
Resilient and Low Stretch Routing Through
Embedding into Tree Metrics

Jie Gao and Dengpan Zhou

Department of Computer Science,
Stony Brook University,

Stony Brook, NY 11794, USA
{jgao,dpzhou}@cs.sunysb.edu

Abstract. Given a network, the simplest routing scheme is probably routing on
a spanning tree. This method however does not provide good stretch — the route
between two nodes can be much longer than their shortest distance, nor does
it give good resilience — one node failure may disconnect quadratically many
pairs. In this paper we use two trees to achieve both constant stretch and good
resilience. Given a metric (e.g., as the shortest path metric of a given communi-
cation network), we build two hierarchical well-separated trees using random-
ization such that for any two nodes u, v, the shorter path of the two paths in the
two respective trees gives a constant stretch of the metric distance of u, v, and
the removal of any node only disconnect the routes between O(1/n) fraction of
all pairs. Both bounds are in expectation and hold true as long as the metric fol-
lows certain geometric growth rate (the number of nodes within distance r is a
polynomial function of r), which holds for many realistic network settings such
as wireless ad hoc networks and Internet backbone graphs. The algorithms have
been implemented and tested on real data.

1 Introduction

This paper considers a fundamental problem of designing routing schemes that give
low stretch and are resilient to node failures. We consider a metric (P, d) on n nodes
(e.g., as the shortest path metric of a given network), in particular, metrics of bounded
geometric growth as a popular family of metrics in the real world. The result we present
in this paper is a routing structure, constructed in a distributed manner such that each
node of P keeps routing information of size O(log n), the route discovered has constant
stretch (e.g., a constant factor longer than the metric distance), and the routing structure
is robust to node failures, where a single node failure will only disconnect O(1/n)
fraction of the routes between all possible pairs.

The technique we use in this paper is through embedding into tree metrics. Given a
metric (P, d), the simplest way to route is probably by taking a spanning tree to guide
message routing. This has a number of benefits, as a tree metric is a much simpler
metric with many special features. For example, between any two vertices in a tree,
there is a unique simple path connecting them, and the unique path can be found in a
local manner by first traversing up the tree towards the root, and traversing down the
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tree at the lowest common ancestor. There is a simple labeling scheme such that one
can use routing table of O(log n) bits at each node to support routing on a tree [3].

However, routing on a spanning tree of the metric has a number of problems, in
particular, the poor stretch and lack of resilience. The path on a tree might be much
longer than the metric distance. Take the shortest path metric of a cycle of n vertices,
any spanning tree will separate some pair of vertices, adjacent on the cycle, by distance
n− 1. That is, the distortion introduced by routing on a spanning tree is factor of Ω(n)
of their true distance. A more serious problem of routing on a tree is due to the lack
of robustness to node failures. If a node fails or decides not to cooperate and stops
forwarding messages, the tree is broken into pieces and in the worst case quadratically
many pairs have their paths disconnected.

In this paper we use embedding into tree metrics for efficient, scalable routing, but
address the shortcomings regarding stretch and resilience. Instead of using one tree,
we use simply two trees. The shorter one of the paths from two trees may have better
stretch. Regarding node failures, if a node u fails and the path between two nodes x, y is
disconnected as it goes through u, the path connecting x, y in the second tree hopefully
does not contain u and still remains valid. We briefly elaborate our technical approach
and then relate to prior work.
Our Results The tree embedding we use follows from the embedding of a general
metric into tree metrics with low distortion. Given a metric (P, d) we embed it to a
hierarchically well-separated tree (HST). The leaf nodes of the HST are 1-to-1 mapped
to nodes in P and internal nodes of the HST are also mapped to nodes of P although
certain nodes may appear multiple times. The embedding of (P, d) into a tree metric
necessarily introduces distortions. As discussed earlier, using a fixed tree one cannot
avoid the worst case distortion of Ω(n). But if one build a tree, chosen randomly from a
family of tree metrics, the expected distortion can be bounded by O(log n). Thus using
this tree for routing one immediately obtains O(log n) stretch routing with low routing
overhead. Approximating a metric with probabilistic hierarchical well-separated trees
was first proposed by Bartal [6, 5], with the motivation that many problems are easier
to solve on a tree than on a general graph. Later, Fakcharoenphol et al. [11] improved
the distortion to O(log n) for any n node metric and this is tight.

