
The Telephone k-multicast problem∗

Daniel Hathcock Carnegie Mellon University, USA dhathcoc@andrew.cmu.edu

Guy Kortsarz Rutgers University, Camden, USA guyk@camden.rutgers.edu

R. Ravi Carnegie Mellon University, USA ravi@andrew.cmu.edu

Abstract

We consider minimum time multicasting problems in directed and undirected graphs:
given a root node and a subset of t terminal nodes, multicasting seeks to find a min-
imum number of rounds within which all terminals can be informed with a message
originating at the root. In each round, the telephone model we study allows the infor-
mation to move via a matching from the informed nodes to the uninformed nodes.

Since minimum time multicasting in digraphs is poorly understood compared to
the undirected variant, we study an intermediate problem in undirected graphs that
specifies a target k < t, and requires the only k of the terminal be informed in the mini-
mum number of rounds. For this problem, we improve implications of prior results and
obtain an Õ(t1/3) multiplicative approximation. For the directed version, we obtain an
additive Õ(k1/2) approximation algorithm (with a poly-logarithmic multiplicative fac-
tor). Our algorithms are based on reductions to the related problems of finding k-trees
of minimum poise (sum of maximum degree and diameter) and applying a combination
of greedy network decomposition techniques and set covering under partition matroid
constraints.

∗This material is based upon work supported in part by the Air Force Office of Scientific Research under
award number FA9550-23-1-0031 to RR.

1 Introduction

We study an information spreading problem that captures applications in distributed com-
puting [15] and keeping distributed copies of databases synchronized [2]. A given graph
models a synchronous network of processors that exchange information in rounds. There
are several models describing how information may be exchanged between processors in the
graph. In this work, we focus on the classic Telephone Model [7]: during a round, each vertex
that knows the message can send the message to at most one of its neighbors.

In the Minimum Time Telephone Multicast (MTM) problem, we are given a net-
work, modeled by a directed or undirected graph G(V,E), a root vertex r that knows a
message, and a set S of terminals. The message must be transmitted from r to S under the
telephone model. In every round, there is a set of vertices K ⊆ V that know the message
(initially K = {r}), and the communication in a given round is described by a matching
{(k1, v1), . . . , (kℓ, vℓ)} between some pairs of vertices ki ∈ K and vi ̸∈ K for which kivi ∈ E.
In the directed setting, edge kivi must be directed from ki to vi. Following this round, all
of the matched vertices {vi} are added to K. When S = V this problem is called The
Minimum Time Broadcast (MTB) problem.

The best-known approximation ratio for the MTM problem on an undirected graph
is O(log t/ log log t) [5], where t = |S|. In [3], it is shown that unless P = NP , the MTB
problem admits no 3−ϵ approximation for any constant ϵ. For directed graphs, the Minimum
Time Broadcast problem admits an O(log n) approximation [3] in an n-node graph. The
same paper shows that unless P = Quasi(P) the problem admits no better than Ω(

√
log n)

approximation.
However, for the directed case the multicast problem seems harder to approximate. The

best-known approximation ratio for this problem is an additive O(
√
t) guarantee (with poly-

logarithmic multiplicative factor) [4]. This leaves a wide gap between the current best
approximation algorithms for undirected versus directed multicast problems. In this work, we
make progress toward closing that gap by studying an intermediate problem, the Minimum
Time Telephone k-Multicast problem (k-MTM), defined below.

Input: A directed or undirected graph G(V,E) with root r, a collection of terminals
S ⊆ V and a number k ≤ |S|.
Required: Send the message originating at r to any k terminals of S in the telephone
model in a minimum number of rounds.

In terms of approximability, the undirected k-MTM problem lies between the undirected and
directed MTM problems (up to log k factors, see [10]1), while the directed k-MTM problem
generalizes all of the aforementioned problems.

Applications. Broadcast and multicast problems find numerous applications in distributed
settings. For example, in the Network Aggregation problem, each user sends its data to a

1[10] deals with the degree-bounded versions of these problems, but their proof works as well for poise
problems. See below for the connection between poise and k-MTM.

1

chosen central vertex r. This is equivalent to broadcasting in the local model for distributed
computation (see [8]). Broadcasting is also crucial in Sensor Networks [12]. Another applica-
tion is ensuring that the maximum information delay in vector clocks problems is minimized
[13, 11].

One application of multicasting is to keep information across copies of replicated databases
consistent, by broadcasting from the changed copy to the others [13, 6, 14]. If we are given
a large set of t terminals of which we only want to keep replicated copies in some k of them,
finding the best k to minimize the maximum synchronization time among these termiunals
corresponds to the k-MTM problem.

Minimum Poise Trees. Any telephone multicast schedule defines a tree rooted at r,
spanning all terminals. The parent of a vertex u ̸= r is defined to be the unique vertex that
sends the message to u. Let T ∗ be the tree defined by the optimal schedule. The height
of T ∗ (the largest distance in T ∗ from the root) is denoted by D∗. The largest out-degree2

in T ∗ is denoted by B∗. The poise of T ∗ is defined as p∗ = B∗ + D∗ [16]. Denote by OPT
the number of rounds used by the optimal schedule. Since at every round, each informed
vertex can send the message to at most one neighbor, OPT ≥ B∗ and OPT ≥ D∗. Hence,
in general we have OPT ≥ p∗/2. A partial converse is shown in [16]. A ρ approximation for
the Minimum Poise Steiner Tree implies an O(log t) · ρ/ log log t approximation for the
MTM problem.

