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Abstract

While much of network design focuses mostly on cost (number or weight of edges), node degrees have
also played an important role. They have traditionally either appeared as an objective, to minimize the
maximum degree (e.g., the Minimum Degree Spanning Tree problem), or as constraints which might
be violated to give bicriteria approximations (e.g., the Minimum Cost Degree Bounded Spanning Tree
problem). We extend the study of degrees in network design in two ways. First, we introduce and study
a new variant of the Survivable Network Design Problem where in addition to the traditional objective of
minimizing the cost of the chosen edges, we add a constraint that the `p-norm of the node degree vector
is bounded by an input parameter. This interpolates between the classical settings of maximum degree
(the `∞-norm) and the number of edges (the `1-degree), and has natural applications in distributed
systems and VLSI design. We give a constant bicriteria approximation in both measures using convex
programming. Second, we provide a polylogrithmic bicriteria approximation for the Degree Bounded
Group Steiner problem on bounded treewidth graphs, solving an open problem from [16] and [11].

1 Introduction

The overarching theme of network design problems is to find “inexpensive” subgraphs that satisfy some type
of connectivity constraints. The notion of “inexpensive” is often either the number of edges (unweighted cost)
or the sum of edge costs (weighted cost). However, it has long been recognized that in many applications
vertex degrees matter as much (or more) than cost. This is particularly true in the context of networking
and distributed systems, where the degree of a node often corresponds to the “load” on that node, as well
as in VLSI design. So there has been a significant amount of work on handling degrees, either instead of
or in addition to cost, which has led to many seminal papers and results. With degrees as an objective,
these include the well known local search approach of Fürer and Raghavachari [8] for the Minimum Degree
Spanning Tree problem and the Minimum Degree Steiner Tree problem. With degrees as a constraint, these
include the iterative rounding [15] approach of Singh and Lau [21] for the Minimum-Cost Bounded-Degree
Spanning Tree problem, as well as many extensions (most notably to Survivable Network Design with degree
bounds [19], but see [18] for many other examples).

In this paper we extend the study of degrees in network design in two ways. First, we introduce what
is (to the best of our knowledge) a new class of problems. Instead of bounding the cost and individual
degrees as in [21, 19], our objective is to obtain minimum cost while satisfying a bound on the `p-norm
of the node degree vector. This interpolates between the maximum degree (the `∞-norm) and the total
number of edges or unweighted cost (the `1-degree). Second, we solve a well known open problem: We
give a poly-logarithmic bicriteria approximation for the Group Steiner Tree problem with degree bounds on
bounded treewidth graphs.
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†Supported in part by NSF grant CCF-1844890.
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`p-Objective. While the maximum degree is often a reasonable objective, as is minimizing the total cost
(either with or without degree bounds), there are many natural situations where none of these approaches
are fully satisfactory. If we simply ignore the degrees and focus on cost (weighted or unweighted), then we
might end up with a solution with highly imbalanced degrees, leading to large load at particular nodes. If
we ignore costs and simply optimize the maximum degree, then we might return a solution with far more
edges than are needed: if the structure of the graph forces some node to have large degree, then if we simply
try to minimize the maximum degree we will not even try to make the degrees of other nodes small. Finally,
optimizing under individual degree bounds implicitly assumes that nodes “really have” these degree bounds,
i.e., they come from some external constraint. But this is of course not always the case: often we do not
have real bounds on individual nodes, but rather a more vague desire to “keep degrees small”.

Hence we want some way of making sure that the maximum degree is small, but also encouraging few
edges. A natural function that simultaneously accomplishes both of these goals is the `p-norm of the degree

vector, i.e., the function
(∑

v∈V (degv)
p
)1/p

for p ≥ 1 (and in particular for p = 2), where degv is the degree
of v in the output subgraph. When p = 1 this is simply (twice) the number of edges (i.e., the unweighted
cost), and when p = ∞ this is the maximum degree. But for intermediate values of p, it discourages very
large degrees (in particular the maximum degree) since p > 1 implies that large degrees have a larger effect
on the norm than smaller degrees, while still also being effected on a non-trivial way by the smaller degrees.
So we can either use the `p-norm as an objective function, or we can use it as a constraint that is far more
flexible than having simple degree constraints at every node.

This intuition, that the `p-norm takes into account both the maximum and the distribution simultane-
ously, is one reason why the `p-norm has been an important objective function for combinatorial problems.
For example, the Set Cover problem was studied under the `p norm of the vector of number of elements as-
signed to each set [10]. It was also extensively studied in scheduling problems (see for example [1, 2, 17, 14]).
To the best of our knowledge, the `p norm has not been studied in the context of network design, with the
notable recent exception of graph spanners [6, 5], where the direct applications of spanners to distributed
systems led to exactly this motivation. Similarly, MST with `p norm is very important for VLSI design,
since in many such settings we are forced to use spanning trees and hence the number of edges is fixed. So
minimizing the `p norm will likely derive a balanced degree vector which is of key importance for these VLSI
application (see, for example, [22, 20]).

Motivated by the above discussion, we introduce and give the first approximation for the Survivable
Network design problem with low cost under a bound on the `p norm of the degree vector.

Group Steiner Tree with Degree Bounds. In addition to the study of `p-norm problems, we also
make significant progress on a known open problem: approximating Group Steiner Tree with degree bounds
on bounded treewidth graphs. The Group Steiner Tree problem (without degree bounds) is a classical
optimization problem [9] which has played a central role in network design. In this problem there is a
designated root node r, and a collection of (not necessarily disjoint) groups of vertices. The goal is to find a
subtree which connects at least one vertex from each group to r, while minimizing the total cost of all edges
in the subtree. The Degree Bounded Group Steiner problem was first raised by Hajiaghayi in [12] (in the
8th Workshop on Flexible Network Design), motivated by the online version of the problem and applications
to VLSI design. In particular, while low cost is highly desirable, this cost is payed only once, while later the
VLSI circuit is applied (evaluated) constantly. Low degrees imply that the computation of the value of the
circuit can be done faster. See a discussion of why low degrees are important for Group Steiner in [16].

Unfortunately, despite significant recent interest in this problem [11, 16], progress has been elusive. In
particular, polylogarithmic bicriteria approximations were not even known for simple classes such as series-
parallel graphs, i.e., for graphs with treewidth 2. We go far beyond series-parallel graphs, and give results
for bounded treewidth graphs.
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1.1 Our Results and Techniques

We begin in Section 2 with a study of the `p-Survivable Network Design problem. We are given the input

graph G = (V,E), with edge costs c ∈ RE≥0. There is a connection requirement vector r ∈ Z(V
2)
≥0 , a number

p ≥ 1 and a bound A on the `p norm of the degree vector of the output graph. The goal of the problem is
to find the minimum-cost subgraph H of G satisfying the following:

• (connection requirements) for every u, v ∈ V with u 6= v, there are at least ru,v edge disjoint paths
between u and v in H, and

• (degree constraint)
(∑

v∈V d
p
H(v)

)1/p ≤ A, where dH(v) is the degree of v in H.

