {(vi, e) | e ∈ EH , v ∈ VH ∩ e, i ∈ [m+ 1]}. (3)

That is, each copy of a vertex v ∈ VH has an outgoing edge to any edge-vertex
that contains v in H. See Figure 2 for an example of the construction of the
reduced graph given a hypergraph H. By (3), we infer that the only edges in
G(H) are between a vertex from U to an edge-vertex from EH . Thus, G(H) is
a DAG and a directed-bipartite with the bipartition (U,EH).

v3

v2
v1

v11

v21

v31

v12

v22

v32

v13

v23

v33

v14

v24

v34

e1

e2

v4

e1

e2

Fig. 2: An illustration of the reduction from dksh to rcp. On the left, there
is a hypergraph H = (VH , EH) where VH = {v1, v2, v3, v4} and EH = {e1 =
{v1, v2, v3}, e2 = {v3, v4}}. The reduced graph G(H) on the right contains |EH |+
1 = 3 copies of each vertex in H.

The profit of each edge-vertex in G is equal to the weight of the corresponding
hyperedge in H, and the profit of all copies of the vertices of H is equal to zero.
Formally, let p : V → Z≥0 be the profit function. Then, p(u) = 0 fo all u ∈ U
p(u) = 0, and for all e ∈ EH , p(e) is equal to the weight of the hyperedge e ∈ EH .
Finally, let c = k · (m+1)+m be the cardinality bound for the rcp instance of
the reduction. Now, let R(H) = (G, p, c) be the reduction of H.

For a subset of vertices S ⊆ VH , let ES
H = {e ∈ EH | e ⊆ S} be the set of

edges in H contained in S.

Lemma C.1. If there is a feasible solution S for the dksh instance H such that
w
(
ES

H

)
= q, then the rcp instance R(H) has a solution of profit at least q.

Proof. Let S ⊆ VH such that |S| ≤ k and the induced subhypergraph H[S] has
total weight q; that is, w

(
ES

H

)
= q. Define

T = ES
H ∪ {ui ∈ U | u ∈ S, i ∈ [m+ 1]}. (4)
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In words, T contains all edge-vertices which are subsets of S (i.e., the set ES
H),

and all copies of vertices in S.

Claim C.2 T is a feasible solution for R(H).
Proof. We note that

|T | ≤ |ES
H |+ |{ui ∈ U | u ∈ S, i ∈ [m+ 1]}|

= q + |S| · (m+ 1) ≤ q + k · (m+ 1)

≤ m+ k · (m+ 1)

= c.

(5)

The first inequality is by (4). The second inequality holds since S is a feasible
solution for H; thus, |S| ≤ k. The third inequality holds since ES

H is a subset of
EH ; hence,

∣∣ES
H

∣∣ ≤ |EH | = m. By (5), T contains at most c vertices. To show
that T is feasible, we show that there are no inedges to T from V \T . First, there
are no inedges to any u ∈ U by (3). Second, for all e ∈ T ∩ EH and (u, e) ∈ E,
by (3) and (4) it holds that u ∈ T ; that is, we take all copies of vertices with
inedges to e by the definition of T . We conclude that T is a feasible solution for
R(H). ⊓⊔

We now show that the total profit of T is at least q.∑
t∈T

w(t) ≥
∑

e∈EH∩T

w(e) = w (EH ∩ T ) = w
(
ES

H

)
= q.

The second equality is by (4). ⊓⊔
For some T ⊆ V , we define the subset of vertices in H for which all copies in

G(H) are in T . That is,

S(T ) = {v ∈ VH | ∀i ∈ [m+ 1] : vi ∈ T}. (6)

The next claims are used in the proof of the second direction in the reduction
(stated as Lemma C.5).

Claim C.3 For all T ⊆ V it holds that |S(T )| · (m+ 1) ≤ |U ∩ T |.

Proof. By (6), it holds that T ∩U contains exactly m+1 copies of each v ∈ S(T ).
Thus, as vertex copies form distinct vertices in G(H), the claim follows. ⊓⊔

Claim C.4 For all feasible solutions T ⊆ V of R(H) it holds that |S(T )| ≤ k.

Proof. Assume towards a contradiction that |S(T )| > k. Therefore,

|T | = |U ∩ T |+ |EH ∩ T |
≥ |S(T )| · (m+ 1) + |EH ∩ T |
≥ |S(T )| · (m+ 1)

≥ (k + 1) · (m+ 1)

= k · (m+ 1) + (m+ 1)

> k · (m+ 1) +m

= c.

(7)
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The first equality follows from EH ∩U = ∅. The first inequality is by Claim C.3.
The third inequality holds since |S(T )| > k; thus, since S(T ) is a set, the cardi-
nality of S(T ) is an integer and it follows that |S(T )| ≥ k + 1. By (7) we reach
a contradiction to the feasibility of T for R(H). ⊓⊔

Our proof of Theorem 1.3 relies on the next result.