The results we prove in this paper are mainly in three pieces

– Using two HSTs, randomly constructed with independent seeds, we show that the
stretch can be improved to a constant in expectation. That is, for any two nodes
x, y, between the two paths in the two HSTs respectively, one of them is short and
is at most a constant factor of the metric distance between x, y.

– Regarding the resilience of using one HST for routing, we show that for any node
failure, the number of pairs with their routes on the HST disconnected is at most a
fraction of O(log∆/n) of all pairs, where ∆ is the aspect ratio of (P, d), defined as
the furthest pair distance versus the closest pair distance. When ∆ is polynomial in
n the bound is as small as O(log n/n) but in the worst case when the aspect ratio
is exponential the bound can be bad.

– Using two HSTs we substantially improve the routing resilience. We build two
HSTs with random, independent seeds. In the case of a node failure, we show that
the number of pairs with their routes on both HSTs disconnected is at most a frac-
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tion of O(1/n) of all pairs, thus removing the factor of O(log∆) compared with
the case of a single HST.

The results hold for metrics with ‘geometric growth’, that is, the number of nodes within
distance r from any node grows as a polynomial function of r, not exponential (as in
the case of a balanced binary tree). Such a family of metrics appears in many realis-
tic settings, either due to physical constraints such as in wireless networks and VLSI
layout networks, or due to geographical constraints such as in peer-to-peer overlay net-
works [22, 19, 21]. In the next section we introduce the rigorous definitions and elabo-
rate the precise assumptions for each of the results.

Last remark that in the case that (P, d) is the shortest path metric of a given network
G, there is a distributed algorithm [12] that constructs the HST with a total number
of messages bounded by O(n log n). In addition, each node is given a label of size
O(log n) such that one can route on an HST using only the node label information. Thus
the entire scheme of using one or multiple HSTs for robust, low-stretch and efficient
routing can be implemented in a completely de-centralized manner.
Prior Work. There is numerous prior work on routing. We only have the space to
review some most relevant ones.

The traditional routing methods as used for the Internet are essentially shortest path
routing. Essentially each node keeps a routing table of size O(n) to save the next hop
on the shortest path for each destination. This is equivalent to maintaining n shortest
path trees, rooted on every node. From this perspective, our approach defines one or two
global trees, rather than one tree per node. By doing so we can substantially reduce the
size of the routing table from O(n) to O(log n), while still keeping the routing stretch
by a constant.

From a theoretical aspect, compact routing that minimizes the routing table size
while achieving low stretch routing has been studied extensively [20]. There are two
popular models in the literature, the labeled routing model (in which naming and rout-
ing schemes are jointly considered) [9, 10, 27] and name-independent routing (in which
node IDs are independent of the routing schemes) [2, 16]. Generally speaking, the the-
oretical results in compact routing in a graph whose shortest path metric has a con-
stant doubling dimension are able to obtain, with polylogarithmic routing table size,
1 + ε stretch routing in the labeled routing scheme (see [8] and many others in the
reference therein), and constant stretch factor routing in the name-independent rout-
ing scheme [16, 1] (getting a stretch factor of 3 − ε will require linear routing table
size [1]). The schemes here are all by centralized constructions and aim to get the best
asymptotic bounds. Our focus of using tree embedding is to obtain practical routing
solutions with theoretical guarantee. Further, the compact routing schemes above have
no consideration of robustness to node failures.