We assume the input instance is feasible; that is, there is a valid sub-graphH satisfying both requirements.
Let opt be the minimum cost of a valid subgraph H. The main theorem we prove for the problem is the
following:

Theorem 1.1. There is a (randomized) algorithm which, given an instance of `p-Survivable Network
Design, outputs a subgraph H satisfying the connection requirements and which has the following properties.

• The expected cost of H is at most 2 · opt.

• The expectation of the `p-norm of the degree vector is at most 21/p51−1/p ·A.

For the special case of `p-Spanning Tree problem, where ruv = 1 for all u, v ∈ V , we improve the expected
cost to at most opt (rather than 2 · opt) and the expectation of the `p-norm of the degree vector to at most
21−1/p ·A.

Our main approach is to leverage the fact that the `p-norm is convex. This allows us to write a con-
vex relaxation for the problem, which can then be solved efficiently using standard convex programming
techniques. We then round this solution using an iterative rounding approach. Making this work requires
overcoming a number of issues, possibly the trickiest of which is handling fractional degrees that are less than
1. Note that a fractional solution could have many nodes with very small fractional degree (e.g., 1/n). Due
to the structure of the `p-norm, such small values contribute far less to the `p-norm than they “should” (in an
integral solution). To get around this, we actually change the `p-constraint in a way that acts differently for
values less than 1, while still maintaining convexity. With this change in place, we can solve the relaxation,
interpret the fractional degrees “as if” they are true degree bounds, and then round using existing results
on iterative rounding for degree-bounded network design.

We then move to our second problem, Group Steiner Tree with Degree Bounds on bounded treewidth
graphs. In the problem, we are given a graph G = (V,E) with treewidth tw, a cost vector c ∈ RE≥0, a root
r, and k sets S1, S2, · · · , Sk. We are additionally given a degree bound dbv ∈ Z>0 for every v ∈ V . The goal
of the problem is to choose a minimum-cost subgraph H of G such that for every t ∈ k, H contains a path
from r to some vertex in St, and dH(v) ≤ dbv for every v ∈ V . By minimality, the optimum H is always a
tree. We solve an open problem from [11] and [16] by giving a polylogarthmic bicriteria algorithm as long
as the treewidth is bounded. In particular, we prove the following theorem.

Theorem 1.2. There is an nO(tw log tw)-time randomized algorithm for the Group Steiner Tree with Degree
Bounds problem on bounded treewidth graphs which has O(log2 n) approximation ratio and O(log2 n)-degree
violation.

In order to achieve this result, we introduce and study a “tree labeling” problem in Section 3. There is a
rooted full binary tree, and we need to give a label `u for each node u in the tree from a subset Lu of potential
labels. For every internal node u with two children v and v′ there are some consistency constraints on the
labels, which say that the triple (`u, `v, `v′) must be from some given subset Γu ∈ Lu × Lv × Lv′ . Then we
have some covering constraints, each specified by a set S of labels: the constraint requires that at least one
node has its label in S. Finally, we have many cost constraints. For each such constraint, a label is given a

3



cost, and we require that the total cost of all labels used is at most 1. For this problem we give a randomized
algorithm that outputs a labeling that satisfies all consistency constraints, and approximately satisfies the
covering and cost constraints with reasonable probability, assuming the given instance is feasible. It runs in
polynomial time when the depth of the tree is O(log n) and each Lu has O(1)-size. The main techniques of
the algorithm are adaptations of the LP-rounding algorithm in [11] for their degree-bounded network design
problem. We introduce the tree labeling problem as a host for these techniques, and adapt them for the
problem.

We then show in Section 4 that we can reduce Group Steiner Tree with Degree Bounds on bounded
treewidth graphs to this tree labeling problem. Let tw be the treewidth of the graph; it is known from
[3] that we can assume the decomposition tree of G is an O(log n)-depth binary tree, with bag size O(tw).
This decomposition tree will be the tree in the tree-labeling instance. For each bag in the tree, a label will
contain the set of edges we take from the bag, and some connectivity information on the vertices in the
bag. We define the consistency constraints so that if they are satisfied, then the connectivity information
is correct. A group being connected can be captured by a covering constraint in the tree labeling instance,
and the edge cost constraint and degree constraints can be formulated as cost constraints in the instance.
Using the algorithm for the tree labeling instance, we obtain a tree with small cost that satisfies degree
bounds approximately, and connects a group with reasonable probability. The final output then is obtained
by running the procedure many times and taking the union.

1.2 Other Related Work

For the survivable network design problem without any degree constraints, the classic result of Jain [15]
gives a 2-approximation algorithm using the iterative rounding method. In [9] an O(log2 n) approximation
is given for the Group Steiner problem on tree inputs, and an O(log3 n) for the Group Steiner problem
(without degree constraints) for general graphs. The approximation for trees is almost the best possible,
unless NP problems can be solved in quasi-polynomial time [13]. [11] gave a bicriteria approximation for
the Group Steiner Tree Problem with degree bounds on tree inputs, with approximation ratio O(log2 n) and
degree violation O(log n)). Both bounds are nearly optimal [13, 7]. In [4] the authors gave an O(log2 n)-
approximation ratio for Group Steiner problem on bounded treewidth graphs (without degree bounds). In
[16] an O(log2 n) approximation is given for the Group Steiner problem with minimum maximal degree, but
without costs.

1.3 Notation

Given a graph H and a vertex v in H, we shall use δH(v) to denote the set of edges in H incident to v, and
dH(v) = |δH(v)| to denote its degree. Given a rooted tree T and a vertex v in T , we use ΛT (v) to denote
the set of children of v in T , and Λ∗T (v) to denote the set of descendants of v in T (including v itself). When
H and T are clear from the context, we shall omit them in the subscript. For example, this happens when
H = G is the input graph.

For a real vector z over some domain, and a subset S of elements in the domain, we define z(S) :=
∑
i∈S zi

to denote the sum of z values of elements in S.

2 `p-Survivable Network Design

In this section, we give our iterative rounding algorithm for `p-survivable network design problem. Recall

that we are given a graph G = (V,E) with cost vector c ∈ RE≥0, a connection requirement vector r ∈ Z(V
2)
≥0 ,

and a bound A on the `p norm of the degree vector.

