
New Challenges in Distributed Sensing, Processing and Query of Spatial Data

Jie Gao Stony Brook University ALGO'17, 9/8/2017

Wireless and Sensor Networks 2000-2010

- Lightweight wireless sensor nodes embedded in the environment.
- Scientific data collection, environment monitoring, etc.

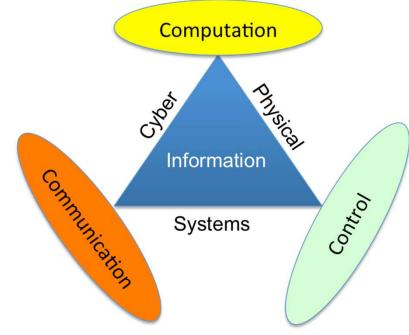
Sensor-web devices such as this prototype may eventually be used to monitor biological and environmental activity on other planets. (Photo courtesy of Jet Propulsion Laboratory)

Distributed Algorithms for Data Collection, Processing and Query

- Sensor deployment and coverage.
- Network management: topology control, power control.
- Routing: one-to-one routing, data collection and aggregation.
- Distributed storage & data-centric routing.

Wireless and Sensor Networks 2010-now

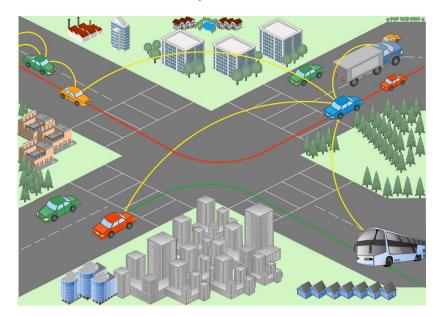
- Smart phone sensing
- Wearable devices

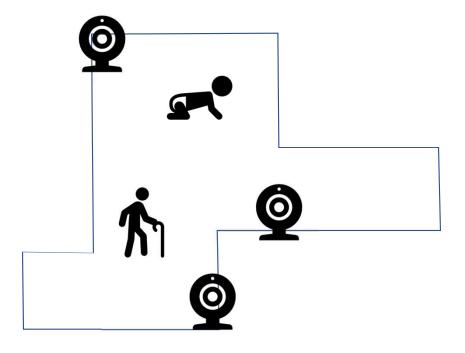


Wireless and Sensor Networks 2010-now

Cyber-physical systems, Internet of Things (IoT)

Sensing + communication & processing + control





Algorithmic Problems?

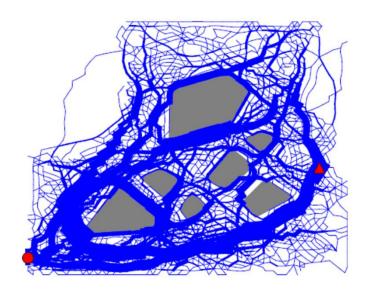
Communication & networking:

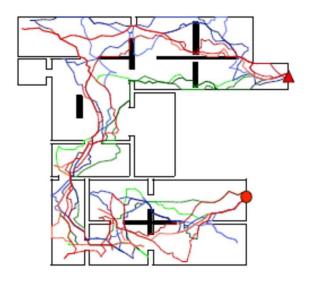
- Sensor duty cycle scheduling
- Ultra-low delay 10~100ms → 1ms

Algorithmic Problems?

Communication & networking:

- Sensor duty cycle scheduling
- Ultra-low delay

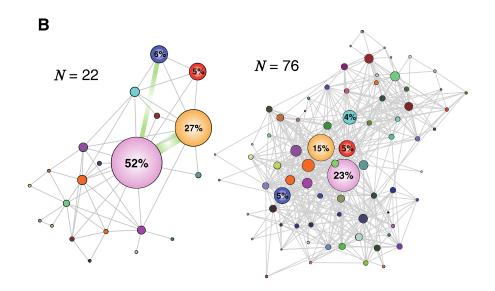

Data processing and query:


- Big data:
- Spatial data & distributed query

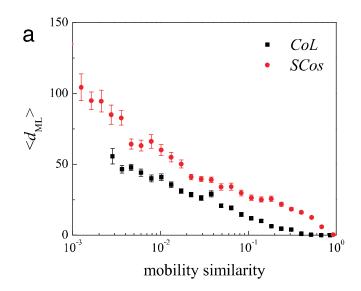
Security and Privacy

Location and Trajectory Privacy

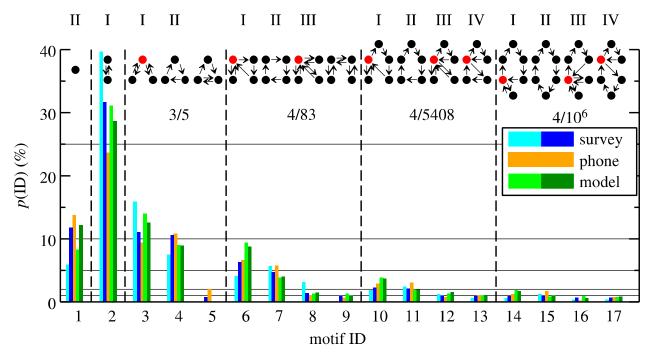
- GPS is everywhere.
- Locations/trajectories are collected.



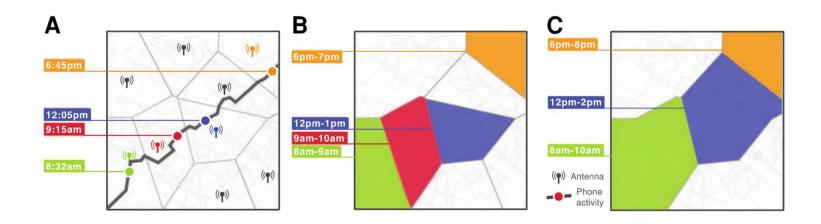
Many Applications of Trajectory Data


- Traffic analysis and mining
- Optimization of transportation system
- Anomaly detection
- Crime investigation

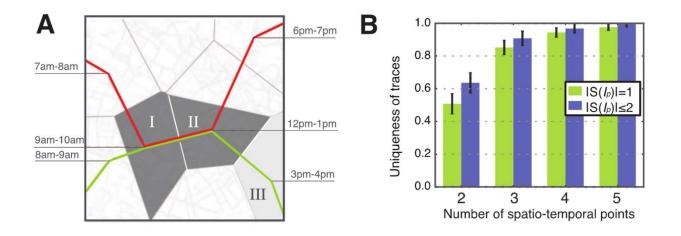
 Frequently visited locations → home/work address; predictability of location > 93%


Limits of Predictability in Human Mobility, Science, 2010.

• Frequent co-location patterns → social ties


Human Mobility, Social Ties, and Link Prediction, KDD'11.

Motifs – revealing activities


Unravelling daily human mobility motifs, 2013.

• Unique signature.

Unique in the Crowd: The privacy bounds of human mobility, Nature, 2013.

 Unique signature – 4 spatial-temporal points are enough to identify 95% trajectories in 1.5 million users.

Next

- Privacy models
- Settings
- Case studies

Privacy Model: k-anonymity [Sweeney02]

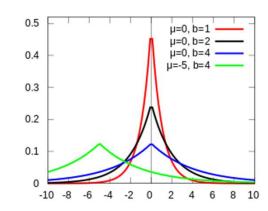
• Output perturbation to a database: each row is the same with at least

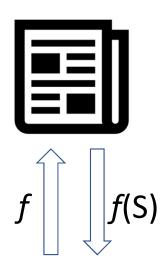
k-1 other rows.

	Race	Birth	Gender	ZIP	Problem
tl	Black	1965	m	0214*	short breath
t2	Black	1965	m	0214*	chest pain
t3	Black	1965	f	0213*	hypertension
t4	Black	1965	f	0213*	hypertension
t5	Black	1964	f	0213*	obesity
t6	Black	1964	f	0213*	chest pain
t7	White	1964	m	0213*	chest pain
t8	White	1964	m	0213*	obesity
t9	White	1964	m	0213*	short breath
t10	White	1967	m	0213*	chest pain
t11	White	1967	m	0213*	chest pain