Routing methods that can recover from node or link failures receive a lot of in-
terests recently. There are many heuristic methods for Internet routing such as fast re-
routing [25], Loop-free alternate (LFA) [4], O2 [7], DIV-R [23] and MARA [28]. But
these methods have no theoretical guarantee. Path splicing [18] uses multiple shortest
path trees with perturbed edge weights. When routing in one tree metric encounters a
problem, the message is quickly routed on a different tree. Using a similar idea we can
also use multiple HSTs to recover in-transit failures. The difference is that we do not
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keep separate shortest path trees rooted at each node, but rather use two global trees.
Thus our storage overhead is substantially better. Our simulation shows that we have
roughly the same routing robustness, our stretch is a little higher but we substantially
save on routing table size.

2 Preliminaries

Metrics With Geometric Growth. An important family of metrics is the metrics with
‘geometric growth’. There are several related definitions. Given a metric (P, τ), let
B(p, r) = {v | τ(p, v) ≤ r} denote the radius r ball centered at p. In [15], a metric
has bounded expansion rate (also called the KR-dimension, counting measure) k1 if
|B(v, 2r)| ≤ k1|B(v, r)| for a constant k1; and in [14], a metric has bounded doubling
dimension k2 if B(v, 2r) is contained in the union of at most k2 balls with radius r
for a constant k; in [17, 13], a metric has upper bounded growth rate growth rate k3 if
for every p ∈ V and every r ≥ 1, |B(p, r)| ≤ ρrk3 , for a constant ρ and k3. A few
sensor network papers [24, 29] consider a model when the growth rate is both upper and
lower bounded, i.e., ρ−rk4 ≤ |B(p, r)| ≤ ρ+rk4 for a constant k4, where ρ− ≤ ρ+ are
two constants. We denote the family of metrics with constant expansion rate, constant
doubling dimension, constant upper bounded growth rate, and constant upper and lower
bounded growth rate as Mexpansion,Mdoubling,M

+

growth,Mgrowth respectively.

It is not hard to see that Mgrowth ⊆ Mexpansion ⊆ Mdoubling ⊆ M+

growth.
See [14, 13] for more discussions. In terms of the results in this paper the detailed
definitions actually matter. In the following we will make it clear which definition is
needed for each result.
Embedding into Tree Metrics. Given two metric spaces (X, dX) and (Y, dY ), an in-
jective mapping f : X → Y is called an embedding of X into Y . We can scale up Y to
make the embedding to be non-contractive, i.e., for any u ̸= v ∈ X: dY (f(u), f(v)) ≥
dX(u, v). We say Y dominates X . The distortion of the pair u, v is distf (u, v) =
dY (f(u),f(v))

dX(u,v) . The distortion of the embedding f is dist(f) = maxu,v∈X distf (u, v).

Given a metric (P, d), we embed it to a tree metric and use the tree metric to guide
message routing. Ideally we want the route length to be close to the metric distance.
As shown in the introduction, it is not possible to get distortion of o(n) using a single
tree. However, it is known that for any metric (P, d), one can use randomization such
that the expected distortion is only O(log n). Such a tree is a type of a hierarchical
well-separated tree H , as defined below.

Definition 1 (α-HST [5]). A rooted weighted tree H is an α-HST if the weights of all
edges between an internal node to its children are the same, all root-to-leaf paths have
the same hop-distance, and the edge weights along any such path decrease by a factor
of α as we go down the tree.

In this paper we focus on 2-HST. The leaves of T are the vertices in P , and the internal
nodes are Steiner nodes. Fakcharoenphol, Rao and Talwar [11] have shown that for any
metric (P, d) one can find a family of trees such that a randomly selected metric from
the family has expected distortion of O(log n), which is also tight.
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Review of The FRT Algorithm [11]. Without loss of generality, we assume that the
smallest distance between any two vertices in P is 1 and the diameter of P is ∆. The
aspect ratio is also ∆. Assume 2δ−1 < ∆ ≤ 2δ . The FRT algorithm proceeds in a
centralized manner by computing a hierarchical cut decomposition D0, D1, · · · , Dδ .