Following [16], approximating the k-MTM problem is equivalent (up to logarithmic fac-
tors in k) to approximating the following Minimum Poise Steiner k-Tree problem:

Input: A directed or undirected graph G(V,E) with root r, a collection S ⊆ V of
terminals, and a number k.
Required: A k-tree rooted at r, namely a tree T ′(V,E) containing paths from r to k of
the terminals, with minimum poise.

We focus on approximating these poise problems.

Definition 1.1. A O(f(k))-additive approximation for the Minimum Poise k-tree problem
returns a tree T with k terminals, with maximum degree3 Õ(B∗)+O(f(k)) and height O(D∗).

1.1 Our results

We give an O(
√
k)-additive approximation for the directed versions.

Theorem 1.2. Minimum Poise Steiner k-tree problem on directed graphs admits a poly-
nomial time Õ(k1/2)-additive approximation. This implies the same approximation for the
Minimum Time Telephone k-multicast problem.

2For simplicity, we say degree instead of out-degree for the rest of the paper when discussing directed
graphs.

3The Õ notation hides poly-logarithmic factors in k

2

The second part of the statement follows from [16].
In [9], a multiplicative O(

√
k)-approximation is given for the directed Min-Max Degree k-

Tree problem, which asks to find a tree spanning k terminals while minimizing the maximum
degree. Their algorithm iteratively finds trees containing

√
k · B∗ terminals, and uses flows

to connect them to the root. Our directed result is more general than that of [9] in that it
can handle both degree bounds and height bounds. Moreover, our approximation for degree
is stronger, since we get an additive O(

√
k) approximation. Therefore, it may be better

than the approximation of [9] in the case that B∗ is large. Our approximation ratio for the
diameter is constant.

Our result is also more general than the O(
√
t)-additive approximation for directed MTM

of [4], as it handles the k-tree version of the problem, and recovers the same O(
√
t)-additive

approximation in the case k = t (up to logarithmic factors). In [4], the so-called multiple
set-cover problem is used, a variant of set cover, while our result uses max coverage subject
to a matroid constraint.

For undirected graphs, we give an Õ(t1/3) approximation, which is a better ratio in the
worst case if k is close to t. This represents progress toward closing the gap between the
approximability of undirected and directed MTM, since in [10] it is shown that the undirected
k-MTM problem lies between undirected and directed MTM in terms of approximability.

Theorem 1.3. The Minimum Poise Steiner k-tree problem on undirected graphs admits
a polynomial time Õ(t1/3) approximation, and therefore the Minimum Time Telephone k-
multicast problem admits the same approximation.

The O(
√
k) additive ratio can be as bad as Ω(

√
t) multiplicative ratio, if B∗ is constant

and k = Ω(t). Therefore, in the worst case, an Õ(t1/3) approximation is a better ratio. In
addition, if B∗ = o(t1/6) and k = Ω(t), the multiplicative ratio gives a better additive ratio.

1.2 Technical Overview

For the directed case, our techniques are based on [4]. However, our problem is harder
since it is not clear which k terminals to choose. An important difference is that we use
an approximation algorithm for maximizing set coverage (a submodular function) under
matroid constraints [1]. The multiplicative approximation for the undirected case builds on
this, and requires several graph decomposition techniques to be carefully combined.

For both results, we denote the maximum degree as B∗ and height as D∗ of an optimal
minimum poise tree T ∗. It can be assumed that D∗ and B∗ are known by trying all possi-
bilities, as there are only polynomially many. Moreover, since D∗ is known, all vertices of
distance greater than D∗ from the root may be removed.

Directed Min-Poise Steiner k-Tree. In order to get an O(
√
k) additive approximation

for the directed min-poise Steiner k-tree problem, we employ a greedy strategy. We iteratively
find a collection of vertex-disjoint trees, each covering (i.e., containing) exactly

√
k terminals

and of height at most D∗, until no more can be found. We call these good trees.

3

In the case that at least
√
k many good trees are found, an additive O(

√
k)-approximation

follows by taking any
√
k of the good trees along with shortest paths from the root r to the

roots of each of these trees. This yields a subgraph (not necessarily a tree, since the shortest
paths may not be disjoint from the good trees) with maximum out-degree at most 2

√
k,

and radius (maximum distance from r) at most 2 · D∗. Moreover, the subgraph contains
k terminals. Now the non-disjointness may be overcome by returning a shortest path tree
spanning this subgraph. This gives the desired approximation.

In the other case that fewer than
√
k good trees are found, we may still connect them

to the root via shortest paths. This gives a subgraph of low poise, but does not yet cover k
terminals. If k1 < k terminals are covered, we must determine how to cover k−k1 additional
terminals without inducing high degree or height.

This is the main technical contribution of the directed result: we can recast the covering
of k − k1 additional terminals as a set cover instance, and the desired poise guarantees can
be obtained by imposing a partition matroid constraint on the sets in the instance. Then,
an algorithm for approximating submodular function maximization subject to a matroid
constraint [1] is applied.