Lemma C.5. If the rcp instance R(H) has a feasible solution T of profit q, then

S(T ) is a feasible solution for the dksh instance H such that w
(
E

S(T )
H

)
≥ q.

Proof. Let T ⊆ V be a feasible solution of profit q for R(H); that is, |T | ≤ c and
p(T ) =

∑
t∈T p(t) = q. We first show that S(T ) is a feasible solution for H. We

note that S(T ) ⊆ VH , by (6). Also, it holds that |S(T )| ≤ k by Claim C.4. Now,

we show that w
(
E

S(T )
H

)
≥ q using the following claim.

Claim C.6 w ({e ∈ EH | e ⊆ S(T )}) ≥ p (EH ∩ T ).

Proof. Let e ∈ EH ∩ T and let v ∈ e. By (3), we have that (vi, e) ∈ E for
all i ∈ [m + 1]. Since e ∈ T and T is a feasible solution for the rcp instance
R(H), for all i ∈ [m + 1] it holds that vi ∈ T (else T is not a feasible solution
since e ∈ T, vi /∈ T and (vi, e) ∈ E). Therefore, by the above and using (6), we
conclude that v ∈ S(T ). This holds for all v ∈ e; therefore, e ∈ S(T ). Hence,
EH ∩ T ⊆ {e ∈ EH | e ⊆ S(T )} and the claim follows. ⊓⊔

Therefore,

w
(
E

S(T )
H

)
= w ({e ∈ EH | e ⊆ S(T )}) ≥ p (EH ∩ T ) = q.

The first inequality holds by Claim C.6. The second equality holds since (i) for
all u ∈ U and e ∈ EH it holds that p(u) = 0, and (ii) the profit of the solution
T is q; therefore, p (EH ∩ T ) = q. ⊓⊔

We are ready to prove the main result of this section.
Proof of Theorem 1.3 (=⇒): Assume that for some ρ ≥ 1, there is a ρ-
approximation algorithm A for rcp. Given a dksh instance H = (H, k,w), we
construct the instance R(H) for rcp, and run on R(H) Algorithm A. Let S∗ be
an optimal solution for dksh on H, and let q∗ = w

(
ES∗

H

)
. Now, by Lemma C.1,

there is a solution for R(H) of profit at least q∗. Therefore, Algorithm A returns
a feasible solution Tq∗ for R(H) of profit at least q∗/ρ. Hence, by Lemma C.5,

we have that S(Tq∗) is a feasible solution for H such that w
(
E

S(Tq∗ )
H

)
≥ q∗/ρ.

Note that A is polynomial and that the construction of S(Tq∗) can be trivially
computed in polynomial time. Hence, we have a ρ-approximation for dksh. ⊓⊔

The proof of Corollary 1.4 follows from Theorem 1.3 and the results of [26,17].
Proof of Corollary 1.4: By Theorem 1.3, an n1−ε-approximation for rcp
implies an n1−ε-approximation for dksh, where n is the number of vertices in
the rcp instance. Thus, by the results of [17], this implies an n1−ε-approximation
for the Maximum Balanced Biclique problem in bipartite graphs (MBB). Hence,
assuming SSEH and that NP ̸= BPP , we reach a contradiction to a result of
[26]. ⊓⊔
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D Reducing Rule Caching to DkSH

In this section, we give the second direction in the proof of Theorem 1.3; namely,
we show that given an approximation algorithm for dksh, we can solve the rule
caching problem with the same approximation guarantee.

In our reduction, we restrict ourselves to minimal dksh solutions, in which
every vertex appears in some hyperedge in the solution. Formally,

Definition D.1. Let H = (H, k,w), H = (VH , EH) be a DkSH instance. A
solution S ⊆ VH is called a minimal solution of H if for every v ∈ S it holds
that {e ∈ EH | e ⊆ S, v ∈ e} ≠ ∅.

We show that it suffices to consider minimal solutions without losing in
the number of hyperedges in the solution. Recall that for a hypergraph H =
(VH , EH) and S ⊆ VH we use the notation ES

H = {e ∈ EH | e ⊆ S}.

Lemma D.2. for any ρ ≥ 1, if there is a ρ-approximation for DkSH then there
is a ρ-approximation for DkSH that always returns a minimal solution.

Proof. Let ρ ≥ 1 and let A be a ρ-approximation algorithm for dksh. We define
the following algorithm B based on A. Let H = (H, k,w), H = (VH , EH) be a
dksh instance.

1. Compute S ← A(H).
2. Return T =

{
v ∈ S | {e ∈ E | e ⊆ S, v ∈ e} ≠ ∅

}
.