Definition 2 (Cut decomposition). For a parameter r, an r-decomposition of a metric
(P, d) is a partitioning of P into clusters, each centered at a vertex with radius r.

Definition 3 (Hierarchical cut decomposition). A hierarchical cut decomposition of
(P, d) is a sequence of δ + 1 nested cut decompositions D0, D1, · · · , Dδ such that

– Dδ = P , i.e.the trivial partition that puts all vertices in a single cluster.
– Di is a 2i-cut decomposition, and a refinement of Di+1. That is, each cluster in
Di+1 is further partitioned into clusters with radius 2i.

To find the hierarchical cut decomposition, one first chooses a random permutation
π : P → {1, 2, · · · , n} of the nodes. We use π(i) to denote the node with rank i in
the permutation. We also fix a value β chosen uniformly at random from the interval
[1, 2]. For each i, compute Di from Di+1 as follows. First set βi to be 2i−1β. Let S be
a cluster in Di+1. Each vertex u ∈ S is assigned to the first (according to π) vertex v
within distance βi. We also say that u nominates v. Each child cluster of S in Di then
consists of the set of vertices in S assigned to the same center. We denote the center of
a cluster C by center(C). Note that all clusters in Di have radius 2i−1 ≤ 2i−1β ≤ 2i.
Remark that a node can nominate a center outside of its current cluster in Di+1 and one
node can be the center for multiple clusters.

An alternative view of the hierarchical cut decomposition is to define for each node
u a δ-dimensional signature vector S(u). The i-th element in the vector is the lowest
rank node within distance 2iβ. S(u)i = argminv∈B(u,2iβ) π(v) where B(p, r) is the
collection of nodes within distance r from node p. A cluster at level i contains all the
nodes with the same prefix [1, i] of their signature vectors.

To turn the hierarchical cut decomposition to a 2-HST, the points of P are the leaf
nodes of the HST and each internal node in the HST corresponds to a cluster of nodes
in the hierarchical partitioning. The refined clusters in Di−1 of a cluster C in Di are
mapped to children of C. The root corresponds to D0. We can also use the center u of
a cluster C as the representative node of C in the HST. Thus the root of the HST has
π(1) as its representative node. Denote by Pi the centers of the clusters in Di. Pi is the
set of node that are ‘nominated’ by others at level i.

The HST has δ+1 levels, at 0, 1, · · · , δ. The level i has a number of internal nodes
in the HST corresponding to Pi. The edge weight connecting a cluster C in Di to its
children clusters in Di−1 is 2i, i.e., greater than the radius of the cluster C. Clearly the
HST metric dominates (V, d), as one only relaxes the distances. For any two nodes u, v,
suppose that they are first separated in different clusters in the decomposition Di, i.e.,
their lowest common ancestor in the HST is at level i + 1. In this case we have their
distance on the tree to be dH(u, v) = 2

∑i
j=1 2

j = 2i+2. Fakcharoenphol, Rao and
Talwar [11] proved that dH(u, v) ≤ O(log n)d(u, v), in expectation over all random
choices of β and π. A distributed implementation of the algorithm is available in [12].
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3 Constant Distortion Routing Using Two HSTs

Starting from this section we examine the properties of routing using two HSTs.
Constant Distortion Embedding in Two HSTs For a given metric (P, d) with ex-
pansion rate k, we build two HSTs, H1 and H2 with independent, random seeds us-
ing the algorithm in [11]. For any two points u, v in P , we define the distance be-
tween them to be the minimum shortest path in the two trees. That is dH(u, v) =
min{dH1(u, v), dH2(u, v)}.