Partition Matroid Set Coverage Procedure. Suppose we are given a partition of the
graph into A∪C = V with r ∈ A, such that all of A is reachable with low poise and contains
k1 terminals. We want to cover at least k − k1 terminals in C with low poise, and we know
that there exists a tree T ∗ rooted at r which does so.

Say that a node c ∈ C covers all the terminals in C that it can reach within distance D∗.
In this way, we define a set cover instance over the ground set of terminals in C in which
each set is identified by an edge (a, c) between a node in a ∈ A and a node in c ∈ C. The
set (a, c) contains all terminals covered by c. Defining the sets this way allows us to enforce
degree constraints in the nodes in A since the sets can be partitioned by their member in
A. That is, we form a partition with the parts X(a) = {(a, c) : c ∈ C, ac ∈ E} for each
a ∈ A. We now impose the constraint that at most B∗ sets may be chosen from any part
X(a), reflecting the desired degree constraint. This is a set cover instance with a partition
matroid constraint with a requirement of k − k1 coverage.

The problem of selecting sets to maximize the number of terminals covered subject to
the matroid constraint is a special case of submodular function maximization subject to a
matroid constraint. Moreover, T ∗ provides a certificate that there exists a collection of sets
satisfying the matroid constraint and covering at least k−k1 terminals in C. Hence, we may
apply the (1− 1

e
)-approximation for this problem [1] to find a collection of sets satisfying the

matroid constraint and covering at least (1− 1
e
) · (k − k1) terminals in C.

Given the choice of sets (a, c) by the algorithm, we identify a set of edges that may be
added to extend our subgraph to cover these terminals. These newly covered terminals are
then removed, and the process repeated. In each round, we can cover a constant fraction
of the desired number of terminals, so we need only O(log k) rounds. Moreover, any given
round induces additional degree of only B∗ on nodes in A. The degree induced on nodes in
C depends on the size of the parts X(a), and this can be bounded in our applications (e.g.,

4

by
√
k in the directed setting described above). Finally, the distance from the root of any

node added is O(D∗), so in total the poise of the subgraph remains low. In the end, we again
output a shortest path tree spanning this subgraph.

Improvement in Undirected Graphs. In the undirected setting, the result can be
improved by taking advantage of the fact that if a good (low-poise) tree covering many
terminals is found, then we need only cover any node in that tree in order to cover all of
those terminals with low poise (as opposed to the directed case where we would have to cover
the root of that tree). Essentially, we may contract the tree and treat the contracted node
as containing many terminals.

Specifically, we will maintain a set R of nodes that we have covered so far with low poise
(by contracting, we can think of this simply as the root r). We first group the terminals in
the remaining graph C = V \R as before by greedily finding disjoint trees of low poise, now
each containing t1/3 terminals, called small trees. Note that some terminals may not lie in
any small tree. If the algorithm finds fewer than t1/3 small trees, then the same matroid-
constrained covering procedure from above can be applied to immediately get an additive
O(t1/3)-approximation.

On the other hand, if there are many small trees, we show that progress can be made by
either covering or discarding a large number of terminals at once. If we are able to aggregate
t1/3 small trees within a distanceD∗, we have covered t2/3 terminals and hence made sufficient
progress in coverage: we can repeat this at most t1/3 times to finish. However, we may have
the additional complexity of the optimal tree containing terminals that are not in one of
these small trees we computed in C. We handle this case by using the matroid procedure
to extract as many terminals as any optimal solution might cover from the small trees, and
then discarding all the terminals from all of the unused small trees. Since the number of
small trees (each with t1/3 terminals) is Ω(t1/3), this allows us to bound the number of such
discarding iterations by O(t1/3). In summary, we employ O(t1/3) iterations of either covering
or discarding t2/3 terminals in the algorithm leading to the claimed O(t1/3) multiplicative
guarantee. Over the course of these iterations, the total degree accumulated by any node
will be at most Õ(t1/3) ·B∗ (Note this guarantee is now multiplicative, since a node can gain
Õ(B∗) degree in each of the t1/3 covering iterations).

Finally, we remark that the improved guarantee in this setting is in terms of t, the total
number of terminals, rather than k. This is because our algorithm relies on removing a large
number of terminals from the entire set of t terminals, without necessarily covering all of
them.

2 Preliminaries

Let dist(u, v) denote the number of edges in the shortest path from u to v in G. We denote
by G(U) the graph induced by U , and by distG(U)(u, v) the distance from u to v in the graph
G(U). Recall that we denote the minimum poise tree by T ∗, its maximum degree by B∗,
and its height by D∗.

5

Assumption 2.1. Removing vertices of distance more than D∗ from the root r in G does
not change the optimal solution. Hence, we will assume for the rest of the paper that G only
contains vertices of distance at most D∗ from r.

Remark 2.2. For the rest of the paper, we assume that quantities such as
√
k are integral.

Making the algorithm precise requires using ⌈
√
k⌉. However, the changes are minimal and

elementary.

For simplicity, we assume that every terminal has in-degree 1 and out-degree 0, by at-
taching new terminal vertices to every terminal (this only increases the poise by at most
an additive constant). For undirected graphs, we assume that terminals have degree 1.
Therefore, removing terminals can’t turn a connected graph into a disconnected graph.

The input for the Set Cover problem is a universe U and a collection S of sets Si ⊆ U . We
say that a set Si covers all the elements that belong to this set. The goal is to find a a sub-
collection of sets S ′ ⊆ S of minimum size that covers all elements, namely,

⋃
Si∈S′ Si = U .

