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Coalitional Game and Core

Consider a coalitional game with transferable utility (TU)

Given a player set N ≡ {i1, ..., in},
let C(N) be its set of nonempty subsets or coalitions

Game (N, v) is characterized by v ≡ (v(C))C∈C(N), with a value
v(C) attached to every coalition C

Traditional core X+(N, v) is made up of allocations x ≡ (x(i))i∈N
of grand coalition N that make

∑
i∈N x(i) = v(N) and∑

i∈C
x(i) ≥ v(C), ∀C ∈ C(N)
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Universal Stability

Unfortunately, only balanced games possess nonempty cores

A game is balanced when v(N) is above

max
∑

C∈C(N) δ(C) · v(C)

s.t.
∑

C∈C(N) and C∋i δ(C) = 1 ∀i ∈ N

δ(C) ≥ 0 ∀C ∈ C(N)

We aim at stability notions that are universal—every game (N, v)
has its own stable solutions

Naturally, focus is on partitions P ≡ {C1, ..., Cp} and allocations x
reasonably associated with them
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Partition-allocation Pairs

For any player set N , let set of partitions be P(N)

For P ∈ P(N), let X (N, v,P) be set of (N, v)’s individually
rational allocations that are efficient in P’s constituent coalitions:{

x ∈
∏
i∈N

[v({i}),+∞) :
∑
i∈C

x(i) = v(C), ∀C ∈ P

}

For game (N, v), its set of partition-allocation pairs is

Q(N, v) ≡
⋃

P∈P(N)

{P} × X (N, v,P)

A stability notion S supplies a subset S(N, v) of Q(N, v) to every
game (N, v); universality means S(N, v) is always nonempty
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An Illustrative Example

Consideration of general (P, x) instead of special ({N}, x) might
still not be enough; guiding principle for core needs changing as well

Suppose Alice wants to leave an unhappy marriage with Bob while
also bringing along their daughter Carol; current core condoning
unilateral change of status quo would allow her attempt to succeed
as long as she and Carol could fare better afterwards

In reality, Bob might try hard to prevent Alice and Carol from
leaving him unless his fear of falls in living standards is assuaged

Dissolution of union would be more realizable when intended
change becomes consensual—Alice and Carol could still be better
off after Bob is compensated enough to go on with his life style
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The Weak Core

Stability in old X+(N, v) stipulates blocking of unilateral changes:

{x ∈ X (N, v, {N}) : for any P ′ ∈ P(N)\{{N}},
∀C ′ ∈ P ′ we have

∑
i∈C′ x(i) ≥ v(C ′)}

Traditional core is more about blocking of “entrance” by one
sub-coalition unsatisfied with potential making of grand coalition

Blocking of consensual changes leads to weak core X−(N, v):

{x ∈ X (N, v, {N}) : for any P ′ ∈ P(N)\{{N}},
∃C ′ ∈ P ′ so that

∑
i∈C′ x(i) ≥ v(C ′)}

Weak core is more about blocking of “exit” by one sub-coalition
unsatisfied with potential breaking of grand coalition
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An Intermediate Concept

Define a partition P’s worth

w̃(N, v,P) ≡
∑
C∈P

v(C)

and then medium core X0(N, v) by{
X (N, v, {N}) when v(N) ≥ maxP ′∈P(N)\{{N}} w̃(N, v,P ′)

∅ otherwise

It is easy to show resistance to unilateral blocking =⇒ dominance
in worth =⇒ resistance to consensual blocking; thus

X+(N, v) ⊆ X0(N, v) ⊆ X−(N, v)

Both inclusions could be strict for some games
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When X0(N, v)\X+(N, v) ̸= ∅

Consider N = {1, 2, 3}, v({1}) = v({2}) = v({3}) = 0,
v({1, 2}) = v({1, 3}) = v({2, 3}) = 5, and v({1, 2, 3}) = 6

Here, {N} is dominant in its worth of 6 over others which top at 5

Yet, there is no core member as x(1) + x(2) + x(3) = 6 contradicts
with x(1) + x(2) ≥ 5, x(1) + x(3) ≥ 5, and x(2) + x(3) ≥ 5
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When X−(N, v)\X0(N, v) ̸= ∅

Inspired by Alice-Bob-Carol story, consider N = {A,B,C},
v({A}) = 0, v({B}) = 4, v({C}) = 0, v({A,B}) = 0,
v({A,C}) = 6, v({B,C}) = 0, and v({A,B,C}) = 8

