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Abstract. Kleinberg’s small world model [20] simulates social networks
with both strong and weak ties. In his original paper, Kleinberg showed
how the distribution of weak-ties, parameterized by γ, influences the effi-
cacy of myopic routing on the network. Recent work on social influence
by k-complex contagion models discovered that the distribution of weak-
ties also impacts the spreading rate in a crucial manner on Kleinberg’s
small world model [15]. In both cases the parameter of γ = 2 proves
special: when γ is anything but 2 the properties no longer hold.

In this work, we propose a natural generalization of Kleinberg’s small
world model to allow node heterogeneity: instead of a single global para-
meter γ, each node has a personalized parameter γ chosen independently
from a distribution D. In contrast to the original model, we show that
this model enables myopic routing and k-complex contagions on a large
range of the parameter space, improving the robustness of the model.
Moreover, we show that our generalization is supported by real-world
data. Analysis of four different social networks shows that the nodes do
not show homogeneity in terms of the variance of the lengths of edges
incident to the same node.

1 Introduction

In Milgram’s “Small World” experiments [23,26], he gave envelops to random
residents of Wichita, Kansas and Omaha, Nebraska, and asked them to forward
the envelopes to a personal contact so that they might eventually reach a specific
banker in Massachusetts. The success of this experiment (which has since been
observed in numerous other contexts – see related work) motivated Kleinberg’s
small work model which studies why such local decisions work [20]. This inge-
nious model shows not only that short paths between arbitrary nodes exist (this
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so-called “small world” phenomena was already embedded into several funda-
mental models [6,24,27]), but also that these short paths can be easily discovered
by myopic routing (i.e., using purely local knowledge).

Kleinberg’s small world model considers an underlying metric space captur-
ing the diversity of the population in various social attributes. Social ties are
classified into two categories: strong ties that connect an individual to those
similar in the social attribute space, and weak ties that may connect individu-
als far away. Kleinberg’s model considers one parameter γ in determining how
the weak ties are placed. Each node p takes a weak tie edge to a node q with
probability proportional to 1/|pq|γ where |pq| denotes the distance between p
and q in the social space. Thus at γ = 0 the weak ties are uniformly randomly
distributed, and as γ increases shorter connections are increasingly favored.

However, in this model when the nodes are placed in a 2-dimensional grid
the navigability only holds for a particular parameter choice: γ = 2. At this
“sweetspot,” a message can be delivered to the destination in O(log2 n) hops,
by hopping to the neighbor closest to the destination in the Euclidean metric.
For any constant γ �= 2, myopic routing, or, in general, any deterministic rout-
ing algorithm using only local information, provably fails to quickly deliver the
message. Intuitively why γ = 2 is crucial, because at this sweetspot each weak
tie edge uniformly at random lands in one of the annuli around the destination
with inner radius 2i and outer radius 2i+1, for all i. Therefore, no matter where
the destination is, with probability roughly 1/ log n there is a neighbor such that
taking this neighbor reduces the Euclidean distance to the destination by half.
If γ < 2, it turns out that the weak tie edges are too random and myopic rout-
ing loses its sense of direction. If γ > 2, the weak ties are simply too short and
any path to the destination discoverable from local information necessarily takes
many hops.

Other good properties also hold at special ranges of the parameter γ. In recent
work on understanding complex social influence, it was shown how the distrib-
ution of weak-ties impacts the spreading behavior of k-complex contagions, in
which a node becomes infected if at least k neighbors are infected [13,15]. Again
it was shown that when γ = 2, for any constant k, the k-complex contagion
spreads in a polylogarithmic number of rounds to the entire network while when
γ �= 2 complex contagions necessarily require a polynomial number of rounds.
The analysis here connects to the intuition presented earlier for myopic routing.
The sweetspot γ = 2 substantially speeds up the spreading of the contagions.