The Set Coverage problem under matroid constraints has the input of Set Cover, and in
addition, a matroid M defined over the sets S. The goal is to select an independent set
I in the Matroid so that |

⋃
Si∈I Si| is maximum. A partition matroid instance divides S

into pairwise disjoint collections of sets Si, whose union is all of S. For every collection
Si, there is a bound pi on the number of sets that can be selected from Si. A collection of
sets containing at most pi sets from each Si is precisely an independent set in the partition
matroid. The goal is to find an independent set in the partition matroid that covers the
largest number of elements. This problem is a special case of maximizing a submodular
function under matroid constraints and admits a polynomial time 1−1/e-approximation [1].
The procedure of [1] is one of the main tools in our algorithm. We called this procedure the
Matroid procedure.

3 The Partition Matroid Cover Algorithm

In the next two sections, our algorithms for both the directed and undirected cases define a
disjoint partition of the graph vertices into A∪C = V . The root r always belongs to A, and
we will ensure that all of A can be covered by a low poise tree rooted at r. In this section,
we discuss how to cover sufficiently many terminals from C with low poise by connecting
them to the root through A. We do this by defining an instance of the Set Coverage problem
under a partition matroid constraint4.

Definition 3.1. Define a Set Coverage instance as follows.

• The items are S ∩ C (the terminals in C).

4Note that the parameter k represents the remaining number of terminals we need to cover. Given a
partition A,C we will assume that all terminals in A have been spanned, and thus we need to cover k
terminals in C. That is, if A has k1 terminals for some k1 < k, we will set k ← k − k1. Note that we are
guaranteed that C ∩ T ∗ contains at least k − k1 terminals supplying a feasible solution.

6

• The sets (also called pairs) are S = {(a, c) | a ∈ A, c ∈ C, and ac ∈ E} where (a, c)
covers a terminal t ∈ S ∩ C if distG(C)(c, t) ≤ D∗.

The partition matroid is defined as follows.

Definition 3.2. S is partitioned into collections

X(a) = {(a, c) | c ∈ C and ac ∈ E}

for every a ∈ A. The bound on the number of sets to be chosen from X(a) is B∗.

By definition, the partition is disjoint and therefore, we have a valid partition matroid.
Recall that r ∈ A. We use the following procedure.

Procedure PMCover(A,C).

1. E ′ ← ∅, S ′ ← S ∩ C.

2. While k > 0 do:

(a) Define the partition matroid Set Coverage instance from A,C, S ′ as above with
sets S ′ and apply Procedure Matroid of [1] to find an independent set of approx-
imately maximum coverage. Let I be the independent set it returns.

(b) E ′ ← E ′ ∪ I
(c) Decrease k by the number of terminals covered by I
(d) Remove the terminals covered by I from S ′.

3. Returns E ′

Analysis

We will show that for every a ∈ A, |X(a) ∩ E ′| ≤ O(log k) · B∗. This will be used to argue
that if (a, c) ∈ E ′, we later may make a the parent of c in the tree we build without incurring
high degree.

Definition 3.3. Define a mapping from terminals in T ∗∩C to S ′ as follows. For a terminal
t, let a = at be the vertex a ∈ A that is an ancestor of t in T ∗ and among them distT ∗(a, t)
is minimum. This vertex is well defined since r ∈ A is the root of T ∗. Let c = ct be the child
of a in T ∗ that is an ancestor of t. Define f(t) = (a, c).

Claim 3.4. There exists an independent set I∗ in the partition matroid that covers at least
k terminals in C ∩ S.

7

Proof. We show that every terminal in t ∈ T ∗ ∩ C is covered by some set. Let a = at and
let c = ct. Since a has minimum distance to t from all vertices in A, the path from c to t
belongs to G(C). The number of edges in the path between c and t is at most D∗ − 1. This
implies that the set (a, c) covers t. Create a set I∗ = {f(t) | t ∈ T ∗ ∩ S ∩ C}. We note that
f(t) = f(t′) = (a, c) may hold for two different terminals, but I∗ includes every such pair
(a, c) once (namely, I∗ is a set and not a multiset). For any a ∈ A, the number of different
pairs of the form (a, c1), (a, c2), . . . in I∗ can’t be more than B∗, because every such pair
increases a’s degree in T ∗ by 1. Thus, I∗ is independent in the partition matroid. Since all
terminals in T ∗ ∩ C are covered, k terminals are covered.

Claim 3.5. Procedure PMCover returns a collection of pairs E ′ so that for every a ∈ A,
X(a) ∩ E ′ = O(log k) · B∗ and E ′ covers k terminals. Thus if in some tree, vertex a ∈ A is
made the parent of all c for which (a, c) ∈ E ′, the degree of a will be bounded by O(log k) ·B∗.

Proof. Since Procedure Matroid returns an independent set in the partition matroid, at
every iteration we have |X(a)∩I| ≤ B∗. Claim 3.4 and the guarantee of Procedure Matroid
by [1] imply that (1 − 1/e)k terminals are covered. Let kor ≤ k be the original number of
terminals to be covered and knew the number of terminals to be covered in a given iteration.
Then in the next iteration,

knew ← knew − (1− 1/e)knew =
knew
e

.