Definition 2.1. We say a polytope P ∈ [0, 1]E is good if it is upward-closed 1 and the following holds: For
every vector x ∈ {0, 1}E, we have that x ∈ P if and only if the graph (V, {e ∈ E : xe = 1}) satisfies the

1This means for every x ∈ P and x′ ∈ [0, 1]E with x′ ≥ x, we have x′ ∈ P.
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connection requirements.

Notice that the above definition does not capture the degree constraints. This is done using the following
definition. For a real vector B ∈ [1,∞]V , we define QB := {x ∈ [0, 1]E : ∀v ∈ V, x(δ(v)) ≤ Bv} to be the set
of all vectors satisfying the degree bounds defined by B.

Definition 2.2. Let α ≥ 1 and β ≥ 0 be two real numbers and P be a good polytope. We say P is (α, β)-
integral if for every B ∈ [1,∞]V , every non-integral extreme point x of P ∩ QB satisfies at least one of the
following two properties:

(2.2a) there exists an edge e ∈ E with 1/α ≤ xe < 1,

(2.2b) there exists a vertex v ∈ V such that x(δ(v)) = Bv and |{e ∈ δ(v) : xe > 0}| ≤ Bv + β.

It is well known that for Survivable Network Design there is a (2, 3)-integral polytope P [19]. For the
special case of spanning tree problem, i.e, r ≡ 1, there is a (1, 1)-integral polytope [21].

We will use these polytopes in our algorithm, and will show that that their existence implies good
approximation algorithms. More formally, we prove the following theorem.

Theorem 2.3. Assuming the existence of an (α, β)-integral polytope, there is a randomized algorithm which
outputs a subgraph H of G satisfying the connection requirements. The expected cost of H is at most α · opt
and the expectation of the p-norm of degree vector is at most α1/p(α+ β)1−1/pA; recall that opt is the value
of the instance.

Note that this theorem, together with the existence of a (2, 3)-integral polytope for the general case and a
(1, 1)-integral polytope for the spanning tree case, imply Theorem 1.1. So we focus on proving Theorem 2.3.

2.1 The Convex Program

Define a function f : R≥0 → R≥0 as follows: f(x) =

{
x if x ∈ [0, 1]

xp if x > 1
. Figure (1a) shows this function for

p = 2. This is a convex function for p ≥ 1.
Let P be an (α, β)-integral polytope. The following is our convex programming relaxation for the problem:

min
∑
e∈E

cexe s.t. x ∈ P,
∑
v∈V

f(x(δ(v))) ≤ Ap. (1)

Recall that using our notation, x(δ(v)) is the sum of x values of edges incident to v in G. (1) is a convex
program and can be solved efficiently. Since the indicator vector of the optimum subgraph H satisfies all
the constraints, the value of the convex program is at most opt.

We note that if we instead used the function f(x) = xp (i.e., without handling the 0 ≤ x ≤ 1 case
separately), we would still have a convex relaxation of our problem. However, it is not hard to show that
this relaxation has an extremely large integrality gap (even if we are allowed to violate the `p-norm constrain
by a polylogarithmic factor). Treating 0 ≤ x ≤ 1 differently from x > 1 is one of the key ideas in our
approximation algorithm.

2.2 The Iterative Rounding Algorithm

Our iterative rounding algorithm is described in Figure (1b). In Step 1, we solve the convex relaxation (1)
to obtain an extreme solution x, which can be done in polynomial time using standard techniques. Then in
Step 2 we define Bv = max{x(δ(v)), 1} for every v to be the upper bound on the degree of v. So, before
Loop 3, we have x ∈ P ∩QB . We shall maintain this property before and after each iteration of the loop.

In each iteration of Loop 3, we randomly choose a vertex point x′ of P ∩QB such that E[x′] = x (Step 4)
and then update x to be the x′ (Step 5). This is possible since at the beginning of the iteration we have
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(a) The function f for p = 2.

1: Solve LP(1) to obtain a solution x
2: let Bv ← max{x(δ(v)), 1} for every v ∈ V
3: while true do
4: randomly choose an extreme point x′ of P ∩QB such that

E[x′] = x
5: x← x′

6: if x is integral then return x

7: if case (2.2a) happens for some e = (u, v) ∈ E then
8: xe ← 1, Bv ← x(δ(v)), Bu ← x(δ(u))
9: else . case (2.2b) happens for some v

10: Bv ←∞
(b) Iterative Rounding Algorithm for Network Design.

Figure 1: The function f and the iterative rounding algorithm.

x ∈ P ∩ QB . If x is integral, we then return x in Step 6. If we did not return, by that P is (α, β)-integral,
either (2.2a) or (2.2b) happens. In the former case, we update xe to 1, and change Bv and Bu for the two
end vertices u, v of e so that we still have Bv′ = max{x(δ(v′)), 1} for every v′ ∈ V (Step 8). In the latter
case, we change Bv to ∞ so that there will be no degree constraint for v from now on. Notice that in either
case, we maintain the invariant that x ∈ P ∩QB as P is upward-closed.

Notice that once xe becomes 0 or 1 in some iteration, it will remain unchanged. This holds since for
E[x′e] = xe ∈ {0, 1} to hold, we must always have x′e = xe. When the algorithm terminates, it returns an
integral x which satisfies the connectivity requirements. This holds since we have x ∈ P and P is good. The
algorithm will terminate in O(|E|) iterations since in every iteration, we either fixed the value of some xe to
1, or changed some Bv from a finite number to ∞.

2.3 Analysis of the Algorithm

We now begin to analyze the algorithm. As discussed, the algorithm will terminate with a subgraph which
satisfies the connectivity requirements. To prove Theorem 2.3, we need to analyze the total cost and the
`p-norm of the degrees.

In Step 8, we say that we round the edge e. In Step 10, we say we relax the vertex v. At any time of
the algorithm, we define a vector x̄ ∈ [0, 1]E as follows. If e has not been rounded yet, then let x̄e = xe.
Otherwise, let x̄e be the value of xe right before Step 8 in which we round e. Thus, from the moment, x̄e
remains unchanged.

Let T be the number of iterations we run Loop 3; notice that this is a random variable. For every integer
t ∈ [0, T ], we let xt, x̄t, Bt to be the values of x, x̄, B at the end of the t-th iteration of the Loop 3. So xT is
the output of the algorithm.

Observation 2.4. The following statements are true.

(2.4a) During Loop 3, we always have x̄e ≤ xe ≤ αx̄e for every e ∈ E.

(2.4b) Assume x0(δ(v)) < 1 for a vertex v ∈ V . Then at the first moment when x(δ(v)) ≥ 1 holds, we have
x̄(δ(v)) ≤ 1.

(2.4c) x̄(δ(v)) does not change from the first moment x(δ(v)) ≥ 1 holds, until the moment v is relaxed, or
the end of the algorithm if this does not happen.