Clearly, the running time is polynomial since A is polynomial. Moreover, T is a
minimal solution for H. By the definition of T , it holds that w

(
ES

H

)
= w

(
ET

H

)
.

This completes the proof. ⊓⊔

In the following, we use an approximation algorithm for dksh that produces
minimal solutions to achieve an approximation algorithm for rcp. The reduction
considers the set of predecessor vertices of each vertex v in the rcp instance; these
are all vertices from which there are directed paths to v in the graph. Formally,

Definition D.3. Let G = (V,E) be a directed graph. Let ZG be all pairs of
vertices (u, v) ∈ V × V such that there is a directed path from u to v in G (this
includes (v, v)). For every v ∈ V , define the predecessors of v as PG(v) = {u ∈
V | (u, v) ∈ ZG}.

When G is clear from the context, we simply use P (v) = PG(v). In our reduction
we take an rcp instance with a graph G = (V,E) and construct a dksh instance
with a hypergraph H such that the vertices of H are the vertices of G and the
hyperedges of H are the sets of predecessors P (v) for every v ∈ V ; the weight of
P (v) is the profit of v in the rcp instance.

Definition D.4. Let I = (G, p, k), G = (V,E), be an rcp instance. Define the
reduced DkSH instance HI = (HI , wI , k) of I such that the following holds.

– HI = (V,PI), where ,PI = {P (v) | v ∈ V }.
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Fig. 3: An illustration of the reduction from rcp to dksh. On the right side there
is a graph G = (V,E) of an rcp instance I. The hypergraph HI = (V,PI) is on
the left (hyperedges consisting of one vertex are not explicitly shown).

– wI : PI → Z≥0 such that for all v ∈ V it holds that wI (P (v)) = p(v).

See Figure 3 for an illustration of the reduction. The next lemma summarizes
the reduction. For the second direction, note that it is necessary that the dksh
solution would be minimal to ensure feasibility.

Lemma D.5. Let I = (G, p, k), G = (V,E), be an rcp instance, and let HI =
(HI , wI , k) be the reduced DkSH instance of I. For every W ∈ Z≥0, S ⊆ V is a
solution for I of profit W if and only if S is a minimal solution for HI of weight
W .

Proof. We prove the two directions of the lemma.

(i) For the first direction, let S ⊆ V be a solution for I of profit W . By Defini-
tion D.4, it holds that S is a solution for HI . We use PS

I to denote the set
of hyperedges of HI contained in S. Then, by Definition D.4, for all v ∈ S,
it holds that P (v) ∈ PS

I and v ∈ P (v) by Definition D.3; Thus, by Defi-
nition D.1, S is a minimal solution for HI . Finally, the weight of S in HI

satisfies

wI

(
PS
I

)
=

∑
e∈PS

I

wI(e) =
∑
v∈S

wI (P (v)) =
∑
v∈S

p(v) = p(S) = W,

as required.
(ii) For the second direction of the proof, let T be a minimal solution for HI of

weight W . Observe that |T | ≤ k; thus, to show that T is a solution for the
rcp instance I, consider some v ∈ T . As T is a minimal solution for HI ,
there is x ∈ T such that P (x) ⊆ T and v ∈ P (x). Because P (v) ⊆ P (x), it
follows that P (v) ⊆ T . Hence, T is closed under precedence constraints and
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is a solution for I as well. To conclude, we note that the profit of T for I
satisfies

p(T ) =
∑
v∈T

p(v) =
∑
v∈T

wI (P (v)) =
∑

e∈PI s.t. e⊆T

wI(e) = wI

(
PT
I

)
= W.

The third equality holds since we showed that, for all v ∈ T , P (v) ⊆ T . ⊓⊔

By Lemmas D.2 and D.5 we have the proof of Theorem 1.3.
Proof of Theorem 1.3 (⇐=): For some ρ ≥ 1, let A be a ρ-approximation
algorithm for dksh. By Lemma D.2, there is a ρ-approximation algorithm B for
dksh that always returns a minimal solution. For an rcp instance I, we can run
B on the reduced dksh instance HI and return the output. By Lemma D.5, this
yields a ρ-approximation for rcp. ⊓⊔

E Hardness of Rule Caching with Uniform Profits

In this section we give a hardness result for uniform rcp (u-rcp), the special
case of rcp where all vertices have uniform profits, i.e., the proof of Theorem 1.5.
The proof is based on a reduction from the densest k-subgraph problem, that
is the special case of dksh (see Section C) where all hyperedges contain exactly
two vertices. This problem is hard to solve even when parametrized by k.