Note x = (0, 6, 2) is in weak core—under this allocation plan, no
attempt to split grand coalition N can make all resulting
sub-coalitions strictly better off

The most competitive alternative comes from {{A,C}, {B}};
while sub-coalition {A,C} has strong incentives to leave grand
coalition, player B would hold out
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More on Core Concepts

Against every partition attempt, traditional core lets one separatist
group to break up a union; meanwhile, weak core allows one
unionist group to hold a union together; medium core is in between

Solving a mixed integer programming (MIP) could help determine
whether weak core is nonempty; even closer to Bondareva-Shapley
theory for traditional core, solving a linear programming (LP) or its
dual would help determine whether medium core is nonempty
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An MIP linked to the Weak Core

X−(N, v) would be nonempty if and only if v(N) is above optimal
objective z−(N, v) of mixed integer program (MIP)

min
∑

i∈N x(i)
s.t.

∑
i∈C x(i) +

[∑
i∈C v({i})− v(C)

]
· y(C)

≥
∑

i∈C v({i}) ∀C ∈ C(N)\{N}∑
C∈P y(C) ≥ 1 ∀P ∈ P(N)\{{N}}

x(i) ∈ [v({i}),+∞) ∀i ∈ N
y(C) ∈ {0, 1} ∀C ∈ C(N)\{N}

With |N | real variables x(i) and 2|N | − 2 binary variables y(C),

∑
i∈C

x(i) ≥
{

v(C) when y(C) = 1∑
i∈C v({i}) when y(C) = 0
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Traditional Core and Credible Threats

Following Ray (1989), let X+−({i}, v) = {v} ≠ ∅ for any
single-player game ({i}, v)

For any game (N, v) with |N | ≥ 2, recursively define

X+−(N, v) ≡ {x ∈ ∂(N, v) :
∑

i∈C x(i) ≥ v(C),
∀C ∈ C(N)\{N} with X+−(C, v|C) ̸= ∅},

where v|C stands for (v(C ′))C′∈C(C)

A sub-coalition C may be threatening when v(C) >
∑

i∈C x(i);
only one with X+−(C, v|C) ̸= ∅ poses a credible threat

Not only X+(N, v) ⊆ X+−(N, v), but opposite was shown by Ray
(1989) to be true—traditional-core member may thus be
understood as facing no credible threat in any partition attempt
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Weak Core and Credible Threats

Let X−−({i}, v) = {v} ≠ ∅ for any single-player game ({i}, v)

For any game (N, v) with |N | ≥ 2, recursively define

X−−(N, v) ≡ {x ∈ ∂(N, v) : for any P ′ ∈ P(N)\{{N}},
∃C ′ ∈ P ′ so that either X−−(C, v|C) = ∅

or
∑

i∈C′ x(i) ≥ v(C ′)}

An imputation x ∈ X−−(N, v) when in any partition attempt, not
all constituent coalitions pose credible threats; whereas, a coalition
C’s credibility is defined in weak sense of X−−(C, v|C) ̸= ∅

It is easy to tell X−(N, v) ⊆ X−−(N, v); we can prove
opposite—when a weak-core member is pitted against a proper
partition, there must exist one constituent coalition that either is
sufficiently content with allocation associated with this member or
is not credible for its threat to be taken seriously
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Need for Partition-allocation Pairs

Weakenings of traditional core alone would not by themselves
guarantee universality—for some games (N, v), stable solutions are
inherently not found around grand coalition N

When v({i}) = 1 for any individual i ∈ N and v(C) = 0 for any
coalition C ∈ C(N) with |C| ≥ 2, every player prefers to be alone

Weak concept is not irrelevant either—consider a six-player game
(N, v) that is a doubling of Alice-Bob-Carol game

It may represent two troubled families {A,B,C} and {A′, B′, C ′}
that also do not get along with each other

Both weak concept and partition-allocation structure are needed
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Fission and Fusion Resistances

A partition P’s fission-down-to neighborhood I (N,P) contains all
partitions P ′ that constitute splits of P’s constituent coalitions

A partition-allocation pair (P, x) in feasible set Q(N, v) is strong
fission-resistant when for any P ′ ∈ I (N,P),

∀C ′ ∈ P ′\P we have
∑
i∈C′

x(i) ≥ v(C ′)

With symmetrically defined fusion-up-to neighborhood U (N,P), a
pair (P, x) is fusion-resistant when for any P ′ ∈ U (N,P),