Theorem 1. For any metric (P, d) with expansion rate k and two HSTs H1,H2, there
is a constant c such that for any two nodes u, v ∈ P ,

E[dH(u, v)] = E[min{dH1(u, v), dH2(u, v)}] ≤ c · k4 · d(u, v).

For two nodes u, v ∈ P , denote their lowest common ancestor (LCA) in Hi by LCAi(u, v),
for i = 1, 2. And denote LCA(u, v) = min{LCAi(u, v), i = 1, 2}. Thus dH(u, v) =

2i+2 if LCA(u, v) is at i+1. Now we have E[dH(u, v)] =
∑δ−1

i=0 Prob{LCA(u, v) is at
level i+1}·2i+2. With the following Lemma that bounds the probability that LCA(u, v)
is at i+ 1 (the proof is in the Appendix), we can prove the Theorem.

Lemma 1.

Prob{LCA(u, v) is at level i+ 1} ≤
{
0, if 2i+2 < d(u, v);
3k4 · d2(u, v)/22i−4, if 2i−2 ≥ d(u, v).

Proof (Theorem 1). With the above lemma, we can prove Theorem 1 easily. Suppose
j∗ is the smallest i such that 2i+2 ≥ d(u, v),

E[dH(u, v)] =
∑δ

i=0 Prob{LCA(u, v) is at level i+ 1} · 2i+2

≤
∑δ

i=j∗+4[3k
4 · d2(u,v)

22i−4 ] · 2i+2 +
∑j∗+3

i=j∗ 2i+2

≤ 27 · 3k4 · d2(u, v)/2i∗ + 14d(u, v) ≤ (96k4 + 14) · d(u, v).

Routing with Two HSTs. To route a message from a source to a destination node, we
check each set of labels to see which tree gives a lower LCA (lowest common ancestor).
That tree will provide a path with only constant stretch. We remark that the storage
requirement for each node is very low, in the order of O(log n).

4 Resilience to Node Failures Using Two HSTs

In this section we show that using two trees, instead of one, can improve the routing
robustness substantially. For a pair of node u, v, if the path connecting them is discon-
nected on the first tree, it is still possible that there is a path between them on the second
tree. Thus one can switch to the second tree for a backup route and recover from sudden,
unforseen failures instantaneously, akin to the path splicing idea [18].
Robustness of a single random HST. We first examine the properties of a single HST
in terms of node failure. When a node u fails, any path on the HST that uses a cluster
with u as the center is disconnected. We examine how many such pairs there are. The
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worst case is that u is a center of a cluster near the root of the HST – this will leave big
components and Ω(n2) number of pairs disconnected. For example, if the node π(1)
fails. However, since the construction of the HST uses random permutations (assuming
the adversary has no control over the choice of this random permutation, as in standard
settings of randomized algorithms), a single node failure is unlikely to be near the root.
The following theorem works for any metric (P, d) with constant doubling dimension.

Theorem 2. Given a node u and an HST, the expected number of nodes within clusters
with u as center is O(log∆), where ∆ is the aspect ratio of the metric (P, d) with
constant doubling dimension.

Proof. Suppose a node x is within a cluster with u as the center, say this cluster is at
level i. Then we know that d(u, x) ≤ β2i and u is the highest rank node in B(x, β2i).
Now, take ℓu(x) as the lowest level j such that d(u, x) ≤ β2i. Clearly, ℓu(x) ≤ i. Thus
B(x, β2ℓu(x)) ⊆ B(x, β2i). That is, u is the lowest rank node at level ℓu(x) as well.
The probability for that to happen is 1/|B(x, β2ℓu(x))|. Thus the probability that x is
inside a cluster with u as center is no greater than 1/|B(x, β2ℓu(x))|.

Now, the expected number of nodes within clusters with u as center, W , is,

W =
∑

x Prob{x is in a cluster centered at u} ≤
∑

x 1/|B(x, β2ℓu(x))|
=

∑
j

∑
x∈B(u,β2j)\B(u,β2j−1) 1/|B(x, β2j)| ≤

∑
j

∑
x∈B(u,β2j) 1/|B(x, β2j)|.