Towards presenting our result, we give some formal definitions for approxi-
mation schemes. Let |I| be the encoding size of an instance I of a problem Π. A
polynomial-time approximation scheme (PTAS) for Π is a family of algorithms
(Aε)ε>0 such that, for any ε > 0, Aε is a polynomial-time (1+ ε)-approximation
algorithm for Π. An Efficient PTAS (EPTAS) is a PTAS (Aε)ε>0 with running
time of the form f

(
1
ε

)
· |I|O(1), where f is an arbitrary computable function. An

approximation scheme (Aε)ε>0 is a Fully PTAS (FPTAS) if the running time of

Aε is of the form
(

|I|
ε

)O(1)

.

Parameterized complexity analyzes algorithms for hard computational prob-
lems by considering their running time as function of both the input size and
a specific parameter k ∈ N. A problem is classified as fixed-parameter tractable
(FPT) if it can be solved in time f(k) ·poly(n), where f is a function dependent
solely on k and n is the input size, allowing for exponential dependence on the
parameter k. For further definitions and concepts relating to parameterized com-
plexity, see, e.g. [12,9]. The next lemma asserts that u-rcp is still challenging,
despite the uniform profits.

Lemma E.1. If there is an EPTAS for u-rcp then there is an optimal FPT
algorithm for densest k-subgraph parametrized by k.

We give the proof below.
Proof of Theorem 1.5: It is known that densest k-subgraph parametrized
by k does not admit an FPT algorithm [5]. Thus, the theorem follows from
Lemma E.1 ⊓⊔
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For the proof of Lemma E.1, we use the following construction of an input for
u-rcp, given an input graph G for the densest k-subgraph problem. Informally,
each vertex v in the undireced graph G is duplicated 2m times, for some m ∈
N, where there are bidirectional edges between all copies of the vertex. This
guarantees that either all copies of v or none of them are taken for the solution.
In addition, we take the edges of G as vertices of the constructed directed graph.
Each edge-vertex has an incoming edge from each of its vertex endpoints in G.
See Figure 4 for an illustration of the construction. Formally,

Definition E.2. Given an undirected graph G = (V,E) and a parameter m ∈ N,
we define Dm(G) = (Lm ∪ E, Ēm) as the m-reduced graph of G such that the
following holds.

– Lm = {vi | v ∈ V, i ∈ [2 ·m]}.
– Ēm

1 = {(vi, vj) | i, j ∈ [2 ·m], v ∈ V }.
– Ēm

2 = {(vi, e) | i ∈ [2 ·m], vi ∈ Lm, e ∈ E, v ∈ e}.
– Ēm = Ēm

1 ∪ Ēm
2 .

e

u v

v1

v2

v3

v4

u1

u2

u3

u4

e

G = ({u, v}, {e}) D2(G)

Fig. 4: An illustration of the reduction from densest k-subgraph to u-rcp. On
the left there is a simple undirected graph G with a single edge. The 2-reduced
directed graph of G is on the right. Each vertex of G is replaced by 2 · 2 = 4
copies with a bidirectional edge connecting any two copies of the same vertex,
and an outgoing edge from each copy to the single edge-vertex e.

Proof of Lemma E.1: Let I = (G, k) be a densest k-subgraph instance, where
G = (V,E) is an undirected graph, and k is the cardinality bound for the subset
of vertices in the solution. Also, let A be an EPTAS for u-rcp. Observe that
the value of the optimum of I is an integer 0 ≤ m∗ ≤

(
k
2

)
. We also assume that

k ≥ 2 and m∗ ≥ 1, else the problem is trivial. Hence, in time O(k2) we can

iterate over all values m ∈
{
1, . . . ,

(
k
2

)}
. Henceforth, we assume a fixed choice

for m ∈ {1, . . . ,
(
k
2

)
}. Now, define the u-rcp instance Jm = (Dm(G), hm), where

hm = 2k ·m+m is the cardinality bound in the u-rcp instance.
Next, we run the EPTAS A on Jm with error parameter εm = 1

2hm
. Let

A(Jm, εm) = U(m) be the output for Jm and εm (i.e., a subset of vertices in
Dm(G)).
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Claim E.3 |U(m∗) ∩ E| ≥ m∗.

Proof. Assume towards contradiction that |U(m∗)∩E| < m∗. W.l.o.g. we assume
that k ≤ |V |. Then,

|U(m∗)| = |U(m∗) ∩ Lm∗ |+ |U(m∗) ∩ E|
≤ 2m∗ · k + |U(m∗) ∩ E|
< 2m∗ · k +m∗.

(8)

The first inequality holds by Definition E.2: for each v ∈ V it holds that
either all copies of v or none of them belong to U(m∗). In addition, there can be
at most k different vertices v ∈ V for which all copies are contained in U(m∗),
otherwise |U(m∗)| ≥ (k + 1)2m∗ > hm∗ .