∀C ′ ∈ P ′\P we have
∑
i∈C′

x(i) ≥ v(C ′),

which is merely about
∑

C∈P, C⊊C′ v(C) ≥ v(C ′)
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More Stability Notions

Medium fission resistance is about for any P ′ ∈ I (N,P),∑
i∈N

x(i) =
∑
C∈P

∑
i∈C

x(i) =
∑
C∈P

v(C) = w̃(N, v,P) ≥ w̃(N, v,P ′)

Weak fission resistance is about for any P ′ ∈ I (N,P),

∃C ′ ∈ P ′\P so that
∑
i∈C′

x(i) ≥ v(C ′)

Let Qi∗(N, v) be set of all (P, x)’s that are fission-resistant, with
∗ = + for strong, 0 for medium, and − for weak; let Qu(N, v) be
set of all solution pairs that are fusion-resistant

Define stability concepts S∗(N, v) ≡ Qi∗(N, v) ∩Qu(N, v)
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Other Stability-related Notions

Each stability is corresponding-core-compatible:

S∗(N, v) ∩ [{{N}} × X (N, v, {N})]
= Qi∗(N, v) ∩ [{{N}} × X (N, v, {N})] = {{N}} × X∗(N, v)

Of course, these sets could be simultaneously empty

For every v ∈ ℜC(N), no matter how “poor” it is,

S+(N, v) ⊆ S0(N, v) ⊆ S−(N, v) and S0(N,v) ̸= ∅

There is no universality guarantee for strong stability S+;
still, it might allow stable solutions (P, x) other than

P = {N} and x ∈ X+(N, v)
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Fission-related Constructs

Given a partition P ∈ P(N), let patched-up core be

Xi∗(N, v,P) ≡
∏
C∈P

X∗(C, v|C)

With Pi∗(N, v) ≡
{
P ∈ P(N) : Xi∗(N, v,P) ̸= ∅

}
,

Qi∗(N, v) =
⋃

P∈Pi∗(N,v)

{P} × Xi∗(N, v,P)

Earlier inclusion relationships among cores would lead to

Qi+(N, v) ⊆ Qi0(N, v) ⊆ Qi−(N, v)
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Some More Structures

An alternative definition for Pi0(N, v) turns out to be{
P ∈ P(N) : w̃(N, v,P) ≥ w̃(N, v,P ′), ∀P ′ ∈ I (N,P)

}
For Pu(N, v) defined similarly except with U (N,P) replacing
I (N,P), it would follow that

Qu(N, v) =
⋃

P∈Pu(N,v)

{P} × X (N, v,P)

What lead to universality are Pi0(N, v) ∩ Pu(N, v) ̸= ∅ and

S∗(N, v) =
⋃

P∈Pi∗(N,v)∩Pu(N,v)

{P} × Xi∗(N, v,P)
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Reasons behind Earlier Structures

Very importantly, we can show

(P, x) ∈ Qi∗(N, v) ⇐⇒ ({C}, x|C) ∈ Qi∗(C, v|C), ∀C ∈ P

With ({N}, x) ∈ Qi∗(N, v) ⇐⇒ x ∈ X∗(N, v), this would result in

(P, x) ∈ Qi∗(N, v) ⇐⇒ ({C}, x|C) ∈ Qi∗(C, v|C), ∀C ∈ P
⇐⇒ x|C ∈ X∗(C, v|C), ∀C ∈ P
⇐⇒ x ∈ Xi∗(N, v,P)

Concerning fusion, we can also establish

(P, x) ∈ Qu(N, v) ⇐⇒ P ∈ Pu(N, v)
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A Schematic Sketch of Various Entities

ℙi0(N, v)
ℙi+(N, v)

ℙi−(N, v)

ℙu(N, v)

𝒫 𝒫
𝒫′￼ 𝒫′￼′￼

𝕏i+(N, v, 𝒫)

{N} Partitions

Allocations

𝕏i0(N, v, 𝒫′￼)
= 𝕏i−(N, v, 𝒫′￼)
= 𝒳(N, v, 𝒫′￼)

𝕏i−(N, v, 𝒫′￼′￼)

𝕊+(N, v)

𝕊0(N, v)

𝕊−(N, v)
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Road to Medium Stability

Set P(N) can be decomposed into Pn(N), Pn−1(N), · · · ,
P1(N) ≡ {{N}} depending on member partitions’ sizes