Therefore, after i iterations, kor/e
i terminals remain to be covered. Hence, the number of

iterations is O(log k). The claim follows.

4 Approximating the poise for directed graphs

Our algorithm maintains a set A (initialized with the root r) containing the terminals covered
with low poise so far, and C = V \A. Consider a set C and the graph G(C) induced by C.

Definition 4.1. A vertex c ∈ C is ρ-good (with respect to C) if there are at least ρ terminals
in C of distance at most D∗ from c in G(C). A ρ-good tree is a tree rooted at some c with
exactly ρ terminals and height at most D∗.

By assumption, the out-degree of terminals is 0. Therefore all terminals are leaves. Since
we may discard non-terminal leaves, a ρ-good trees contains exactly

√
k leaf terminals.

Definition 4.2. A set C of vertices, is a ρ-packing if there is no ρ-good vertex in C.

Definition 4.3. Let {Ti} be a collection of vertex disjoint trees and let A be the set of vertices
in

⋃
i Ti. Let C = V − A. Then A,C is a ρ-additive partition if:

1. The trees Ti are ρ-good with respect to V , and are all vertex-disjoint.

2. There are at most ρ trees Ti.

8

3. C is a ρ packing.

Let qi be the root of Ti. Intuitively, since there are at most ρ trees Ti, we can add a
shortest path Pi from the root r to each qi, giving a tree rooted at r with low poise covering
terminals in A. In addition, since C is a ρ-packing, at least k (meaning the number of
remaining terminals to cover after covering those in A) of C’s terminals can be covered with
some collection of low poise trees. In particular, for each c ∈ C, we will denote by T (c) the
tree in G(C) formed by taking a shortest path from c to every terminal within distance D∗.
Since every c ∈ C is not ρ-good, all such trees have max degree at most ρ.

The algorithm attempts to find a ρ-additive partition. It greedily finds ρ-good trees, and
removes them until the set C that remains is a ρ-packing. Then the procedure PMCover can
be used to connect the low poise trees covering A and C. However, there may be too many
ρ-good trees in A for (A,C) to be a ρ-additive partition. In this case, it simply connects
the root to any ρ of the trees Ti. By choosing ρ =

√
k, this ensures enough terminals are

covered. The algorithm is as follows.

Procedure Directed(G, k):

1. Set ρ =
√
k.

2. (Greedy Packing) Let A = {r}, and C = V − {r}. While C is not a ρ-packing:

• Find a ρ-good tree T in G(C).

• Remove the vertices of T from C and add them to A.

Let {Ti} denote the set of ρ-good trees found.

3. (Many Trees) If the number of ρ-good trees found is at least ρ, then:

• Choose any ρ of the trees {Ti} in A, and form the subgraph H ⊆ G by including
the root r, the chosen trees, and a shortest path from r to the root qi of each
chosen tree Ti.

• Return a shortest path tree of D rooted at r.

4. (Few Trees) Otherwise, the number of ρ-good trees found is at most ρ. So (A,C)
forms a ρ-additive partition. Apply the Procedure Complete on (A,C) and return the
resulting tree.

In the case that a ρ-additive partition (A,C) is found, we use the following algorithm. See
Figure 1 for a depiction of the algorithm at this step.

Procedure Complete(A,C):

1. Apply the procedure PMCover on (A,C) to get E ′.

2. Let E = {ac : (a, c) ∈ E ′}, the set of arcs corresponding to sets chosen by Cover.

9

3. Form the graph HC on vertex set C ∪ {r′}, where r′ is a new node. For each c ∈ C
appearing in some ac ∈ E , include in HC the arc (r′, c) and the tree T (c) (this is the
tree in G(C) formed by taking a shortest path from c to every terminal within distance
D∗). Take a shortest path tree on HC rooted at r′, and let TC be all of the edges from
this tree in G(C).

4. Form the subgraph H ⊆ G by including the root r, each ρ-good tree Ti from A and a
shortest path from r to its root qi, the edges from E , and the edges from TC .

5. Return a shortest path tree of H rooted at r.

Figure 1: A depiction of the algorithm in the case that a ρ-additive partition is found.
The set A includes the root r and all

√
k-good trees found, while C contains the remaining

vertices. Terminals are depicted in blue. Short paths from r to the roots of the good trees are
added (in red). Since C is a

√
k-packing, each vertex c ∈ C can reach less than

√
k terminals

within distance D∗. Hence, we can run the PMCover procedure, with each iteration enforcing
a degree constraint of B∗ on each node in A, as shown.

Analysis

For a directed tree, T , let degT (v) be the (out-)degree of the vertex in T . Now say that we
run step Greedy Packing of Directed with ρ =

√
k.

10

Claim 4.4. If Procedure Directed finds at least ρ ρ-good trees, then step Many Trees of
Procedure Directed returns a tree with at least k terminals, maximum degree O(

√
k), and

height O(D∗)

Proof. Since each tree Ti is
√
k-good, it contains

√
k terminals. Hence, the graph H contains

at least k terminals, each of which can be reached by a path from the root. So the returned
shortest path tree of H has at least k terminals, as desired

To bound the degrees in the returned tree, we just bound the degrees in H. The good
trees Ti are disjoint, and each have maximum degree at most

√
k. Moreover, there are

√
k of

them, so there are only
√
k shortest paths to their roots. Therefore, the degree contributed

to any node v ∈ H is at most
√
k from the Ti, and at most 1 for each shortest path, for

a total of degH(v) ≤ 2
√
k. Finally, each tree Ti in H has height at most D∗, while each

shortest path from the root to some qi has length at most D∗ (by Assumption 2.1), so the
returned shortest path tree has height at most 2 ·D∗.