Since m∗ is the value of the optimum for I, there is a solution F ⊆ V for
I, |F | ≤ k, such that |{e ∈ E | e ⊆ F}| = m∗. Moreover, by the definition of k,
there is P ⊆ V \F such that |P | = k−|F |. Now, define H = {vi | i ∈ [2 ·m∗], v ∈
F ∪P} and Q = H ∪{e ∈ E | e ⊆ F}. Observe that Q ⊆ Lm∗ ∪E. Furthermore,
it holds that Q is closed under the precedence constraints of Dm∗(G) by the
definition of Q and Definition E.2. Finally, it holds that

|Q| = |Q ∩ Lm∗ |+ |Q ∩ E| = |H|+ |Q ∩ E| = 2m∗ · k +m∗ = hm∗ . (9)

By (8) and (9), Q is a feasible solution for Jm∗ with a value strictly larger than
the value of U(m∗). Since εm∗ is sufficiently small, we have that

|U(m∗)| ≥ (1− εm∗)OPT(Jm∗)

≥ (1− 1

2hm∗
)|Q|

=

(
1− 1

2 · (2k ·m∗ +m∗)

)
· (2m∗ · k +m∗)

= 2m∗ · k +m∗ − 1

2

As |U(m∗)| is integral, we have |U(m∗)| = 2m∗ · k + m∗. Contradiction to
(8). Now, we choose m′ which satisfies

m′ = argmax
m′′∈{1,...,(k2)}

|U(m′′) ∩ E| , (10)

and return the following solution for I.

S = {v ∈ V | ∀i ∈ [2 ·m′] : vi ∈ U(m′)}. (11)

Claim E.4 S is a feasible solution for I.

Proof. We note that S ⊆ V by (11). Also,

|S| = |U(m′) \ E|
2 ·m′ ≤ |U(m′)|

2 ·m′ ≤
hm′

2 ·m′ =
2m′ · k +m′

2 ·m′ = k +
1

2
. (12)
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The first equality holds by Definition E.2 and by (11). The second inequality
holds since A returns a feasible solution for the u-rcp instance Jm. As |S| ∈ N,
we have that |S| ≤ k. Therefore S is a feasible solution for I. ⊓⊔

Claim E.5 S induces in G a subgraph with at least m∗ edges.

Proof. Observe that

|{{u, v} ∈ E | u, v ∈ S}| ≥ |U(m′) ∩ E| ≥ |U(m∗) ∩ E| ≥ m∗.

The first inequality holds by Definition E.2 and by (11). The second inequality
holds by (10). The last inequality follows from Claim E.3. ⊓⊔

By Claims E.4 and E.5, we have that S is an optimal solution for the denseset
k-subgraph instance I. The running time, for each m ∈ {0, 1, . . . ,

(
k
2

)
} is f( 1

εm
) ·

poly(|I|), where f is a computable function promised to exist since A is an
EPTAS for u-rcp. Thus, as m ≤ k2 and εm ≥ 1

2hm
≥ 1

2·(k2)·k+(
k
2)
, it holds

that 1
εm

= O(k3) for any m ∈ {0, 1, . . . ,
(
k
2

)
}. Hence, the running time of the

above algorithm, which finds an optimal solution for I, is g(k) · poly(|I|), where
g(k) = O(k2 · f(k3)). ⊓⊔

F Hardness of Rule Caching with Bounded Vertex
Degrees

In this section, we show that rcp remains just as hard if the in-degree and out-
degree of each vertex is bounded by only 2, which gives the proof of Theorem 1.6.
Specifically, given an rcp instance, we construct an augmented rcp instance
where each vertex is transformed into a gadget with polynomially many vertices.
The crucial attribute of the augmented instance is that it preserves the set of
solutions of the original instance, up to the addition of the new vertices of each
gadget.

F.1 The Construction

The gadget constructed for each vertex x in the original instance contains two
binary trees: the in-tree and the out-tree. Both binary trees contain x as the
root. However, in the in-tree the direction of the edges is towards the root, and
in the out-tree the direction of the edges is from the root towards the leaves.
The leaves of both trees represent the entire set of vertices of the instance. For
each pair of vertices x, y in the original instance such that (x, y) is an edge, in
the augmented instance there is an edge from the leaf of y in the out-tree of x
to the leaf of x in the in-tree of y. Finally, we add edges from the leaves of the
out-tree of every vertex x to the leaves of the in-tree of x, making the two trees
a strongly connected component in the augmented graph. In the following, we
give the formal definitions of the above construction.
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For the remainder of this section, let I = (G, p, k), where G = (V,E), be an
rcp instance, and let n = |V | be the number of vertices of the instance. Also,
let m = argmin{2c |c ∈ N, 2c ≥ n} be the smallest power of 2 at least as large
as n; note that m ≤ 2 · n. Define the augmented instance A(I) = (GI , wI , kI) as
follows. For each t ∈ N, let [t] = {1, 2, . . . , t}.