While the existence of the sweetspot is both insightful and elegant, it has
raised new questions for modeling practical networks. The model feels fragile if
the good properties only hold at a single parameter value and stop holding even
with slight deviation. As put by Jackson [17]: “It is unlikely that societies just
happen to hit the right balance. More likely there is something missing from the
models, and it is clear the network-formation process underlying many social
networks is much more complex than in these models.” If Jackson is correct,
then a theoretical model that more robustly justifies the empirical observations
of Milgram and those who followed is needed.
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Our Results. In this work, we generalize Kleinberg’s small world model by
considering a personalized, possibly heterogeneous γu for each node u in the
network. In particular, each node u chooses its parameter γu ∈ [0,∞) i.i.d from
a distribution D. The weak tie edges issued by u will be placed on node v with
probability proportional to 1/|uv|γu , where |uv| denotes the distance between u
and v in some underlying metric.

This model is motivated by both intuition and observations in real world
data sets. It is natural to believe that some people have weak ties that are
more/less dispersed (geographically or otherwise) that others. We also provide
empirical evidence for node heterogeneity using real world social network data.
Given a network, we can embed it in Euclidean space using spectral methods and
examine the length of the edges attached to each node. We find that the empirical
variance of the lengths of edges incident on the same vertex is substantially less
than when the edge lengths are randomly permuted—suggesting that lengths of
edges incident on the same vertex are indeed more correlated.

In this paper the main technical results we report is that both myopic rout-
ing and k-complex contagions operate quickly in the new model as long as the
distribution D for the personalized γ has non-negligible mass around 2. Thus
our model provides a robust justification for the observed properties of both
myopic routing and k-complex contagions. Moreover it does this by only slightly
tweaking Kleinberg’s original model.

In particular, we can show that even if there is just Ω(εα) mass in the interval
[2 − ε, 2 + ε] of the distribution D, where α > 0 is any constant, then myopic
routing and k-complex contagions (for any k) still only take polylogarithmic
time! For example, it is enough that D be uniform on the interval [a, b] for any
0 ≤ a ≤ 2 ≤ b. Note that in such a case, no particular γu will be exactly 2 (with
probability 1). However, it turns out that enough of the γu are close enough to
2, which still enables these social processes.

We also show lower bounds. For myopic routing we show that if for some
ε, there is no mass in [2 − ε, 2 + ε], then the typical myopic routing time is
polynomial. This is not obvious, as there can be a distribution D that allows
weak ties that are short — connecting nodes nearby, and weak tie that are long –
connecting nodes far away. Recall that in the original Kleinberg proof it was
shown that short ties only, or long ties only, are not enough to enable myopic
routing but it did not exclude the possibility when both long and short ties exist
simultaneously. We show that in fact the combination of these weak tie edges
are still not enough for enabling efficient myopic routing. In particular, there is
a range of distances when none of the two types of ties are helpful, which forces
the greedy routing to take a long time.

For complex contagions, our first lower bound shows that if for some ε > 0,
there is no mass in [2 − ε, 2 + ε], then there is some k such that k-complex
contagions require a polynomial time to spread. Again we must show that the
synergy between short and long weak ties cannot enable complex contagions to
quickly spread.
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The above results for complex contagion apply for any k. We also study what
happens for a particular k. Here we show that for each k there is an interval
[2, βk) where βk = 2(k+1)

k such that when D has constant support on [2, βk),
k-complex contagions spread in polynomial time, but when, for any ε > 0, D
has no support on [2− ε, βk + ε], then k-complex contagions requires polynomial
time to spread with high probability.

2 Related Work

Small World Graphs. The small world property—that there exists short paths
between two random members of a network–appears in many real world complex
networks in vastly different contexts ranging from film collaboration networks
and neural networks [11] to email networks [10], food webs [28] and protein
interaction networks [19].

It has been discovered in a number of settings that random edges introduced
to a graph can dramatically reduce the network diameter, creating a small world
graph. This observation was made in the Watts-Strogatz model [27] (when edges
are rewired to a random destination) as well as for regular random graphs [6] (a
graph in which all nodes have the same constant degree and edges are uniformly
randomly placed). Kleinberg’s small world model can be considered as an exten-
sion to such models. In particular, the Newmann-Watts model [24] (a variant
of the Watts-Strogatz model in which random edges are added in addition to
existing edges) is a special case of Kleinberg’s model for choosing γ = 0 — i.e.,
the weak ties are uniformly randomly added.