Proof. x̄e ≤ xe by the definition of x̄e. Moreover, xe ≤ αx̄e as if xe > x̄e, then xe = 1 and xe ≥ 1
α . So (2.4a)

holds.
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To prove (2.4b), we consider two scenarios. In the first scenario, the moment is after Step 5 in some
iteration. In this scenario, x̄(δ(v)) = x(δ(v)) = 1 since Bv = 1 at the moment. In the second scenario, the
moment is after we round some edge e ∈ δ(v) in Step 8. In this case x̄(δ(v)) is the same as x(δ(v)) before
the step, which is strictly less than 1.

(2.4c) holds since we maintained Bv = x(δ(v)) from the moment x(δ(v)) becomes at least 1. If x̄e 6= xe
at some time, it must be the case that xe = 1. In this case, both xe and x̄e will not change in the future.

We can now analyze the expected cost of the algorithm. First, though, we will need a structural result.

Lemma 2.5. For every edge e ∈ E, the sequence x̄0
e, x̄

1
e, · · · , x̄Te is a martingale.

Proof. Focus on an iteration t ≥ 1 and edge e ∈ E, and we fix the sequence x̄0
e, x̄

1
e, · · · , x̄t−1

e . For simplicity
we use E′[·] to denote E[·|x̄0

e, x̄
1
e, · · · , x̄t−1

e ]. We need to prove E′[x̄te] = x̄t−1
e .

If we rounded e in iteration t or before, then x̄te = x̄t−1
e happens with probability 1. So, we can assume

that e has not been rounded by the end of iteration t. In this case, x̄t−1
e = xt−1

e .
So, in iteration t, either (2.2a) happens for some e′ 6= e, or (2.2b) happens. In either case, we have

E′[x̄te] = E′[xte] = xt−1
e = x̄t−1

e by the way we define the distribution for x′ in Step 4. Therefore, x̄0
e, x̄

1
e, · · · , x̄Te

is a martingale.

Corollary 2.6. E
[∑

e∈E cex
T
e

]
≤ α

∑
e∈E cex

0
e.

Proof.

E

[∑
e∈E

cex
T
e

]
≤ αE

[∑
e∈E

cex̄
T
e

]
= α

∑
e∈E

cex̄
0
e = α

∑
e∈E

cex
0
e.

The inequality is by (2.4a) and the first equality used Lemma 2.5.

Now that we understand the expected cost, it only remains to analyze the degree constraint. From now on
we fix a vertex v ∈ V . We upper bound xT (δ(v)), which will in turn give an upper bound on E

[
(xT (δ(v)))p

]
.

The main lemma we prove is

Lemma 2.7. For every v ∈ V , we have E
[
(xT )p(δ(v))

]
≤ α(α+ β)p−1 · f(x0(δ(v))).

Proof. We first consider the case x0(δ(v)) ≥ 1. Let t be the iteration in which v is relaxed, or let t = T if v
is not relaxed during the algorithm. By Property (2.4c), x̄(δ(v)) does not change until the end of iteration
t. Then, we have xT (δ(v)) ≤ xt(δ(v)) + β ≤ αx̄t(δ(v)) + β = αx̄0(δ(v)) + β = αx0(δ(v)) + β. Notice that
this happens with probability 1.

Notice that E[xT (δ(v))] ≤ αE[x̄T (δ(v))] = αx̄0(δ(v)) = αx0(δ(v)) by Lemma 2.5. We have:

E
[
(xT (δ(v)))p

]
≤ αx0(δ(v))

αx0(δ(v)) + β
(αx0(δ(v)) + β)p = αx0(δ(v))(αx0(δ(v)) + β)p−1.

This implies

E
[
(xT )p(δ(v))

]
f(x0(δ(v)))

≤ αx0(δ(v))(αx0(δ(v)) + β)p−1

(x0(δ(v)))p
= α

(
α+

β

x0(δ(v))

)p−1

≤ α(α+ β)p−1.

Now we consider the second case: x0(δ(v)) < 1. Assume x(δ(v)) ≥ 1 happens at some time of the
algorithm. By (2.4b), at the first moment when x(δ(v)) ≥ 1, we have x̄(δ(v)) ≤ 1. By (2.4c), from the
moment until the moment v becomes relaxed (or until the end of the algorithm if v is never relaxed), x̄(δ(v))
does not change. Therefore, immediately after v becomes relaxed, we have x̄(δ(v)) ≤ 1. Thus xT (δ(v)) is
at most the value of x(δ(v)) + β at this moment, which is at most αx̄(δ(v)) + β ≤ α + β. Again, we have
E[xT (δ(v))] ≤ αx0(δ(v)). So

E
[
(xT (δ(v)))p

]
≤ αx0(δ(v))

α+ β
(α+ β)p = αx0(δ(v))(α+ β)p−1.
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Then,

E
[
(xT )p(δ(v))

]
f(x0(δ(v)))

≤ αx0(δ(v))(α+ β)p−1

x0(δ(v))
= α(α+ β)p−1.

So, we always have E
[
(xT )p(δ(v))

]
≤ α(α+β)p−1f(x0(δ(v))). This implies E[

∑
v(x

T
δ (v))p] ≤ α(α+β)p−1Ap.

Now consider the case where x(δ(v)) ≥ 1 never happens; that is, xT (δ(v)) < 1. As E
[
xT (δ(v))

]
=

x0(δ(v)). Then we have E
[
(xT )p(δ(v))

]
≤ x0(δ(v)). The lemma clearly holds.

Corollary 2.6 and Lemma 2.7 imply Theorem 2.3, which in turn implies Theorem 1.1.

3 A Tree Labeling Problem

In this section, we introduce a tree labeling problem to which we reduce the Group Steiner Tree problem
with degree bounds on bounded-treewidth graphs. We are given a full binary tree T = (V,E) rooted at
r ∈ V.2 For every vertex u ∈ V, we are given a finite set Lu of labels for u; we assume Lu’s are disjoint and
let L :=

⋃
u∈V Lu. The output is a labeling ~̀= (`u ∈ Lu)u∈V of the vertices V, that satisfies the constraints

described below.

• (consistency constraints) For every internal node u of T with two children v and v′, we are given

a set Γu ⊆ Lu × Lv × Lv′ . A valid labeling ~̀ must satisfy (`u, `v, `v′) ∈ Γu.

• (covering constraints) We are given k subsets S1, S2, · · · , Sk ⊆ L. A valid labeling ~̀ needs to satisfy
that for every t ∈ [k], `(V) ∩ St 6= ∅, where `(V) is defined as {`u : u ∈ V}. In words, `(V) needs to
intersect every St.