GI G

x

y

x

vxout(x, 1) vyout(x, 1)

vxin(x, 1) vyin(x, 1)

y

vxin(y, 1) vyin(y, 1)

vxout(y, 1) vyout(y, 1)

Fig. 5: An illustration of the graph GI constructed for G =
(V = {x, y}, E = {(x, y)}).

Vertices of GI : For each x, y ∈ V , define the vertices vyin(x, ℓ0) and vyout(x, ℓ0) to
be the leaf of y in the in-tree and out-tree of x, respectively, where ℓ0 = log2(m)
indicates the distance from the root of the tree (see the following constructions).
Assume without the loss of generality that V = [n]. Define additional m − n
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leaves of the in-tree and out-tree of x, that are viin(x, ℓ0) and viout(x, ℓ0) for
i ∈ [m] \ [n]. Let the leaves of the trees be

Lin(x) = {vyin(x, ℓ0) | y ∈ V } ∪
{
viin(x, ℓ0) | i ∈ [m] \ [n]

}
Lout(x) = {vyout(x, ℓ0) | y ∈ V } ∪

{
viin(x, ℓ0) | i ∈ [m] \ [n]

}
.

For each ℓ ∈
[
log2

(
m
2

)]
and i ∈

[
2ℓ
]
, define the i-th intermediate vertex of level

ℓ of the in-tree and out-tree of x as viin(x, ℓ) and viout(x, ℓ), respectively. Let

Vin(x) = Lin(x) ∪
{
viin(x, ℓ) | ℓ ∈

[
log2

(m
2

)]
, i ∈

[
2ℓ
]}

Vout(x) = Lout(x) ∪
{
viout(x, ℓ) | ℓ ∈

[
log2

(m
2

)]
, i ∈

[
2ℓ
]}

We can finally define the vertex set of the augmented instance A(I) as

VI = V ∪
⋃
x∈V

(Vin(x) ∪ Vout(x)) . (13)

Edges of GI : The graph GI has three types of edges. The first type generates
the in-tree and out-tree for each vertex; the second type of edges guarantees that
each gadget is a strongly connected component in GI ; the last type connects the
gadgets analogously to G. Let the first type of edges of x ∈ V be

E1(x) = E1
in(x) ∪ E2

in(x) ∪ E1
out(x) ∪ E2

out(x)

such that E1
in(x), E

2
in(x), E

1
out(x), and E2

out(x) are defined as follows.

E1
in(x) =

{(
v2iin(x, ℓ+ 1), viin(x, ℓ)

) ∣∣ ℓ ∈ [
log2

(m
2

)
− 1

]
, i ∈

[
2ℓ
]}

E2
in(x) =

{(
v2i−1
in (x, ℓ+ 1), viin(x, ℓ)

) ∣∣ ℓ ∈ [
log2

(m
2

)
− 1

]
, i ∈

[
2ℓ
]}

E1
out(x) =

{(
viout(x, ℓ), v

2i
out(x, ℓ+ 1)

) ∣∣ ℓ ∈ [
log2

(m
2

)
− 1

]
, i ∈

[
2ℓ
]}

E2
out(x) =

{(
viout(x, ℓ), v

2i−1
out (x, ℓ+ 1)

) ∣∣ ℓ ∈ [
log2

(m
2

)
− 1

]
, i ∈

[
2ℓ
]}

(14)

The second type of edges connects all corresponding pairs of leaves in the in-tree
and out-tree for every vertex:

E2(x) = {(vyout(x, ℓ0), v
y
in(x, ℓ0)) | y ∈ V }∪

{(
viout(x, ℓ0), v

i
in(x, ℓ0)

)
| i ∈ [m− n]

}
(15)

The third type of edges considers each pair of vertices x, y in the original
instance such that (x, y) ∈ E and creates an edge from the leaf of y in the
out-tree of x to the leaf of x in the in-tree of y.

E3 = {(vyout(x, ℓ0), vxin(y, ℓ0)) | (x, y) ∈ E} (16)

Now, define the edges of the graph GI as

EI = E3 ∪
⋃
x∈V

(E1(x) ∪ E2(x)) . (17)
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The graph GI is simply GI = (VI , EI).
Profit function pI : Define the profit function pI : VI → Z+

0 such that for all
x ∈ V it holds that pI(x) = p(x) and for all y ∈ VI \ V it holds that pI(y) = 0.
Cardinality Bound: Let t = 1+2·

∑
ℓ∈[log2(m)] 2

ℓ be the number of the vertices
in the in-tree and the out-tree of any vertex x ∈ V , including x. Define the
cardinality bound of A(I) as kI = k · t.