Navigability. Milgram’s “Small World” experiments [23,26] illustrated not only
the small world property—that short paths exist—but, in fact, showed a stronger
property—that such paths can be efficiently found using only local information—
called navigability. A short path was discovered through a local algorithm with
the participants forwarding to a friend who they believed to be more likely to
know the target. Although forwarding decision-making was not systematically
recorded, geographical proximity was found to be an important forwarding cri-
terion in some cases. Other criteria such as profession and popularity may have
been used as well. A later study using email-chains [10] confirms this as well,
finding that at least half of the choices were due to either geographical proximity
of the acquaintance to the target or occupational similarity.

Besides the Kleinberg’s small world model, several other models also consid-
ered using metric distances in modeling social ties. For example, Kumar et al. [22]
extended the Kleinberg’s model to include the underlying metrics with low-
doubling dimension. This model also requires a specific distribution of the weak
ties.

Another line of work diverges from distance function defined over some low-
dimensional space, but instead defines a distance function based on some hierar-
chical structure. For example, Watts et al. considered a hierarchical professional
organization of individuals and a homophilous network with ties added between



Cascades and Myopic Routing 387

two nodes closer in the hierarchy with a higher probability. If each node has a
fixed probability of dropping the message, they show a greedy routing algorithm
sending packages to the neighbor most similar to the target (called homophily-
based routing) successfully delivers a fraction of the messages before they are
dropped. Kleinberg also confirmed similar results on a hierarchical network,
in which the nodes are represented as leaf nodes of a hierarchical organization
structure and random edges are added to the leaves with probability dependent
on their tree distance. When each node has polylogarithmic out-degree, greedy
routing based on the tree distance arrives at the destination in O(log n) hops.
While the aforementioned models also successfully create a more robust network
model for myopic routing, in doing so they abandoned the spatial structure of
Kleinberg’s small world model. While certain structures can be modeled well
as a hierarchy, others are much more natural as a continuum, as in Kleinberg’s
model—e.g. distances, wealth, political ideology, and education.

Boguñá et al. [5] proposed a model that assumes a social metric space and
the power law degree distribution. They considered nodes on a ring and assigned
target degrees from a power law distribution. An edge is then placed between two
nodes with a probability positively dependent on their distance on the ring and
negatively dependent on their degrees. They investigated greedy routing with
the distances on the ring as a means of navigating in the network. Krioukov
et al. [21] considered using a hyperbolic plane as the hidden social space. Nodes
are uniformly distributed in a radius R disk in a hyperbolic plane with edges
placed in pairs with distance smaller than r. They show that such a graph has
power law degree distribution and that greedy routing with hyperbolic distance
has a high success rate.

Complex Contagions. The model of k-complex contagions belongs to the gen-
eral family of threshold models, in which each node has a threshold on the number
of infected edges/neighbors needed to become infected [16]. The threshold model
is motivated by certain coordination games studied in the economics literature
in which a user maximizes its payoff when adopting the behavior as the majority
of its neighbors.

k-complex contagions have been previously studied in the Kleinberg small
world model [15] and their spreading behaviour was almost completely classi-
fied [13]. Ghasemiesfeh et al. [15] showed that for any k, if γ = 2 then com-
plex contagions spread quickly, in a polylogarithmic number of rounds. Further,
Ebrahimi et al. [13] showed that for each k ≥ 2, there exists an interval of values,
[2, αk], such that when γ ∈ (2, αk), a k-complex contagion spreads quickly on
the corresponding graph, in a polylogarithmic number of rounds. However, if γ
is outside this range, then a k-complex contagion requires a polynomial number
of rounds to spread to the entire network. They also showed similar results for
a variant of the Kleinberg model where edges are added without replacement
(thus multi-edges are allowed).

k-complex contagions have also been studied in other social network models,
for examples, networks that have a time-evolving nature (e.g. the Preferential
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Attachment model) [12,14], and configuration model networks with power-law
degree distribution [25].

k-complex contagions are referred to as bootstrap percolation [1,9] in the
literature, especially when initial seeds are chosen randomly at random. Here,
the focus is often to examine the threshold of the number of initial seeds with
which the infection eventually ‘percolates’, i.e. diffuses to the entire network.
Studies have been done on the random Erdős-Rényi graph [18], random regular
graphs [4], and the configuration model [2], etc [3]. All of these results show that
for a complex contagion to percolate, the number of initial seeds is a growing
function of the network size and in many cases a constant fraction of the entire
network. In contrast, we always start with a constant number of seeds and we
would like to examine whether a fast spreading is possible.