One-step fission and fusion arcs link two neighboring Pp+1(N)
and Pp(N), with I (N,P) understandable as “left” branch
stemming from a given P and U (N,P) “right” branch

A steepest ascending method (SAM) can help reach a mediumly
stable pair (P0, x0) from any starting partition
by incessantly moving from one P to a P ′ ∈ I (N,P)∪U (N,P)

that maximizes w̃(N, v, ·) until no improvement is possible

After P0 is identified, x0 can be any member of Xi0(N, v,P0)
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A Graph Representation of Partitions

𝒫n(N )

𝒫n−1(N )

𝒫n−2(N ) 𝒫3(N )

𝒫2(N )

𝒫1(N )

fission-down-to

fusion-up-to

Figure: A Depiction of the n-partite Graph G (N)
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Core Stability in Literature

If fission-down-to neighborhood in strong fission resistance or
fusion-up-to one in fusion resistance were replaced by space of all
other partitions, we would obtain all-temptation resistance

This super-strong resistance seems to have propped up so-called
“core stability” in coalition formation literature since Gale and
Shapley (1962); see, e.g., Pycia (2012)

Since universality is clearly out of the question, focus has been on
identifying conditions that induce existence of stable partitions
(coalition structures); see, e.g., Greenberg and Weber (1993),
Banerjee, Konishi, and Sonmez (2001), Bogomolnaia and Jackson
(2002), Papai (2004), and Alcalde and Romero-Medina (2006)

Core stability is still (strong-)core-compatible by our standard
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From Centripetality to Cooperation

When (N, v) is strictly positive with every v(C) > 0 except when
|C| = 1 at which time only v(C) ≥ 0 is required, we may take a
fractional view on allocations with each f(i) ≡ x(i)/v(C)

Earlier stability notions are transplantable here, after replacing
X (N, v,P) with F (N, v,P), X±(N, v) with F±(N, v), and

Xi±(N, v,P) with Fi±(N, v,P)

A centripetality partial order can be defined for games so that
(N, v1) ≤cp (N, v2) if and only if

v1(C2)

v1(C1)
≤ v2(C2)

v2(C1)
, when C1 ⊆ C2

Consequences turn out to be Fi±(N, v1,P) ⊆ Fi±(N, v2,P),

Qi±(N, v1) ⊆ Qi±(N, v2), and Pu(N, v1) ⊇ Pu(N, v2)
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An Illustration of Centripetality

v1(C1)

C1 C2

⃗v1

⃗v2
Value

Coalition0

v2(C2)

v2(C1)

v1(C2)

≤
v1(C1)
v1(C2) v2(C2)

v2(C1)
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A Schematic Sketch of Consequences

ℙu(N, v1)

𝒫 𝒫
𝒫′￼ {N} Partitions

Allocations

ℙu(N, v2)

𝔽 i±(N, v2, 𝒫) 𝔽 i±(N, v, 𝒫)

ℙi±(N, v2)
ℙi±(N, v1)

𝕊±(N, v1)
𝕊±(N, v2)

ℱ(N, v2, 𝒫′￼)
ℱ(N, v1, 𝒫′￼)
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From Risk Aversion to Centripetality

With centripetality =⇒ cooperation at hand, we can further
demonstrate risk aversion =⇒ centripetality

Each coalition C is associated with a random outcome Φ(C)

All players share a common strictly-positive-valued reward function
R̃ that is positively homogeneous in sense that

R̃(ρ · Y ) = ρ · R̃(Y ), if ρ ≥ 0

When Y = ϕ(C) ·
∑

i∈C Θi with i.i.d. Θi’s and

R̃(Y ) ≡ avg[Y ]− r̄ · stdev[Y ],

r̄1 ≤ r̄2 would lead to (N, v1) ≤cp (N, v2)
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Setups of One Example

With N ≡ {1, 2}, individual contributions Θ(1) and Θ(2) are
independent and identically distributed as Bernoulli random
variables with parameter 0.5

With random outcomes Φ({1}) = 1 ·Θ(1), Φ({2}) = 1 ·Θ({2}),
and Φ({1, 2}) = 0.9 · (Θ(1) + Θ(2)),

avg[Φ({1})] = avg[Φ({2})] = 1 · 0.5 = 0.5,

avg[Φ({1, 2})] = 0.9 · 2 · 0.5 = 0.9,

stdev[Φ({1})] = stdev[Φ({2})] = 1 · 0.5 = 0.5,

stdev[Φ({1, 2})] = 0.9 ·
√
2 · 0.5 ≃ 0.636
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Revelations of One Example