• (cost constraints) We are given m ≥ 0 linear constraints defined by the costs (ci` ∈ [0, 1])i∈[m],`∈L.

For every i ∈ [m], a valid labeling ~̀ needs to satisfy
∑
u∈V ci`u ≤ 1. In words, there are m types of

resource, and we have 1 unit of each type. Setting the label of u to ` will use ci` units of type i-resource.

We say a labeling ~̀ = (`u ∈ Lu)u∈V is consistent if it satisfies the consistency constraints. Given a

consistent labeling ~̀, we say it covers group St if `(V) ∩ St 6= ∅. We define its type-i cost to be costi(~̀) :=∑
u∈V ci`u . So a valid labeling ~̀ for the instance is a consistent one that covers all groups, and has costi(~̀) ≤ 1

for every i ∈ [m].
Given a label tree instance, we let n = |V|, D be the height of T (the maximum number of edges in a

root-to-leaf path in T) and ∆ = maxu∈V |Lu| be the maximum size of any Lu. The main theorem we prove
is the following:

Theorem 3.1. Assume we are given a feasible label tree instance (T = (V,E), r, (Lu)u,
(Γu)u, (St)t∈[k], A ∈ [0, 1]m×L), i.e., there is a valid labeling. There is a randomized algorithm that in

time poly(n) ·∆O(D) outputs a consistent labeling ~̀ such that the following holds.

(3.1a) For every t ∈ [k], we have Pr[~̀ covers group St] ≥ 1
D .

(3.1b) For every i ∈ [m], we have E
[

exp
(

ln(1 + 1
2D ) · costi(~̀)

)]
≤ 1 + 1

D .

Property (3.1b) gives a tail concentration bound on costi(~̀). The remaining part of this section is
dedicated to the proof of Theorem 3.1.

2It is not important to require the binary tree to be full; our algorithm works when some internal node has only one child.
Assuming every internal node have 2 children is only for notational convenience.
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3.1 Construction of a super-tree T ◦

In this section, we construct a rooted tree T ◦ = (V ◦, E◦) of size O(n)∆O(D) such that a consistent labeling
of T corresponds to what we call a consistent sub-tree. So we can reduce the problem to finding the latter
object. The root of T ◦ is r. Each internal node of T ◦ is either a selector node, or a copier node; their
meanings will be clear soon. Each node p ∈ V ◦ is associated with a node u in T . Each non-root selector
node or leaf node is associated with a label ` ∈ Lu. We shall use p and q and their variants to denote nodes
in T ◦, and u and v and their variants to denote nodes in T.

The algorithm for constructing T ◦ is described in Algorithm 1, which calls the procedure construct-tree
described in Algorithm 2. See Figure 2 for the illustration of the construction of T ◦ from T. For a node
p ∈ V ◦, we use Λ(p) denotes the set of children of p in T ◦, and Λ∗(p) denotes the set of descendants of p in
T ◦, including p itself.

Algorithm 1 Main algorithm for the construction of T ◦

1: create a node r associated with r as the root of T ◦, and let r be a selector node
2: for every ` ∈ Lr do:
3: create a child p of r, associated with node r and label `
4: call construct-tree(p, r, `)

Algorithm 2 construct-tree(p, u, `) . p ∈ V ◦, u ∈ V, ` ∈ Lu
1: if u has no children then return . p is a leaf node.

2: let p be a selector node, let v and v′ be the two children of u in T
3: for every `′ ∈ Lv, `′′ ∈ Lv′ such that (`, `′, `′′) ∈ Γu do
4: create a child p′ of p, associated with u, let p′ be a copier node,
5: create two children q and q′ of p′, associate q with node v and label `′, associate q′ with node v′ and

label `′′

6: call construct-tree(q, v, `′) and construct-tree(q′, v′, `′′)

Now we can define consistent sub-trees of T ◦:

Definition 3.2 (Consistent sub-trees). Given a sub-tree T of T ◦ that contains r, we say T is consistent if
the following conditions hold.

• Every selector node p in T has exactly one child in T .

• If p is a copier node in T , then both of its children in T ◦ are in T .

The definition explains the names “selector” and “copier”: a selector node p in T needs to select one of
its children in T ◦ and add it to T , and the children of a copier node p will follow the node p to enter T .

It is easy to see a one-to-one correspondence between consistent labelings ~̀ = (`u ∈ Lu)u∈V of T, and

consistent sub-trees T of T ◦. Given the consistent labeling ~̀, the correspondent sub-tree T of T ◦ can be
constructed as follows. First, we add r and its child p associated with label `r to T . Then we grow the tree
from p using a recursive procedure. Assume p is associated with node u in T and label ` ∈ Lu. If u is a leaf,
we stop the procedure. Otherwise let v and v′ be the two children of u, then we add the copier child p′ of
p that corresponds to the tuple (`r, `v, `v′) to T . We also add its two children q and q′ to T . Then we run
the procedure recursively over q and q′. Conversely, given a consistent sub-tree T of T ◦, we can recover a
consistent labeling ~̀ of T.

For convenience, we extend the costs (ci`)i∈[m],`∈L to vertices in V ◦: For every non-root selector node or
leaf node p ∈ V ◦ associated with a label `, we define cip = ci` for every i ∈ [m]. For the root or a copier node

p, we define cip = 0. For a consistent sub-tree T = (V,E) of T ◦, and i ∈ [m], we define its type-i cost to be

costi(T ) =
∑
p∈V c

i
p. This will be the same as costi(~̀), for the labeling ~̀ correspondent to T .
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Figure 2: An example for the construction of T ◦. The tree on the left side is T, and the tree on the right side is
T◦. The labels of the nodes in T are shown besides them. In T ◦, selectors, copiers and leaves are denoted as empty
circles, solid circles and empty squares respectively. The nodes in the two yellow polygons are associated with r and
a respectively. The numbers in the circles and squares indicate the labels associated with the nodes. In the example,
the triples in Γr with the first coordinate being 1 are (1, 4, 6), (1, 5, 6) and (1, 5, 7). The triples in Γa with the first
coordinate being 5 are (5, 9, 11), (5, 9, 12) and (5, 10, 11).

We also extend the groups S1, S2, · · · , Sk to node sets in T ◦: for every t ∈ [k], S′t contains the set of

nodes p ∈ V ◦ whose associated label is in St. Then, a consistent labeling ~̀ covers a group St if and only if
the correspondent sub-tree T = (V,E) covers S′t, namely, V ∩ S′t 6= ∅.

Therefore, we are guaranteed that there is a consistent sub-tree T ∗ of T ◦ that covers all groups S′1, S
′
2, · · · , S′k,

and has costi(T ∗) ≤ 1 for every i ∈ [m]. Our goal is to output a random consistent sub-tree T satisfying the
conditions correspondent to (3.1a) and (3.1b). This is done using an LP-based algorithm.