Claim 4.5. If Procedure Directed finds less than ρ ρ-good trees, then Procedure Complete

finds a tree rooted at r with maximum degree O(log k) ·B∗ +O(
√
k), and height O(D∗) that

that contains at least k terminals of C ∩ S.

Proof. First, observe that H contains all terminals in A, as well as those terminals in C
covered by procedure PMCover. In particular, by Claim 3.5, H contains at least k terminals,
so the returned shortest path tree does as well.

Now we bound the degrees of nodes in the returned tree. The Ti making up A are disjoint√
k-good trees each having maximum degree at most

√
k. And there are less than

√
k of

them, so we add at most
√
k shortest paths to their roots qi. Hence, for each node v ∈ A, the

contribution to the degree degH(v) is at most
√
k from the Ti, at most 1 for each shortest

path, plus the contribution from E . By Claim 3.5, the edges of E increase the degree of
vertices in A by O(log k) ·B∗, so in total degH(v) ≤ O(log k) ·B∗ + 2

√
k for each v ∈ A.

All other vertices in H lie in C, and so their degree comes only from the
√
k shortest

paths (contributing at most 1 each), and the edges from TC . Every tree T (c) has depth at
most D∗ by definition. In particular, for any vertex c ∈ C, we must have degTC

(c) ≤
√
k,

since otherwise the subtree of TC rooted at c has more than
√
k leaves, which can all be

assumed to be terminals. But this means that c has more than ρ =
√
k terminals in C of

distance at most D∗, contradicting that c is not ρ-good. Hence, degH(c) ≤ 2
√
k for every

c ∈ C.
Finally, the height of the output tree is at most 3 · D∗ + 1, because we get height D∗,

from the trees Ti, height D
∗ from the shortest paths, height D∗ from TC , and an additional

edge from E .

Therefore, in either case we return a tree with at least k terminals with maximum degree
O(log k) ·B∗ +O(

√
k) and height O(D∗). This implies Theorem 1.2.

The following corollary is useful as it applies in case that the Greedy Packing step of
Procedure Directed finds a ρ-additive partition (i.e., step Few Trees is executed) with some
ρ that may be smaller than

√
k.

11

Corollary 4.6. If Procedure Directed finds a ρ-additive partition A,C, then there exists
polynomial time ρ-additive approximation for the corresponding min poise k-tree problem.

5 The undirected case

In this section, we provide our Õ(t1/3)-approximation algorithm for the Minimum Time
Telephone k-multicast problem on undirected graphs with t terminals, proving Theorem 1.3.

Preliminaries. We assume (for convenience) that the root r is a non-leaf node in T ∗.
Recall that we assume that all terminals have degree 1. We can now assume that after
rooting T ∗ at r, the set of leaves in T ∗ and the set of terminals in T ∗ is the same set. Also
recall that the height of the tree T ∗ rooted at r is at most D∗, since the diameter of T ∗ is at
most D∗.

Algorithm outline. The idea in the undirected case is that if a low-poise tree covering
many terminals is found, then we need only cover any node in that tree in order to cover all
of those terminals with low poise (as opposed to the directed case where we would have to
cover the root of that tree). Essentially, we may contract the tree and treat the contracted
node as containing many terminals.

Specifically, we will maintain a set R of nodes we have covered with low poise (by con-
tracting, we can think of this simply as the root r). We first partition the remaining graph
C = V \R as before by greedily finding small trees.

Definition 5.1. We say that a tree is small size if it contains exactly t1/3 terminals. We
say that a tree is large if it contains exactly t2/3 terminals

If this procedure succeeds in finding a t1/3-additive partition, then we are done by Corol-
lary 4.6. On the other hand, if we fail, we contract these small trees and show how to cover
a sufficiently large number of them by either finding a single large tree reaching t1/3 of these
small trees, or by applying the procedure PMCover. In either case, we may then remove all
of the terminals from these small trees, contract the newly covered nodes into R, and iterate
the entire process to cover the remaining terminals. In each iteration, we show the total
number of terminals discarded is large, so there cannot be too many iterations, and hence
not too much additional degree is incurred.

We first give a simple algorithm that finds trees {Ti} each with exactly t1/3 terminals
(leaves).

Procedure Small(G, k)

1. Apply step Partition from Procedure Directed on G with ρ = t1/3. Denote the
resulting trees as {Ti}.

2. If the procedure succeeds in finding a t1/3-additive partition, apply Procedure Complete
on A,C.

12

3. Else, return {Ti}

In case that Procedure Partition finds a t1/3-additive partition A,C, we are guaranteed
a t1/3-additive ratio from Corollary 4.6. Hence, from now on we assume that Procedure
Partition gives more than t1/3 small trees Ti.

We will proceed to contract each of these small trees into super-terminals. The trees
Ti that we compute, are built by step Greedy Packing from Procedure Directed with ρ =
t1/3. Hence, they have exactly t1/3 terminals/leaves. We contract the terminals of every Ti

into a single super-terminal qi. Denote by S(Ti) the terminals contained in Ti (i.e., those
corresponding to qi). As mentioned in the outline, we have the possibility that the terminals
of an optimal tree may only intersect with a few of these super-terminals. We capture this
in the following definitions.