Consider games (N, v1) and (N, v2) with
vi(C) ≡ avg[Φ(C)]− r̄i · stdev[Φ(C)] while r̄1 = 0 and r̄2 = 0.8

Given values v1({1}) = v1({2}) = 0.5− 0 · 0.5 = 0.5,
v1({1, 2}) ≃ 0.9− 0 · 0.636 = 0.9,
v2({1}) = v2({2}) = 0.5− 0.8 · 0.5 = 0.1, and
v2({1, 2}) ≃ 0.9− 0.8 · 0.636 ≃ 0.39,

v1({1, 2})
v1({1})

=
v1({1, 2})
v1({2})

= 1.8 < 3.9 ≃ v2({1, 2})
v2({1})

=
v2({1, 2})
v2({2})

Note v1 ≤cp v2; also, players staying apart in (P = {{1}, {2}},
f = (1, 1)) would be stable for (N, v1) while they staying together
in (P = {{1, 2}}, f = (1/2, 1/2)) would be stable for (N, v2)
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Another Law-invariant Occasion

In another law-invariant case, we characterize Φ(C)’s by
corresponding k̃(C)’s, where each k̃(C) is inverse of Φ(C)’s
cumulative distribution function

Let reward function r̃ operating on above quantiles be
parameterized by a probability density function µ̄ on [0, 1] so that

r̃(k) ≡
∫ 1

0
ā(k, α) · µ̄(α) · dα,

where ā(·, α) is α-level conditional value at risk defined as in

ā(k, α) ≡ 1

1− α
·
∫ 1−α

0
k(β) · dβ
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Risk Aversion Promotes Cooperation

For case above, µ̄1 ≤lr µ̄
2 would lead to (N, v1) ≤cp (N, v2) under

mild conditions on quantile functions k̃(C)

Thus, for both cases, we can show that risk aversion promotes
resulting coalitional game’s centripetality

This link, when combined with already-established link about

centripetality promoting cooperation, would deliver on message

risk aversion promotes cooperation
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Setups of Another Example

For N ≡ {1, 2}, suppose random outcomes Φ({1}) and Φ({2}) are
both uniformly distributed in [0, 2]; also, random outcome
Φ({1, 2}) is uniformly distributed in [1, 2]

With quantile functions k̃({1}, α) = k̃({2}, α) = 2α and
k̃({1, 2}, α) = 1 + α,

k̃({1, 2}, α)
k̃({1}, α)

=
k̃({1, 2}, α)
k̃({2}, α)

= 1 +
1

α

For various conditional averages,

ā
(
k̃({1}, ·), α

)
= ā

(
k̃({2}, ·), α

)
=

1

1− α
·
∫ 1−α

0
2β ·dβ = 1−α,

ā
(
k̃({1, 2}, ·), α

)
=

1

1− α
·
∫ 1−α

0
(1 + β) · dβ =

3

2
− α

2
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Revelations of Another Example

Consider games (N, v1) and (N, v2) with
vi(C) ≡

∫ 1
0 ā(k̃(C, ·), α) · µ̄i(α) · dα while

µ̄1(α) = 3− 6α+ 3α2, µ̄2(α) = 2α

We have µ̄1 ≤lr µ̄
2 for µ̄2(α)/µ̄1(α) = 2α/(3− 6α+ 3α2)

Given values v1({1}) = v1({2}) = 3/4, v1({1, 2}) = 11/8,
v2({1}) = v2({2}) = 1/3, and v2({1, 2}) = 7/6,

v1({1, 2})
v1({1})

=
v1({1, 2})
v1({2})

=
11

6
<

7

2
=

v2({1, 2})
v2({1})

=
v2({1, 2})
v2({2})

Note v1 ≤cp v2; also, players staying apart in (P = {{1}, {2}},
f = (1, 1)) would be stable for (N, v1) while they staying together
in (P = {{1, 2}}, f = (1/2, 1/2)) would be stable for (N, v2)
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Concluding Remarks

Using partition-allocation pairs and weak core based on consensual
blocking, as well as certain middle grounds, we have identified
stability notions that are universal

We wonder if there are universal stability concepts that are still
compatible with plain core

Concerning link from risk aversion to cooperation, more on causes
of centripetality would be welcomed

Thank you! Comments and suggestions?
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