Race	BirthDate	Gender	ZIP	Problem
black	1965	male	02141	short of breath
black	1965	male	02141	chest pain
black	1965	female	02138	painful eye
black	1965	female	02138	wheezing
black	1964	female	02138	obesity
black	1964	female	02138	chest pain
white	1960-69	male	02138	short of breath
white	1960-69	human	02139	hypertension
white	1960-69	human	02139	obesity
white	1960-69	human	02139	fever
white	1960-69	male	02138	vomiting
white	1960-69	male	02138	back pain

Suppression


Generalization


ε-Differential Privacy [Dwork06]

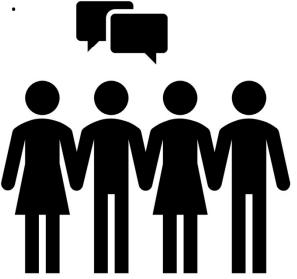
Given a database S, return a query f(S) such that for any database S' that differs from S by one element, $\Pr[f(S) \text{ in } A] \leq e^{\epsilon} \Pr[f(S') \text{ in } A]$, for any A in img f().

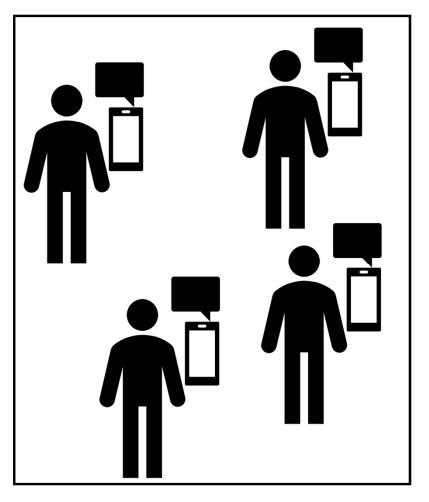
Example: total salary of S?

Return: TS(S)+Lap($\Delta f/\epsilon$)

K-anonymity vs

- Data publication
- Protects data & ID association
- Weaker protection
- NP-hard to minimize # changes
- Inference attack


differential privacy


- Data is not published
- Interactive query
- Protects the data itself
- Privacy loss w. # queries.
- Noise added can be high.

Ex: Location-based queries

• Where is the closest coffee shop?

• Protecting location & ID association: spatial "cloaking".

Ex: Location-based queries

- Where is the closest coffee shop?
- Protecting location & ID association: spatial "cloaking".
- Protecting location itself: add perturbation.

Location/Trajectory Collection Settings

- Location/trajectory collected by GPS and stored on the device.
 - Users voluntarily contribute such data.
- Wireless devices leave traces behind.
 - Cell towers.
 - WiFi AP.

Privacy Preserving with Sensing

- 1. Collect data;
- 2. Run anonymization;

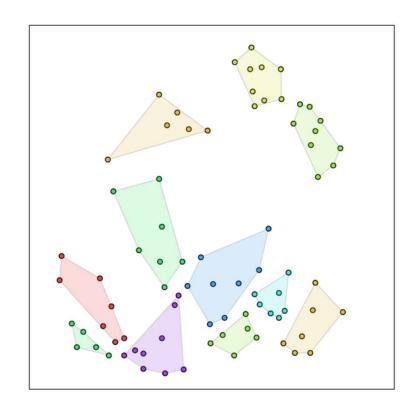
Or, answer statistical queries with privacy added.

- 1. Collect little data
- 2. Derive group behaviors or statistical patterns.

One Network Setting; Two Case Studies

- Smart city environment: many checkpoints that record user mobility.
- What shall be collected at these checkpoints?
 - Low cost, w/ privacy protection.
- 1. Distributed trajectory clustering.
- 2. Popular path mining and query.

Part I: Trajectory Clustering

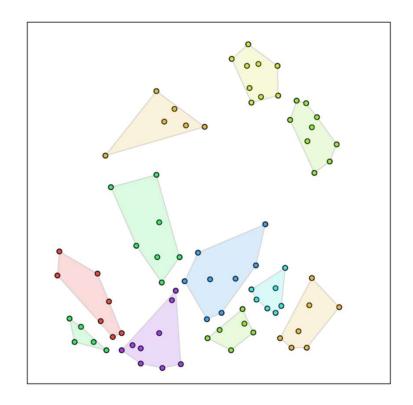

Clustering Mobile Nodes with k-anonymity

Static r-gather problem:

- each cluster has at least r nodes
- the maximum radius of the cluster is minimized.