Definition 5.2. We say that qi is a true terminal if S(Ti) ∩ T ∗ ̸= ∅.

Definition 5.3. Denote by k′ the number of terminals in (
⋃

i Ti) ∩ T ∗. Let µ = ⌈k′/t1/3⌉.

From the definitions, we can see that T ∗ overlaps with at least µ true terminals.
In the graph where the small trees have been contracted to super-terminals, we will

attempt to find a t1/3-packing of these super-terminals. For this, we generalize the definition
of a t1/3-packing in the set C with respect to the super-terminals.

Definition 5.4. We say that c ∈ C is a t1/3-good vertex with respect to the super-terminals
{qi} if there are at least t1/3 terminals qi of distance at most D∗ from c, in G(C). If there
are no t1/3-good vertices in C, C is called a t1/3-packing with respect to {qi}. If C is a
t1/3-packing, then R,C is called a t1/3-additive partition with respect to {qi}.

We can now describe the details of the rest of the undirected algorithm. Specifically, if
Procedure Small fails to find a t1/3-additive partition, then there are two possibilities. Either
C = V \R is a t1/3 packing with respect to the qi, or otherwise there is a t1/3-good vertex in
C.

If C is a t1/3-packing we apply Procedure PMCover on R,C with terminals {qi} since R,C
is a t1/3-additive partition. The goal is covering µ super-terminals. We know that T ∗ covers
at least µ true terminals qi, so these can be reached with height D∗ and maximum degree B∗.
Therefore, our Procedure PMCover covers at least µ super-terminals. Note that the number
of original terminals we actually cover is µ · t1/3 ≥ k′. This follows because each qi represents
a tree Ti that contains t

1/3 terminals. We now discard all the terminals of
⋃

i Ti. Since the
number of Ti is at least t

1/3, the total number of discarded terminals is t2/3.
The other case is that C is not a t1/3-packing with respect to {qi}. Let v ∈ C be a

t1/3-good vertex and let Qv be the corresponding tree. Note that Qv is a large tree since it
spans t1/3 of the qi, each representing t1/3 terminals. We connect r to Qv via a shortest path
P from r to Qv, and contract r ∪P ∪Qv into r. Then we discard the terminals of Qv. Since
Qv is a large tree, the number of terminals discarded is t2/3.

In summary, in both cases t2/3 terminals are discarded. Therefore the number of iterations
in our algorithm is at most t1/3.

13

The degree of vertices in R increases by O(log k) · B∗ every time PMCover is applied.
Alternatively, a large tree Qv is created and we only need a path P from r to Qv. This
increases the degree of some vertices in R by exactly 2. This gives a total degree of 2 · t1/3
because of the bound on the number of iterations.

The main procedure

Undirected(G, k)

1. R← {r}, S ′ ← S.

2. While k > 0 do:

(a) Apply Procedure Small with ρ = t1/3 on C = V \ R. If it succeeds, return the
resulting tree.

(b) If Small fails, contract the terminals from each Ti in the resulting packing into a
corresponding super-terminal qi.

(c) If C = V \R is not a t1/3-packing with respect to {qi} do:
i. Find a large tree Qv inside G(C).

ii. Compute a shortest path P from r to Qv.

iii. R← R ∪ P ∪Qv .

iv. Remove from S ′ all the terminals of Qv and update k.

(d) Else, C = V \R is a t1/3-packing.

i. Apply Procedure PMCover with A = R and C = V − R with the goal of
covering super-terminals.

ii. Let E be the edges corresponding to the returned sets (a, c) ∈ E ′, and TC the
shortest path tree on the corresponding trees T (c) (as in line 3 of Complete).
Write Q = E ∪ TC .

iii. R← R ∪Q.

iv. Remove from S ′ all the terminals
⋃

i Ti and update k.

3. Return the tree induced by R.

Analysis

Claim 5.5. T ∗ contains at least µ true terminals.

Proof. If the number of true terminals is at most µ− 1, the number of terminals in
⋃

i Ti is
at most (µ− 1) · t1/3 < k′ and this is a contradiction.

Claim 5.6. The number of iterations in Procedure Undirected is at most t1/3.

14

Proof. If a tree Qv is found, then it is a large tree hence it contains at least t2/3 terminals.
These terminals are discarded in the iteration. Else, the terminals of S ∩

⋃
i Ti are discarded

and this, again, this removes t2/3 terminals, since we have at least t1/3 different small Ti’s
(because procedure Small failed). Since in either case t2/3 terminals are discarded and the
total number of terminals is t, the number of iterations is at most t1/3.

Claim 5.7. Let v be a vertex so that v ̸∈ R. A single iteration of Procedure Undirected

increases v’s degree by at most 2 · t1/3 + 2. Moreover, if v’s degree increases, v is contracted
into r in that iteration.

Proof. The degree of a vertex increases only if it belongs to a large tree Qv (or its path P
from r), or it belongs to the subgraph Q computed by Procedure PMCover. In the first case,
the degree increases by at most t1/3 from any one of the Ti’s in Qv, at most t1/3 more for the
paths from v to these Ti’s, and at most 2 more for the path P from r to Qv, for a total of at
most 2 · t1/3+2. In the second case, the degree increases by at most t1/3 from TC and 1 from
E , by an identical argument to Claim 4.5 (the proof of correctness of Procedure Complete).