Now, recall that the metric (P, d) has constant doubling dimension γ. Thus we can
cover the point set B(u, β2j) by balls of radius β2j−1, denoted as sets B1, B2, · · · , Bm,
m ≤ 2γ . Since the points in Bj are within a ball with radius β2j−1, all the points within
Bj are within distance β2j of each other. That is, for a node y ∈ Bi, Bi ⊆ B(y, β2j).
Thus |Bi| ≤ |B(y, β2j)|, where y ∈ Bi. Now we group the points of B(u, β2j) first
by the balls they belong to, and then take the summation over the balls.

W ≤
∑

j

∑
x∈B(u,β2j) 1/|B(x, β2j)| =

∑
j

∑m
i

∑
x∈Bi

1/|B(x, β2j)|
≤

∑
j

∑m
i

∑
x∈Bi

1/|Bi| =
∑

j

∑m
i |Bi| · 1/|Bi| =

∑
j m ≤ 2γδ = O(log∆).

The above lemma shows that the total number of pairs disconnected if one random node
is removed is bounded by O(n log∆).

Robustness of Two Random HSTs. We now examine the robustness property of using
two random HSTs and bound the number of pairs ‘disconnected’ in both trees, i.e.,
their routes by using both HSTs go through u. For this case we assume that (P, d) has
both constant upper and lower bounded growth ratio. By using two trees we reduce the
expected number of disconnected pairs from O(n log∆) to O(n).

Theorem 3. The number of pairs of nodes disconnected in two HSTs, constructed using
independent random permutations, is a fraction of O(1/n) of all pairs, for a metric
(P, d) with both constant upper and lower bounded growth ratio.

Proof. Take a pair of nodes x, y, the paths connecting the two in both trees are discon-
nected if and only if in each of the tree, exactly one node is in a cluster with u as center
and another one is not in any cluster with u as center. Denote by Pu(x) the probability
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that x is in a cluster with u as the center. Pu(x) ≤ 1/|B(x, β2ℓu(x))|. Thus the expected
number of pairs of nodes disconnected after node u is removed is,

W2 =
∑

y

∑
x 4[Pu(x)]

2[1− Pu(y)]
2 ≤

∑
y

∑
x 4[1/|B(x, β2ℓu(x))|]2

= 4n
∑

j

∑
x∈B(u,β2j)\B(u,β2j−1) 1/|B(x, β2j)|2

= 4n
∑

j(|B(u, β2j)| − |B(u, β2j−1)|)/|B(x, β2j)|2.

If (P, d) has constant bounded growth ratio k, we know that ρ−βk2jk ≤ |B(x, β2j)| ≤
ρ+βk2jk for constants ρ− ≤ ρ+. Thus

W2 ≤ 4n
∑

j [ρ
+βk2jk]/[ρ−βk2jk]2 = 4n

∑
j ρ

+/(ρ−)2 · 1/(βk2jk) = O(n).

Robustness of Two HSTs With Reversed Rank. An alternative method to use two
trees for robust routing is to construct the second tree to be as different as possible
from the first tree. One idea is to build the second HST H2 by using permutation π2,
as the reverse of the permutation π1 used in H1. As an immediate consequence of that,
suppose x is in a cluster with u as the center in H1, then x can not be inside any cluster
with u as center in H2. This is because the rank of x is greater than u in π1, and the
rank of x must be smaller than the rank of u in π2. Thus x can never nominate u in
H2. This says that the set of nodes ‘chopped off’ by the failure of u in H1 will not be
chopped off in H2, ensuring certain robustness of routing. We also evaluate this method
by simulations and it performs no worse than the two random HSTs.