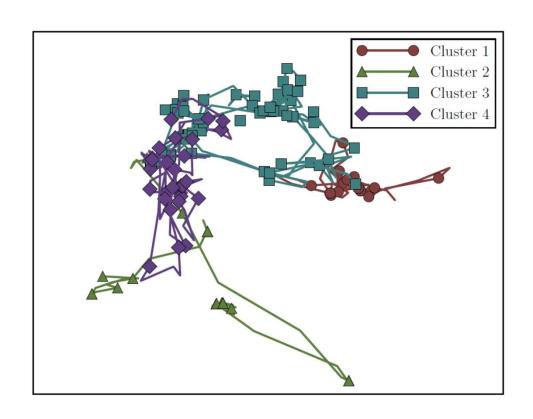
Metric setting [Aggarwal et al., Armon]:

- r>2, NP-hard to app better than 2.
- Alg w/ 2-approx. using network flow
- r=2, in P, matching.

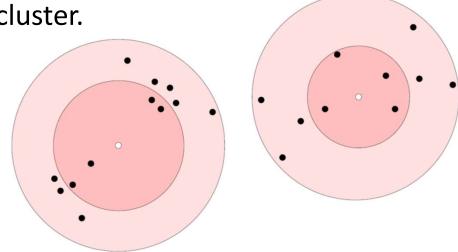

Clustering Mobile Nodes with k-anonymity

Static r-gather problem:

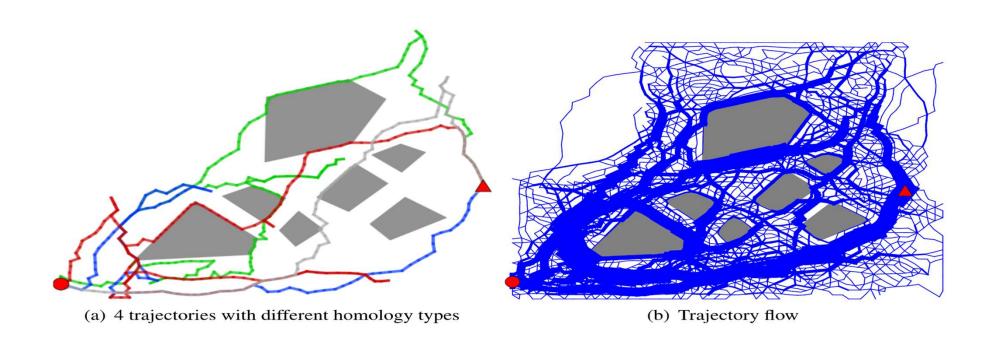
- each cluster has at least r nodes
- the maximum radius of the cluster is minimized.


Euclidean setting [MobiHoc17]:

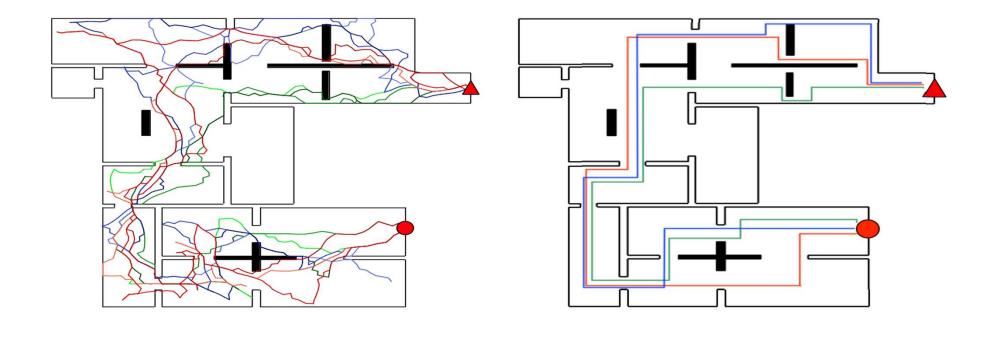
r>2, NP-hard to app better than
1.932 for max diameter, and 1.802
for minimum enclosing ball radius.