3.2 The LP relaxation for finding T = (V,E)

Now we describe the LP relaxation that we use to find T = (V,E). For every vertex p ∈ V ◦, we use xp to
indicate if p is in T , i.e., p ∈ V . For every t ∈ [k] and q ∈ S′t, we use ytq to indicate if q is the node in T we
choose to cover S′t. There might be multiple nodes in V ∩ S′t, and in this case, we only choose one node in
the set to cover S′t; the choice can be arbitrary. The LP is as follows.

xr = 1 (2)∑
q∈Λ(p)

xq = xp ∀ selector p ∈ V ◦ (3)

xq = xp ∀ copier p ∈ V ◦, q ∈ Λ(p) (4)

xp ≥ 0 ∀p ∈ V ◦ (5)

∑
q∈Λ∗(p)∩S′t

ytq ≤ xp ∀p ∈ V ◦, t ∈ [k] (6)

∑
q∈S′t

ytq = 1 ∀t ∈ [k] (7)

∑
q∈Λ∗(p)

ciqxq ≤ xp ∀p ∈ V ◦, i ∈ [m] (8)

Constraints (2)-(5) in the LP are for the consistency requirements. (2) says the root is always in T . (3)
says if a selector node p is in T , then exactly one of its children is in T . (4) says if a copier node p is in
T , and q is a child of p, then q is also in T . (5) is the non-negativity condition. (6) and (7) deal with the
covering requirements. (6) says if p is in T , then we choose at most one descendant of p to cover the group
S′t; notice that the constraint implies ytp ≤ xp if p ∈ S′t. (7) says we choose exactly one node in T to cover
S′t. (8) handles the cost requirement: If p is included in T , then the type-i cost of the descendants of p in T
is at most 1.
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3.3 The rounding algorithm

We solve LP(2) to obtain a solution x ∈ [0, 1]V
◦
. We add r to T and call recursive-rounding(r) to obtain a

sub-tree T = (V,E). The procedure is defined in Algorithm 3.

Algorithm 3 recursive-rounding(p)

1: if p is a selector node then
2: choose one vertex q ∈ Λ(p) randomly, so that q is chosen with probability

xq

xp

3: add q to T , and call recursive-rounding(q)
4: else . p is a copier or leaf node
5: for every q ∈ Λ(p) do
6: with probability

xq

xp
= 1: add q to T , and call recursive-rounding(q)

Observation 3.3. T is always consistent. For every p ∈ V ◦, we have Pr[p ∈ V ] = xp.

Proof. For a selector node p in T , we always choose exactly one child of p and add it to T . For a copier node
p added to T and one of its child q, q is added to T with probability 1. By the probabilities we add nodes
to T , we can see that Pr[p ∈ V ] = xp for every p ∈ V ◦.

3.4 Analysis of probabilities of group coverage

In this section, we fix t ∈ [k] and analyze the probability that T coves the group S′t; or equivalently, the
correspondent labeling covers the group St. This will prove Property (3.1a). For every vertex p ∈ V ◦, we
define zp :=

∑
q∈Λ∗(p)∩S′t

ytq, which indicates whether S′t is covered by vertices in the sub-tree rooted at p.

By (6), we have zp ≤ xp. By (7), we have zr = 1 = xr.
We define the height of a node p ∈ V ◦ to be the maximum number of copier nodes in a path from p to

one of its descendant leaves. We bound the probability that the tree rooted at p covers S′t using inductions:

Lemma 3.4. Assume p ∈ V ◦ has height h. Then we have Pr
[
Λ∗(p) ∩ V ∩ S′t 6= ∅

∣∣p ∈ V ] ≥ 1
h+1

zp
xp

.

Proof. If p ∈ S′t then Pr
[
Λ∗(p) ∩ V ∩ S′t 6= ∅

∣∣p ∈ V ] = 1 ≥ zp
xp

. The inequality holds trivially. So, we can

assume p /∈ S′t, and we prove the lemma for nodes p from bottom to top in the tree T ◦. Suppose p is a leaf;
then h = 0, and zp = 0 as we assumed p /∈ S′t. The inequality trivially holds.

So we can assume p be a non-leaf node of height h, and assume the lemma holds for every q ∈ Λ(p). First
assume p is a selector node. Then all children of p have height at most h.

Pr
[
Λ∗(p) ∩ V ∩ S′t 6= ∅

∣∣p ∈ V ] ≥ ∑
q∈Λ(p)

xq
xp
· 1

h+ 1
· zq
xq

=
∑

q∈Λ(p)

1

h+ 1
· zq
xp

=
1

h+ 1
· zp
xp
.

Then consider the case that p is a copier node. All children of p have height at most h− 1. Even though
p has exactly two children, our analysis works if it has any number of children.

Pr
[
Λ∗(p) ∩ V ∩ S′t 6= ∅

∣∣p ∈ V ] ≥ 1−
∏

q∈Λ(p)

(
1− 1

h
· zq
xq

)
= 1−

∏
q∈Λ(p)

exp

(
− 1

h
· zq
xp

)

= 1− exp

(
− 1

h
· zp
xp

)
≥ 1

h
· zp
xp
− 1

2

(
1

h
· zp
xp

)2

≥ 1

h
· zp
xp
− 1

2

(
1

h

)2
zp
xp

=

(
2h− 1

2h2

)
zp
xp
≥ 1

h+ 1
· zp
xp
.

The first equality in the first line used that xq = xp for every q ∈ Λ(p). The second equality used that

zp =
∑
q∈Λ(p) zq as p /∈ S′t. The first inequality in the second line used that e−θ ≤ 1− θ+ θ2

2 for every θ ≥ 0.

The second inequality used that
zp
xp
≤ 1.
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Notice that the height of the root r of T ◦ is D− 1. Applying the above lemma with p = r, we have that
T covers group S′t with probability at least 1

D ·
zr
xr

= 1
D . So, the correspondent ~̀ covers St with probability

at least 1
D , proving Property (3.1a).

3.5 Concentration bound on costs

In this section, we prove Property (3.1b). To this end, we fix an index i ∈ [m] and analyze the type-i cost
of T = (V,E). For notation convenience, we use cp to denote cip, and cost for type-i cost.

For every vertex p ∈ V ◦, let wp =
∑
q∈Λ∗(p) cqxq be the fractional cost incurred by the sub-tree of T ◦

rooted at p. By (8), we have wp ≤ xp. Let Wp =
∑
q∈Λ∗(p)∩V cq be the cost of T incurred by descendants of

p. So, we have E[Wp] = wp.
As is typical, we shall introduce a parameter s > 0 and consider the expectation of the random exponential

variables esWp . Later we shall set s = ln(1 + 1
2D ), but the main lemma holds for any s > 0. We define an

αh for every integer h ≥ 0 as α0 = es and αh = eαh−1−1,∀h ≥ 1. Notice that α0, α1, . . . is an increasing
sequence.