In both cases, the vertex is immediately contracted into r.

Claim 5.8. At every iteration, the degree of vertices in R is increased by at most O(log k)·B∗.

Proof. If a large tree Qv is found, a shortest path from r to Qv is computed. This increases
the degree of any vertex by at most 2. Otherwise, Procedure PMCover is applied. This
increases the degree of vertices of R by O(log k) ·B∗. The claim follows.

Claim 5.9. The returned tree contains k terminals, has maximum degree Õ(t1/3) · B∗ and
diameter O(D∗)

Proof. By Claim 5.7, an iteration of Procedure Undirected increases the degree of a vertex
v ̸∈ R by at most O(t1/3), any v whose degree increases immediately joins R. Now we bound
the degree added to a vertex in R. By Claim 5.8 at every iteration the degree of v ∈ R can
increase by O(log k) · B∗. By Claim 5.6, the number of iterations of Procedure Undirected
is is bounded by t1/3. Therefore the total degree of a vertex is at most

O(t1/3) +O(log k) ·B∗ · t1/3 = O(log k) · t1/3 ·B∗.

In addition, the diameter of every Qv or Q found, is O(D∗). The distance of r to any Q or
Qv is at most D∗ as well. This assures that the diameter is O(D∗).

Finally, we argue that k terminals are covered. Fix a particular iteration of the algorithm.
If Procedure Small succeeds in finding a t1/3-additive partition, then we immediately cover
the remaining number of terminals necessary by applying the Procedure Complete. Other-
wise, we argue that among the terminals discarded in this iteration, the algorithm covers at
least as many as T ∗ covers. Indeed, if C is not a t1/3-packing with respect to {qi}, then all
terminals discarded are covered. On the other hand, if C is a t1/3-packing, then by applying
Procedure PMCover, Claim 5.5 ensures that at least µ super-terminals are covered. Hence at
least µ · t1/3 ≥ k′ terminals are covered, which is precisely the number of terminals covered
by T ∗ among those discarded.

15

Using [16] we get the following corollary that proves Theorem 1.3.

Corollary 5.10. The Minimum Time Telephone k-Multicast problem on undirected graphs
admits a polynomial time, Õ(t1/3)-approximation algorithm.

References

[1] G. Călinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a monotone submodular
function subject to a matroid constraint. SIAM J. Comput., 40(6):1740–1766, 2011. 3,
4, 6, 7, 8

[2] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swine-
hart, and D. Terry. Epidemic algorithms for replicated database maintenance. In Pro-
ceedings of the sixth annual ACM Symposium on Principles of distributed computing,
pages 1–12, 1987. 1

[3] M. Elkin and G. Kortsarz. Combinatorial logarithmic approximation algorithm for the
directed telephone broadcast problem. SIAM journal on Computing, 35(3):672–689,
2002. 1

[4] M. Elkin and G. Kortsarz. An approximation algorithm for the directed telephone
multicast problem. Algorithmica, 45(4):569–583, 2006. 1, 3

[5] M. Elkin and G. Kortsarz. A sublogarithmic approximation algorithm for undirected
telephone multicast. Journal of Computing and System Sciences, pages 648–659, 2006.
1

[6] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker. Com-
plex behavior at scale: An experimental study of low-power wireless sensor networks.
Technical report, UCLA/CSD-TR 02, 2002. 2

[7] S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman. A survey of gossiping and
broadcasting in communication networks. Networks, pages 319–349, 1988. 1

[8] R. Impagliazzo and R. Paturi. On the complexity of k-sat. J. Comput. Syst. Sci.,
62(2):367–375, 2001. 2

[9] R. Khandekar, G. Kortsarz, and Z. Nutov. On some network design problems with
degree constraints. J. Comput. Syst. Sci., 79(5):725–736, 2013. 3

[10] G. Kortsarz and Z. Nutov. The minimum degree group steiner problem. Discret. Appl.
Math., 309:229–239, 2022. 1, 3

[11] G. Kossinets, J. Kleinberg, and D. Watts. The structure of information pathways in a
social communication network. In SIGKD, pages 435–443, 2008. 2

16

[12] D. R. Kowalski and A. Pelc. Optimal deterministic broadcasting in known topology
radio networks. Distributed Comput., 19(3):185–195, 2007. 2

[13] A. Nikzad and R. Ravi. Sending secrets swiftly: Approximation algorithms for gener-
alized multicast problems. In ICALP, pages 568–607, 2014. 2

[14] M. Onus and A. W. Richa. Minimum maximum-degree publish-subscribe overlay net-
work design. IEEE/ACM Trans. Netw., 19(5):1331–1343, 2011. 2

[15] D. Peleg. Distributed computing: a locality-sensitive approach. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2000. 1

[16] R. Ravi. Rapid rumor ramification: Approximating the minimum broadcast time. In
FOCS, pages 202–213, 1994. 2, 3, 16

17

	1 Introduction
	1.1 Our results
	1.2 Technical Overview

	2 Preliminaries
	3 The Partition Matroid Cover Algorithm
	4 Approximating the poise for directed graphs
	5 The undirected case