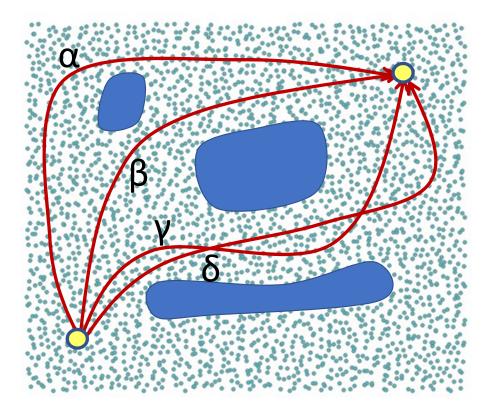

Clustering Mobile Nodes with k-anonymity

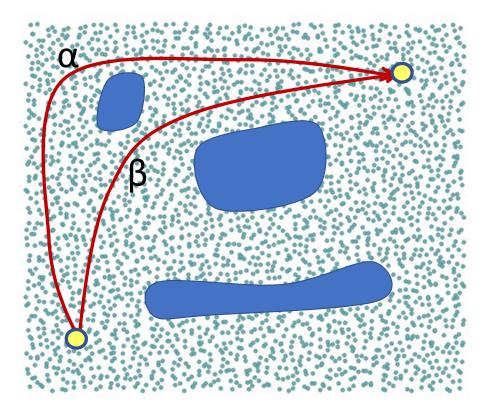
- Offline clustering: r-gather for trajectories
- m regroupings: dynamic programming.
- Kinetic clustering: smoothly reorganize the nodes into clusters of size at least r.

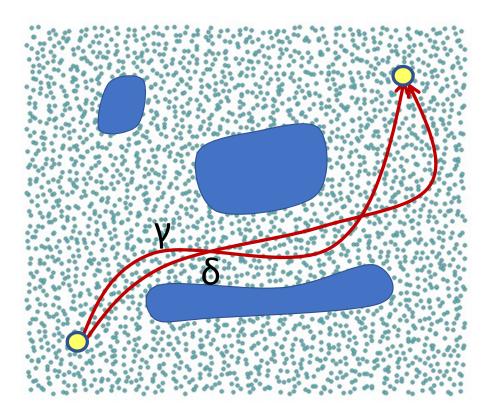


Kinetic r-gather

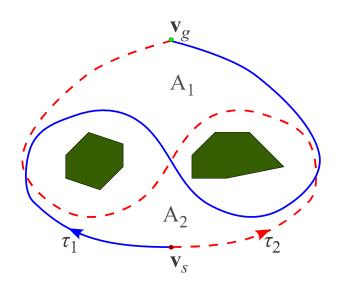

- 1. Compute r-NN graph.
- 2. Find maximal independent set
- 3. Assign remaining nodes to nearest cluster.
- 4-approximation.
- # changes: O(n²) for poly motion.
- Distributed algorithm.


Clustering by Topology


Clustering by Topology


Clustering by Topology

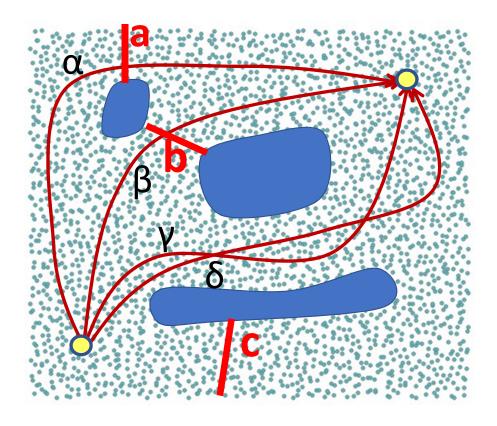
Homotopy Type



Homotopy Type

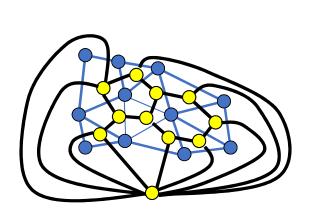
Homotopy vs Homology

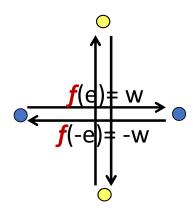
- Homotopy:
 - One can deform a curve to another continuously;
 - A cycle can shrink to a point.
 - Stronger notion.
- Homology:
 - The 'order' or 'orientation' does not matter.
 - Easier to compute.