In this section, we count selector nodes in the definition of heights: the height of a node p ∈ V ◦ is the
maximum number of selector nodes in a path from p to its descendant leaf. The main lemma we prove in
this section is:

Lemma 3.5. For any node p in T ◦ of height h, we have E
[
esWp

∣∣p ∈ V ] ≤ αwp/xp

h .

Proof. Again, we prove the lemma for nodes p from bottom to top of the tree T ◦. Focus on a node p of
height h. Consider the case where p is a copier or leaf node. Then all children of p has height at most h.

E
[
esWp

∣∣p ∈ V ] = escp
∏

q∈Λ(p)

E
[
esWq

∣∣q ∈ V ] = α
cpxp/xp

0

∏
q∈Λ(p)

α
wq/xp

h ≤ αcpxp/xp

h

∏
q∈Λ(p)

α
wq/xp

h = α
wp/xp

h .

The last inequality used that α0 ≤ αh, and the last equality used that wp = cpxp +
∑
q∈Λ(p) wq.

Now suppose p is a selector. Then all children of p have height at most h − 1. Conditioned on p ∈ V ,
the rounding procedure adds exactly one child q of p to V . Then, we have

E
[
esWp

∣∣p ∈ V ] = escp ·
∑

q∈Λ(p)

xq
xp

E
[
esWq

∣∣q ∈ V ] = escp ·
∑

q∈Λ(p)

xq
xp
α
wq/xq

h−1

≤ escp
((

wp
xp
− cp

)
· αh−1 +

(
1− wp

xp
+ cp

))
= escp

(
1 +

(
wq
xq
− cp

)
(αh−1 − 1)

)
≤ escp · exp

((
wp
xp
− cp

)
(αh−1 − 1)

)
= escp · αwp/xp−cp

h ≤ αwp/xp

h .

To see the inequality in the second line, we notice the following four facts: (i) αθh−1 is a convex function of
θ, (ii) wq/xq ∈ [0, 1] for every q ∈ Λ(p), (iii)

∑
q∈Λ(p)

xq

xp
= 1 and (iv)

∑
q∈Λ(p)

xq

xp
·wq

xq
=
∑
q∈Λ(p)

wq

xp
=

wp

xp
−cp.

The equality in the last line is by the definition of αh. The last inequality used that es = α0 ≤ αh.

The height of the root r is D.3 Now, we set s = ln(1 + 1
2D ). We prove inductively the following lemma:

Lemma 3.6. For every h ∈ [0, D], we have αh ≤ 1 + 1
2D−h .

Proof. By definition, α0 = es = 1 + 1
2D and thus the statement holds for h = 0. Let h ∈ [1, D] and assume

the statement holds for h− 1. Then, we have

αh = eαh−1−1 ≤ e1+ 1
2D−h+1 ≤ 1 +

1

2D − h+ 1
+

(
1

2D − h+ 1

)2

3The height of r is D + 1 by definition, but Lemma 3.5 holds when we define its height to be D, as one can collapse the first
two levels of T ◦ into one level.
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= 1 +
2D − h+ 2

(2D − h+ 1)2
≤ 1 +

1

2D − h
.

The first inequality used the induction hypothesis and the second one used that for every θ ∈ [0, 1], we have
eθ ≤ 1 + θ + θ2.

To wrap up, we apply Lemma 3.5 on p = r. Notice that r ∈ V always happens, at Wr = costi(T ). We

have E
[

exp
(

ln
(
1 + 1

2D

)
· costi(T )

)]
≤ α

wr/xr

D ≤ 1 + 1
D by Lemma 3.6 and that wr ≤ xr = 1. Using the

correspondence between sub-trees of T ◦ and labelings of T proves Property (3.1b).

4 Reduction of Degree-Bounded Group Steiner Tree on Bounded-
Treewidth Graphs to Tree-Labeling Problem

In this section we prove Theorem 1.2, by reducing Group Steiner Tree with degree bounds on bounded
treewidth graphs to the tree labeling problem studied in Section 3. Recall the input of the problem contains
a graph G = (V,E) with edge costs c ∈ RE≥0, a root r, k groups S1, S2, · · · , Sk of vertices, and a degree
bound dbv ∈ Z>0 for every v ∈ V . Without loss of generality, we assume {r}, S1, S2, · · · , Sk are mutually
disjoint. Again, we use opt to denote the minimum-cost of a valid subgraph H.

Let T = (B,E) be the tree decomposition of the graph G = (V,E). Every b ∈ B is called a bag and let
Xb ⊆ V be the set of vertices contained in the bag b. We can add the root r to all the bags, which increases
the maximum size of a bag by at most 1. It was show in [3] that we can assume T is a rooted binary tree
of depth O(log n), by sacrificing the bag size by an O(1) factor. We summarize the properties as follows:

• T is a full binary tree rooted at r, with depth O(log n).

• |Xb| ≤ O(1) · tw for every b ∈ B.

• For every edge (u, v) ∈ E, there is some b ∈ B with {u, v} ⊆ Xb.

• For every v ∈ V , the set of bags b with v ∈ Xb is connected in T.

For every e ∈ E, let be be the highest node b such that Xb contains both end vertices of e. This is
well-defined due to the last property in the above list. For every b ∈ B, we let Eb = {e ∈ E : be = b}. So,
(Eb)b∈B forms a partition of E.

Notations on Partitions. Given two partitions Π and Π′ of a common set X, we say Π′ refines Π if
any two elements in X that are in the same set in Π′ are also in the same set in Π. We use Π′ ≤ Π to denote
that Π′ refines Π. Given two partitions Π and Π′ of X, we use Π ∨ Π′ to denote the join of Π and Π′ w.r.t
the relation ≤. That is, we define a graph where there is an edge between u and v if they are in the same
set in Π or Π′. Then two vertices u and v are in the same set in the partition Π ∨Π′ if and only if they are
in the same connected component in the graph.

Abusing notations slightly, if an element v is not included in a partition Π, we treat {v} as a singleton
set in Π. This allows us to extend the operators ≤ and ∨ to two partitions Π and Π′ with different ground
sets. Given a partition Π and a set X, we let Π[X] be the partition Π restricted to the ground set X: two
elements u, v ∈ X are in the same set in Π[X] if and only if they are in the same set in Π.

For any set F ⊆ E of edges, we define CC(F ) to be the partition of the vertices incident to F , such that
u and v are in the same set in CC(F ) if and only if they are in the same connected component in (V, F ).