3 Preliminaries

Recall that in the Kleinberg’s small world model [20], nodes are defined on a
n×n grid1. Each node u connects to nodes within grid Manhattan distance �q�,
where q is a constant. These edges are referred to as strong ties. In addition,
each node generates p random outgoing edges (without replacement), termed
weak ties. The probability that node u connects to node v via a random edge
is 1/λγd(u, v)γ , in which d(u, v) is the Manhattan distance of u, v and λγ =∑

v d(u, v)−γ is a normalization factor. Further, we remark that the graph is
directed — the weak ties issued by a node u have u as the tail and the strong
ties are bidirectional.

For Heterogeneous Kleinberg’s small world HetKp,q,D(n), we define
p, q, n as in the original model, but, instead of one global γ, each node u indepen-
dently chooses its personalized parameter γu from the distribution D on [0,∞)
with probability density function2 fD and cumulative distribution function FD.
Let MD(ε) = FD(2 + ε) − FD(2 − ε) measure the “mass” of D around 2.

We study two dynamics on this heterogeneous Kleinberg’s small world model:
decentralized routing, and k-complex contagion.

In the decentralized routing algorithm , a message is passed to one of its
(local or long-range) contacts using only local information. Given the source s
and destination t in the graph, we denote the routing process/algorithm A: a
sequence of nodes on the graph (xi)i≥0 where x0 = s. The delivery time from s
to t of algorithm A is defined as min{i ≥ 0 : xi = t} which is a random variable
with σ-space generated by HetKp,q,D(n) and the myopic routing algorithm. The
expected delivery time of a decentralized algorithm A is the expected delivery
time for uniformly chosen sources s and destinations t. The myopic greedy algo-
rithm routes the message from the current location to be as close as possible to

1 In order to eliminate the boundary effect, we wrap up the grid into a torus – i.e.,
the top boundary is identified with the bottom boundary and the left boundary is
identified with the right boundary.

2 For discrete distribution, the probability density function exists if we allow using
Dirac delta function.
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the destination vertex (according to the grid distance) using only one hop from
the current node.

We define a k-complex contagion process in a directed graph following the
definition in Ghasemiesfeh et al. [15]. We assume k is a small constant. A k-
complex contagion CC(G, k, I) is a contagion that initially infects vertices of
I and spreads over graph G. The contagion proceeds in rounds. At each round,
each vertex with at least k infected neighbors becomes infected. The vertices
of I are called the initial seeds. We say that k nodes (u1, · · · , uk) are a k-seed
cluster if they form a connected subgraph via only the grid structure. A k-
complex contagion spreads in the inverse direction of an edge: a node becomes
infected if it follows at least k infected neighbors. In this work, we define the
speed of a k-complex contagion as the number of rounds it takes to infect
the whole graph which is always finite if we take q ≥ k and I is a k-seed cluster.

4 Myopic Routing Upper Bounds

In this section, we prove the following theorem:

Theorem 1 (Myopic Routing Upper Bounds). Given a HetKp,q,D(n) with
constant p, q ≥ 1 and distribution D. If there exists some constants ε0 > 0, α ≥ 1
and K > 0 such that ∀ε < ε0, MD(ε) ≥ Kεα, the expected delivery time of the
myopic greedy algorithm is at most O(log2+α n).

The above theorem proves fast myopic routing over a large class of Heteroge-
neous Kleinberg’s Small world models. The only distributions that this theorem
fails to apply to are distributions with negligible mass near 2. In particular,
if D is uniform over any finite interval containing 2, then myopic routing will
take time at most O(log3 n), and as long as the mass near 2 is non-trivial (i.e.,
lower bounded by the inverse of some fixed polynomial), then delivery only takes
poly-log time.