F.2 Analysis

In the following we give some elementary properties of the construction.

observation F.1 Let x ∈ V , ℓ1, ℓ2 ∈ [log2 (m)], i1 ∈
[
2ℓ1

]
, i2 ∈

[
2ℓ2

]
, and

s1, s2 ∈ {in, out}. Then, there is a path in GI from vi1s1(x, ℓ1) to vi2s2(x, ℓ2). More-
over, there is a path from vi1s1(x, ℓ1) to x and a path from x to vi1s1(x, ℓ1).

Let the symbol + denote (directed) path concatenation. For simplicity we
denote a path as a sequence of vertices (if the corresponding edges exist).

Lemma F.2. For every x, y ∈ V there is a path from x to y in G if and only if
there is a path from x to y in GI .

Proof. Let F = (x = x1, x2, . . . , xr = y) be a path from x to y in G, for some
r ∈ N. Let P (x) be a path from x to vx2

out(x, ℓ0), whose existence is guaranteed by
Observation F.1. In addition, for every q ∈ {2, 3, . . . , r − 1} let P (xq) be a path
from v

xq−1

in (xq, ℓ0) to v
xq+1

out (xq, ℓ0), which exists by Observation F.1. Furthermore,
consider a path P (y) from v

xr−1

in (y, ℓ0) to y, which exists by Observation F.1.
Since F is a path in G, by (16) and (17), for every q ∈ [r − 1] there is an edge(
v
xq+1

out (xq, ℓ0), v
xq

in (xq+1, ℓ0)
)
∈ EI . Thus, the following is a path from x to y in

GI :
P (x) + P (x2) + P (x3) + . . .+ P (xr−1) + P (y).

For the second direction, let D be a path from x to y in GI . By (14),
(15), (16), and (17), there are vertices x = y1, y2, . . . , yd = y ∈ V and paths
D(x), D(y2), . . . , D(yr−1), D(y) such that the following holds.

1. D(x) is a path from x to vy2

out(x, ℓ0).
2. For every q ∈ {2, 3, . . . , d−1} it holds that D(yq) is a path from v

yq−1

in (yq, ℓ0)
to v

yq+1

out (yq, ℓ0).
3. D(y) is a path from v

yd−1

in (y, ℓ0) to y.
4. D = D(y1) +D(y2) + . . .+D(yd).

By the above description of the pathD, for every q ∈ [d−1], it holds that GI con-
tains the edge

(
v
yq+1

out (yq, ℓ0), v
yq

in (yq+1, ℓ0)
)
∈ EI . Therefore, by (16) it holds that

(yq, yq+1) ∈ E for all q ∈ [d − 1]. Hence, it follows that (x = y1, y2, . . . , yd = y)
is a path from x to y in G. ⊓⊔

In the following, we discuss the complexity of the construction.

Lemma F.3. |VI | ≤ O
(∣∣V 2

∣∣).
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Proof. Observe that t, the size of the gadget of each vertex, satisfies:

t = 1 + 2 ·
∑

ℓ∈[log2(m)]

2ℓ = O(m) = O(n) = O (|V |) . (18)

For each x ∈ V , the graph GI contains t vertices in the in-tree and out-tree of
x. Thus,

|VI | =

∣∣∣∣∣V ∪ ⋃
x∈V

(Vout(x) ∪ Vin(x))

∣∣∣∣∣ = |V | · t = O
(∣∣V 2

∣∣) .
The first equality follows from (F.1). The last equality follows from (18). ⊓⊔

By Lemma F.3, it follows that the construction of A(I) given I can be computed
in polynomial time in |I| − the encoding size of I.

The next results show the equivalence of the instances A(I), I in terms of the
quality of their solutions sets. Let S ⊆ V be a solution for I. Define

SI(S) = S ∪
⋃
x∈S

(Vout(x) ∪ Vin(x)) . (19)

Lemma F.4. For every solution S ⊆ V for I it holds that SI(S) is a solution
for A(I) of profit p(S).

Proof. Let SI = SI(S) for simplicity. Clearly, by the definition of the profit
function pI :

pI(SI) = pI(S) = p(S).

To conclude, we show that SI is a solution for A(I). Let v ∈ SI and let u ∈ VI

such that (u, v) ∈ EI ; we show that u ∈ SI by considering the following cases.
If there is x ∈ V such that u, v ∈ Vout(x) ∪ Vin(x) ∪ {x}, then by (19) it holds
that u ∈ SI . Otherwise, by (17) and (16), there are x, y ∈ V, x ̸= y, such that
u = vyout(x, ℓ0) and v = vxin(y, ℓ0); therefore, by (16) it follows that (x, y) ∈ E.
Since y ∈ S by (19) and since S is a solution for I, it holds that x ∈ S; thus, we
conclude that Vout(x) ∪ Vin(x) ⊆ SI ∪ {x} by (19) and in particular it implies
that u ∈ SI . Finally, since the number of vertices in the in-tree and out-tree of
each vertex is exactly t, we get:

|SI | =

∣∣∣∣∣S ∪ ⋃
x∈S

(Vout(x) ∪ Vin(x))

∣∣∣∣∣ = t · |S| ≤ t · k = kI .