Construction of Labels and Consistency Triples. The tree T for the tree-labeling instance is the
same as the decomposition tree T. (This is the reason we use the same notion T.) So we have V = B. Now
we fix a bag b ∈ B and define the set Lb of labels for b. To define the labels, we let H = (VH , EH) be any
sub-graph of G, which we should think of as the output of the GST problem. Fix a bag b ∈ B, let Λ∗(b) be
the set of descendants of b in T, including b itself. We then make the following definitions:
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• Fb(H) := EH ∩ Eb is the set of edges from Eb that are included in H.

• Π↓b(H) is the partition of Xb so that two vertices u, v ∈ Xb is in the set in Π↓b(H) if and only if they
are connected in the graph (VH , EH ∩

⋃
b′∈Λ∗(b)Eb′).

• Π↑b(H) is the partition of Xb so that two vertices u, v ∈ Xb is in the set in Π↓b(H) if and only if they
are connected in the graph (VH , EH ∩

⋃
b′∈B\Λ∗(b)∪{b}Eb′).

In words, Π↓b(H) and Π↓b(H) respectively indicate the partition of Xb correspondent to the edges of H in
bags below and above b respectively.

Without knowingH, we can define the label set Lb for b to be all tuples (Fb,Π
↓
b ,Π

↑
b) such that (Fb,Π

↓
b ,Π

↑
b) =

(Fb(H),Π↓b(H),Π↑b(H)) for some valid output graph H. We then define the consistency tuples Γb’s so that
a consistent labeling gives a valid outputs sub-graph H.

Formally, let Lb be the set of all tuples (Fb,Π
↓
b ,Π

↑
b) such that

• Fb ⊆ Eb is a forest over Xb, CC(Fb) ≤ Π↓b and CC(Fb) ≤ Π↑b ,

• if b = r, then Π↑b = CC(Fb), and

• if b is a leaf, then Π↓b = CC(Fb).

Then we define the set Γb of triples, for an inner vertex b in T with two children b′ and b′′. We have(
(Fb,Π

↓
b ,Π

↑
b), (Fb′ ,Π

↓
b′ ,Π

↑
b′), (Fb′′ ,Π

↓
b′′ ,Π

↑
b′′)
)
∈ Γb if and only if

• Π↓b =
(

Π↓b′ ∨Π↓b′′ ∨ CC(Fb)
)

[Xb],

• Π↑b′ =
(

Π↑b ∨Π↓b′′ ∨ CC(Fb′)
)

[Xb], and

• Π↑b′′ =
(

Π↑b ∨Π↓b′ ∨ CC(Fb′′)
)

[Xb′′ ].

Claim 4.1. Let {(Fb,Π↓b ,Π
↑
b)}b∈B be a consistent labeling of the tree T. Let H = (V,

⋃
b∈B Fb). Then we

have Π↓b [H] = Π↓b and Π↑b [H] = Π↑b for every b ∈ B.

The claim says that if the labels are consistent, then Π↓b and Π↑b represent their true values.

Construction of Covering and Cost Constraints. The requirement that all groups are connected
to r can be captured by the covering constraint in the tree-labeling problem. For every t ∈ [k], a label

(Fb,Π
↓
b ,Π

↑
b) ∈ Lb for some b ∈ B can satisfy the group St if for some s ∈ St we have (s, r) are in the same

set in the partition Π↓b ∨Π↑b .
The edge costs and degree constraints can be captured by the cost constraints in the tree-labeling instance.

Consider the costs first. Using binary search, we assume we know the optimum cost C∗ for the instance. For
every bag b ∈ B and every label (Fb,Π

↓
b ,Π

↑
b), the cost of the label is c(Fb) :=

∑
e∈Fb

ce. We disallow this
label by removing it if c(Fb) > C∗. Scaling all costs by C∗ so that all costs are in [0, 1]. So, the cost being
at most C∗ in the group Steiner tree instance is equivalent to that the cost of all labels is at most 1.

Finally we consider the degree constraints dH(v) ≤ dbv for every v ∈ V . For every v ∈ V , we define a

cost constraint in the tree-labeling instance. For every bag b ∈ B with v ∈ Xb, and every label (Fb,Π
↓
b ,Π

↑
b),

the cost of the label is |δ(v) ∩ Fb|, where δ(v) is the incident edges of v in G. Again, we disallow the label if
|δ(v)∩Fb| > dbv, and we scale the costs by dbv so that all costs are in [0, 1]. Then the degree constraint on
v is reduced to this cost requirement in the tree labeling instance.
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Wrapping Up. We then run the algorithm in Theorem 3.1 on the constructed tree-labeling instance.
Let (Fb,Π

↓
b ,Π

↑
b) be the label of a bag b, and let H = (V,

⋃
b∈B Fb). By Claim 4.1, the consistency constraints

guarantee that the Π↓b and Π↑b truthfully represent the connectivity of the graph G. So, if the covering
constraint for a group St is satisfied, then H indeed connects r and St. Recall that D = O(log n) is the
depth of the tree T. By Properties (3.1a) and (3.1b), we have

• For every t ∈ [k], H connects r and St with probability at least 1
D .

• E
[

exp(ln(1 + 1
2D ) · c(H)

C∗ )
]
≤ 1 + 1

D .

• E
[

exp(ln(1 + 1
2D ) · dH(v)

dbv
)
]
≤ 1 + 1

D for every v ∈ V .

We run the algorithm for M = Θ(D log n) = Θ(log2 n) times, with a large hidden constant in the O(·)
notation, and output the union H of all sub-graphs constructed by the M times. With high probability, all

groups are connected to r in H. E[exp(ln(1+ 1
2D ) · dH(v)

dbv
)] ≤ (1+ 1

D )M = nO(1). Using Markov inequality, we

have exp(ln(1+ 1
2D )· dh(v)

dbv
) ≤ nO(1) for every v ∈ V with high probability. That is, dh(v) ≤ O(dbv log n·D) =

O(log2 n)dbv with high probability. Similarly, with high probability, we have c(H) ≤ O(log2 n)C∗.
We then analyze the running time of the algorithm. The key parameter deciding the running time is ∆,

the maximum size of a label set Lb. As we assumed Fb is a forest over Xb and |Xb| ≤ O(tw), there are twO(tw)

different possibilities for Fb. There are also twO(tw) possibilities for each of Π↓b and Π↑b . So, |Lb| ≤ twO(tw) for
every b ∈ B. Therefore, the running time of the algorithm is poly(n) ·∆O(D) = poly(n) · (twO(tw))O(logn) =
nO(tw log tw). This finishes the proof of Theorem 1.2.
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