Remark 1. Note that if the random variable associated with D is a constant
random variable that takes a constant value 2, the HetKp,q,D(n) degenerates to
the original Kleinberg’s model with γ = 2, and the Theorem 1 is tight which
yields the same O(log2 n) upper bound on delivery time on myopic greedy routing
algorithm.

The proof of Theorem 1 follows the general outline of the proof in Kleinberg’s
original paper: measure the progress of process A = (xi)i≥0 in terms of phases
which will be defined later and show the following: (1) monotone property of
the process, (2) upper bound the total number of phase, (3) lower bound the
probability of finishing each phase. The formal proof will be in the full version.

5 Myopic Routing Lower Bounds

In this section we prove a lower bound for any decentralized algorithms on the
Heterogeneous Kleinberg Small World HetKp,q,D(n) in the following theorem:
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Theorem 2. Given a Heterogeneous Kleinberg’s Small World network
HetKp,q,D(n) with constant parameters p, q and probabilistic density function
fD for the distribution D on the personalized γu for each node u, if there exists
a constant ε0 > 0 such that F (2 + ε0) − F (2 − ε0) = 0, where F is the cumu-
lative density function of D, then the expected routing time for all decentralized
algorithms is Ω(nξ) where ξ = ε0

3(3+ε0)
.

In the original Kleinberg’s model [20], all nodes use the same γ parameter.
When γ is greater than 2 the weak ties are too short in expectation such that it
would need a polynomial number of hops to reach a far away destination. When
γ is smaller than 2 the edges are too random to be useful for nearby destinations.
But in a heterogeneous model, the nodes may have different γ values. The nodes
with γu > 2 have concentrated edges while those with γu < 2 have diffuse edges.
A network with only concentrated edges or only diffuse edges cannot support
polylogarithmic myopic routing. But it is unclear whether the combination of
them, as in the heterogeneous model, can lead to polylogarithmic delivery time.
Theorem 2 states that this is not true. We show this by considering a scope where
neither type of edges is helpful. The formal proof will be in the full version.

6 Complex Contagion Upper Bounds

The spreading of k-complex contagion on the original Kleinberg’s model has
been fully characterized in [13,15]. If a k-seed cluster is infected initially, the
contagion spreads to the entire network in O(polylog(n)) rounds if γ ∈ [2, βk),
where βk = 2(k+1)

k , and in Ω(poly(n)) rounds otherwise.

6.1 Non-negligible Mass Near 2

In the heterogeneous Kleinberg model, we first show a result that is analogous
to our results for myopic routing: as long as the distribution D for γu has a non-
negligible amount of mass near 2, then for any k, k-complex contagions spread
in polylog time—but the exponent of log n depends on k and D.

Theorem 3. Fix a distribution D, an integer k > 0 and η > 0. If there exist
constants ε0 > 0 and α ≥ 0 where MD(ε) ≥ Kεα for all ε ≤ ε0, and p, q ≥ k, there
exists κ = kα+ k(k+1)

2 , such that a k-complex contagion CC(HetKp,q,D(n), k, I)
starting from a k-seed cluster I takes at most O(log(3+κ)/2 n) rounds3 to spread
to the whole network with probability at least 1 − n−η over the randomness of
HetKp,q,D(n).

The theorem is based on the observation that the infected region doubles
its size in a polylogarithmic number of steps. In this way the general proof
framework is similar to that in [15], and the complete proof will be in the full
version.
3 The scalar depends on the constants k, η, α, K.



Cascades and Myopic Routing 391

6.2 Fixed k

For a specific k, we can show that as long as the distribution D has constant
mass in the interval [2, βk) (recall for the beginning of the section that βk =
2(k+1)

k ), then the k-complex contagion will spread to the entire network in a
polylogarithmic number of rounds. Recall that the results in Theorem 3 only
require non-negligible mass near 2. Here we require constant mass, but the mass
need not be asymptotically close to 2 as long as it is in the interval (2, βk).