The inequality holds since S is a solution for I. ⊓⊔

For the second direction of the proof, let DI be a solution for A(I). Define

D(DI) = {x ∈ V | (Vout(x) ∪ Vin(x) ∪ {x}) ∩DI ̸= ∅} . (20)

To conclude, we use the following auxiliary claim.
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Lemma F.5. For every solution DI ⊆ VI for I it holds that D(DI) is a solution
for I of profit pI(DI).

Proof. Let D = D(DI) for simplicity. Then, by the definition of the profit func-
tion pI it holds that

p(D) = pI(D) = pI(DI).

We show that D satisfies the precedence constraints. Let y ∈ D and let x ∈ V
such that (x, y) ∈ E; we show that x ∈ D. By Lemma F.2, since (x, y) ∈ E
there is a path from x to y in GI . In addition, since y ∈ D it holds by (20) that
Vout(y) ∪ Vin(y) ∩ DI ̸= ∅; since Vout(y) ∪ Vin(y) ∪ {y} is a strongly connected
component in GI by Observation F.1, it follows that Vout(y)∪Vin(y)∪{y} ⊆ DI ;
in particular, y ∈ DI . Therefore, to satisfy the precedence constraints of y in the
solution DI , it holds that x ∈ DI . This implies that x ∈ D by (20) as required.
Finally, it holds that

|D| = |{x ∈ V | (Vout(x) ∪ Vin(x) ∪ {x}) ∩DI ̸= ∅}| =
|DI |
t
≤ kI

t
=

t · k
t

= k.

The second equality follows since Vout(y) ∪ Vin(y) ∪ {y} is a strongly connected
component in GI by Observation F.1, for all y ∈ V ; thus, the number of vertices
in DI taken from the in-tree and out-tree of each y ∈ DI ∩ V is exactly t. The
inequality follows since DI is a solution for A(I). ⊓⊔

We can finally prove Theorem 1.6 by applying the above reduction to the
augmented instance.
Proof of Theorem 1.6: Let ρ ≥ 1 and let A be a ρ-approximation algorithm
for rcp instances with in-degrees and out-degrees bounded by 2. We give the
following algorithm B for general rcp instances. Let I = (G, p, k), G = (V,E)
be an rcp instance. Algorithm B given the input I is defined as follows, based
on A.

1. Compute the augmented instance A(I).
2. Compute a solution SI for A(I) using A.
3. Return D = D(SI) = {x ∈ V | (Vout(x) ∪ Vin(x) ∪ {x}) ∩ SI ̸= ∅} .

Clearly, the running time of B is polynomial in |I|, the encoding size of I; the
first step takes |I|O(1) time by Lemma F.3 and the second step takes |I|O(1) time
by the definition of A. In addition, by the definition of A we have

p(D) = pI(SI) ≥
OPT(A(I))

ρ
≥ OPT(I)

ρ
.

The first equality follows from Lemma F.5. The first inequality holds since A is
a ρ-approximation algorithm for rcp instances with in-degrees and out-degrees
bounded by 2, and A(I) is such an rcp instance. The last inequality follows from
Lemma F.4. ⊓⊔
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G Missing proofs

Proof (of Lemma 2.2). In Algorithm 2 we iterate over the children of a in Ta,
and for each such a child us we add us and all its descendants in Ta to one of the
subsets Qm. Thus, if Qm is one of the subsets returned by Procedure NextFit
(Algorithm 2) when it is called for a, then us and all its descendants in Ta are
anchored at a; otherwise, us and all its descendants are leftover vertices of a. ⊓⊔

Proof (of Lemma 2.3). To prove the lemma, it suffices to show that a vertex
cannot be anchored at more than one anchor. Fix an iteration t. Consider two
anchors a and a′ added in iteration t, namely t(a) = t(a′) = t. Note that a is
neither a descendant nor an ancestor of a′, and thus the set of vertices anchored at
a, which is contained in DescT [Vt](a) is disjoint from the set of vertices anchored
at a′, which is contained in DescT [Vt](a

′). To complete the proof, we note that
for any two anchors a and a′ such that t(a) < t(a′), the set of vertices that are
anchored at a are disjoint from the set of vertices that are anchored at a′. This
holds since by Lemma 2.2 all the leaves of T that are descendants of the vertices
anchored at a are covered at some iteration t ≤ t(a); thus, the vertices anchored
at a are not in Vt(a)+1. ⊓⊔
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