5 Simulations

This section evaluates our two HSTs mechanism in terms of path stretch and reliability
against node or link failures. We run our simulation on two data sets. The first data set is
a unit disk graph on a network of nodes deployed using perturbed grid model, a widely
used model for wireless sensor networks. To be specific, the networks are generated by
perturbing n nodes of the

√
n×

√
n grid in the [0, 1]2 unit square, by 2D Gaussian noise

of standard deviation 0.3√
n

, and connecting two resulting nodes if they are at most 2√
n

apart. The average degree of the network generated in this way is about 5. The second
data set is the Sprint backbone network topology inferred from Rocketfuel [26], which
has 314 nodes and 972 edges.

We first study the routing stretch by using 1 HST and 2 HSTs respectively assuming
no node or link failures. We also examine the number of pairs disconnected when using
one HST and two HSTs respectively. For the two HSTs, we carry out simulations for
both random HSTs and a pair of HSTs whose node rankings are in reverse of each other.
Next, we compare our scheme with the path splicing approach [18] when link or node
failures exist. We conducted two sets of experiments using two randomly constructed
HSTs, and a pair of HSTs with reversed rank. For both methods, the next hop has a
probability p to fail at each step. In case of a failure, we route a message using one HST
or one splicing, and switch to another HST or splicing instance when we encounter a
link or node failure on the next hop. The path stretch is computed only on the messages
that reach the destination before TTL runs down to zero.
Summary of simulation results. Our observations from these experiments are:
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– Small path stretch. Without failure, the path stretch from two HSTs improves sig-
nificantly over a single HST (Figure 1 [left]). In case of failures, using two HSTs
gives worse stretch compared with path splicing, but reducing the routing table size
significantly (Figure 1 [right]).

– Extremely good resilience. The maximum number of disconnected pairs using one
HST can be bad, roughly 85% but using two HSTs the number drops to below 10%
(Figure 2). Combining 2 HSTs with path splicing, our routing performance (i.e.,
the delivery rate), is nearly as good as using 2n spanning trees in the path splicing
method (Figure 3).
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Fig. 1. [Left] Average path stretch using 2 HSTs v.s. 1 HST for the unit disk network (for each
network size, we sample 20 different networks and take the average value); [Right] Path stretch
using 2 HSTs v.s. path splicing on the Sprint topology, where each underlying link fails with
probability p from 0.01 to 0.1.
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Fig. 2. By setting each node fail and removing all its adjacent edges from the network, we com-
pute the fraction of disconnected pairs using 1 HST v.s. 2 HSTs. [Left]: average value. [Right]:
maximum value. Results are the average for 20 unit disk networks for each network size.
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6 Appendix

To prove Lemma 1, we first evaluate the probability that in one tree, say, H1, the prob-
ability that u, v have a lowest common ancestor at level j, 1 ≤ j ≤ δ.

Lemma 2.
Prob{LCA1(u, v) is at level i+ 1}

≤
{
0, if 2i+1 < d(u, v);
k2 · d(u, v)/2i−2, if 2i−2 ≥ d(u, v).

Proof. First, if w = LCA1(u, v) is at level i+1, then d(w, u) ≤ βi−1 ≤ 2i, d(w, v) ≤
βi−1 ≤ 2i. By triangle inequality d(u, v) ≤ d(u,w) + d(w, v) ≤ 2i+1. Thus in the
first case of the lemma, the probability is 0. Suppose j∗ is the smallest i such that
2i+2 ≥ d(u, v). In the following we focus on the second case, i.e., i ≥ j∗ + 4.

If u, v belong to different clusters at level i, we say that the decomposition Di

separates u, v at level i. Thus LCA1(u, v) is at level i + 1 if and only if Di separates
u, v and Dj(j > i) does not. Thus,

Prob{LCA1(u, v)is at level i+ 1} ≤ Prob{Di separates (u, v)}.