Theorem 4. Fix a distribution D, an integer k > 0 and η > 0. If Prγ∼D[γ ∈
[2, βk)] > 0 where βk = 2(k+1)

k , and p, q ≥ k. There exists ξ > 0 depending on
D and k such that, the speed of a k-complex contagion CC(HetKp,q,D(n), k, I)

starting from a k-seed cluster I is at most O
(
logξ n

)
with probability at least

1 − n−η.

The proof of Theorem 4 uses the same divide and conquer strategy as in [13],
and the proof will be in the full version.

7 Complex Contagion Lower Bounds

In this section, we describe a polynomial time lower bound for the spread-
ing rate of k-complex contagion on the Heterogeneous Kleinberg Small World
HetKp,q,D(n), when the distribution D on the personal parameter γu has zero
weight around two. Here we first state the theorem for a fixed k, and the result
near two is a natural corollary.

Theorem 5 (Lower bound for fixed k). Given distribution D, constant inte-
gers k, p, q > 0, and ε0 > 0 such that FD(βk + ε0) − FD(2 − ε0) = 0, then there
exist constants ξ, η > 0 depending on D and k, such that the time it takes a k-
contagion starting at seed-cluster I, CC(HetKp,q,D(n), k, I), to infect all nodes
is at least Ω(nξ) with probability at least 1 − O(n−η) over the randomness of
HetKp,q,D(n).

If D satisfies the condition in Theorem 5, we can partition the support into
two disjoint sets Supp{D} = D1 ∪ D2 such that γ1 = 2 − ε1 = sup{γ ∈ D1} <
2 − ε0, and γ2 = 2 + ε2 = inf{γ ∈ D2} > 2(1 + 1/k) + ε0.

Ebrahimi et al. [13] proved for the original Kleinberg model if γ > 2(k+1)
k

the weak ties will be too short to create remote k-seeds; on the other hand, if
γ < 2 the weak ties will be too random to form k-seeds at all. Similar to proving
the lower bound for myopic routing, the challenge in proving this theorem is the
synergy between concentrated and diffuse edges which can possibly be exploited
by k-complex contagions in the heterogeneous Kleinberg model. We resolve this
by considering a scale where neither type of edges is helpful.

Before proving Theorem 5 we state a corollary concerning a lower bound
when there is no mass around 2.
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Corollary 1 (Lower bound for no mass around 2). Given distribution D,
constant integers p, q > 0, and ε0 > 0 such that FD(2 + ε0) − FD(2 − ε0) = 0,
there exist a constant integer k > 0 and ξ, η > 0 such that the time it takes
a k-contagion starting at seed-cluster I, CC(HetKp,q,D(n), k, I), to infect all
nodes is at least nξ with probability at least 1 − O(n−η) over the randomness of
HetKp,q,D(n).

The corollary follows directly from Theorem 5 by taking a sufficiently large k.

8 Empirical Results

See full version.

9 Conclusion

We introduced a generalization of the Kleinberg small world model where the
parameter which determines how concentrated or diffuse long ties are can be dif-
ferent for each node, and showed empirical results which support our new model.
We proved that this model overcomes a weakness of the original model, which
is that the parameters needed to be tuned just right to facilitate fast myopic
routing, which was the original motivation behind the model’s development. For
a wide array of parameters, our new model facilitates both fast myopic routing
and the fast spread of complex contagions.

One future direction would be try to learn the heterogeneous distribution
in real-world network data. Another future direction would be to connect this
model to the “structural holes” theory [7,8] which posits that agents gain power
by sitting along many shortest paths, by allowing agents to mediate the passing
of information. That is, in the hierarchical small world model, which types of
individuals are mostly likely to lie on shortest paths, or, in general, are more
useful in myopic routing and complex contagions. A final future direction would
be to study the Kleinberg small world model where nodes have a non-uniform
(e.g. powerlaw) degree distribution of weak ties. This may provide an alternative
way to generalize the Kleinberg small world model so that it supports myopic
routing and complex contagions over a larger parameter range.
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