Take this level i such that Di separates u, v. There is a node w such that one of u, v is
first assigned to w and the other is not. We say that w settles the pair u, v at level i. Such
a node w is unique, as once the pair u, v is settled it won’t be settled again. Thus we will
consider the union of the probability for each node w of P to possibly settle u, v. If w
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settles u, v and u is assigned to w, we say w cuts u out. Summarizing the above, we have
Prob{Di separates (u, v)} =

∑
w Prob{w settles u, v} =

∑
w Prob{w cuts u out} +∑

w Prob{w cuts v out}.
Let Ku

i be the set of nodes in P within distance 2i to node u, and let kui = |Ku
i |.

We rank the node in Ku
i with increasing order of distance from u: w1, w2, · · · , wku

i
.

For a node ws to cut u out of the pair u, v at level i, it must satisfy the following
conditions: (i) d(u,ws) ≤ βi. (ii) d(v, ws) > βi. (iii) ws settles u, v. Thus βi must lie in
[d(u,ws), d(v, ws)]. But we have d(v, ws) ≤ d(v, u) + d(u,ws) by triangle inequality.
so the length of interval [d(u,ws), d(v, ws)] is at most d(u, v). Since we choose βi

uniformly from the range [2i−1, 2i], the probability for βi to fall into this interval is at
most d(u, v)/2i−1.

We also need to bound the probability that it is ws that cut u out of the pair u, v,
not others in Ku

i . First we note that the points that are very close to both u, v cannot
possibly settle u, v. In fact, ws must lie outside Ku

i−2 for i ≥ j∗+4. Suppose otherwise,
ws is in Ku

i−2, and u is assigned to ws, then v must be assigned to ws too, by triangle
inequality, d(v, ws) ≤ d(v, u) + d(u,ws) ≤ 2i−2 + 2i−2 ≤ 2i−1 ≤ βi (note that
i ≥ j∗ + 4). Thus only those in wku

i−2+1, wku
i−2+2, · · · , wku

i
can separate u, v in level

i. Since we have a random permutation on the node rank, the probability for ws to be
the first center assigned to u is at most 1/s. Then the probability that u is cut out of the
pair (u, v) at level i is bounded by

ku
i∑

s=ku
i−2+1

1

s
· d(u, v)

2i−1
=

d(u, v)

2i−1
· (Hku

i
−Hku

i−2
),

where H(m) is the harmonic function.
For a metric with expansion ratio k, we have kui ≤ k · kui−1 ≤ k2 · kui−2. Then

Hku
i
−Hku

i−2
=

ku
i∑

s=ku
i−2+1

1

s
<

ku
i∑

s=ku
i−2+1

1

kui−2

=
kui
kui−2

− 1 ≤ k2.

Thus, we have Prob{Di separates (u, v)} = d(u, v) · k2

2i−2 , as required in the theorem.

Now we are ready to prove Lemma 1.
First, if LCA(u, v) is at level i + 1, then at least in one tree the lowest common

ancestor is at level i + 1, the probability of which is 0 if d(u, v) < 2i+2, as shown in
Lemma 2. In the following we focus on the second case when 2i−2 ≥ d(u, v).

If LCA(u, v) is at level i + 1, the first time (smallest level) that u, v belong to
different clusters is i in one tree and is j ≥ i in another tree. Denote by P1(i) and P2(i)
the probability that LCA1(u, v) and LCA2(u, v) are at level i+ 1 respectively.

Prob{LCA(u, v) is at level i+ 1}
= P1(i)

∑δ
j=i+1 P2(j) + P2(i)

∑δ
j=i+1 P1(j) + P1(i)P2(i)

By using Lemma 2. Now we have

Prob{LCA(u, v) is at level i+ 1}
≤ 2k2 d(u,v)

2i−2

∑δ
j=i+1[k

2 d(u,v)
2j−2 ] + [k2 d(u,v)

2i−2 ][k2 d(u,v)
2i−2 ]

= 3k4 · d2(u, v)/22i−4.