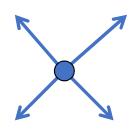
Sensing Homotopy/Homology Types

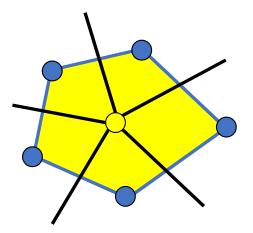
- Considers sensors densely exist in the environment tracking nearby targets.
- Goal: cluster the trajectories into homologous types.
 - Local, in-network processing.
 - Low cost in computation/communication.
 - Distributed.


Sensing Homotopy Types


- 2D domain with holes.
- Cut the domain open as simply connected.
- Trajectory is represented by how they go through the cuts.
- Simplification: a+a-a+ = a+

Differential 1-Form


- Planar graph G with faces.
- One-form: "directed" weights f on edges.
- Dual graph G': face → vertex; vertex → face; edges rotated by 90°.

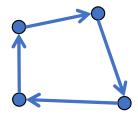


Harmonic 1-Form

- **1.** Divergence-free: $\sum_{\text{neighbor } v} f(u, v) = 0$ i.e., no sources, no sinks
- 2. Curl free: $\sum_{\text{edge e on a face}} f(e) = 0$ i.e., divergence-free in dual graph

Use Harmonic 1-form

- For a cycle **not enclosing any hole**, the integration of the harmonic 1-form is **zero**.
- **Preprocessing**: Compute a harmonic 1-form on the graph s.t. only cycles enclosing holes integrate to non-zero values
- Homology check: Simple integration along the trajectories.
- Distributed storage & computation.
- How to compute a harmonic 1-form? By Hodge decomposition.


Hodge Decomposition

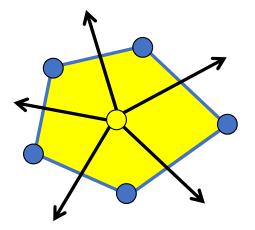
- Start w/ an arbitrary 1-form ω.
- Hodge decomposition

$$\omega = \alpha + \beta + \gamma$$

- α : gradient flow, $\alpha(u, v) = \tau(u) \tau(v)$, τ is a potential function on vertices, 0-form.
- Operation δ : Integration along a face

=
$$\tau(u_1) - \tau(u_2) + \tau(u_2) - \tau(u_3) + ...$$

+ $\tau(u_k) - \tau(u_1)$.
= 0



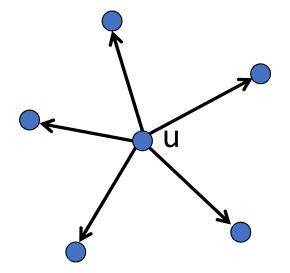
Hodge Decomposition

Hodge decomposition

$$\omega = \alpha + \beta + \gamma$$

- **\beta**: **curl flow**, i.e., gradient flow in the dual graph, $\beta(u, v) = \eta(x) \eta(y)$, x is the face to the right, y is the face to the left. η is a function on **faces**, **2-form**.
- Operation d: $\sum \beta$ on edges of vertex u
- = $\sum \beta$ dual edges on face u*
- = 0

Hodge Decomposition


Hodge decomposition

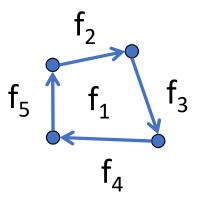
$$\omega = \alpha + \beta + \gamma$$

- γ: harmonic 1-form.
- Integration along a face = 0 (curl-free)
- Integration on edges of a vertex = 0 (divergence-free)

Gossip-style Implementation

- Goal: find **0-form** τ and 2-form η .
- d: Integration of the edges of a vertex
- $d\omega = d\alpha + d\beta + d\gamma$
- $\sum w(e) = \sum_{(u,v)} \tau(u) \tau(v)$
- $\tau(u) = [\sum w(e) + \sum_{(u, v)} \tau(v)]/d(u)$
- Initialize all $\tau(u) = 0$
- Run gossip with neighbors.

Gossip-style Implementation


- Goal: find 0-form τ and **2-form** η .
- δ: Integration along a face f

•
$$\delta\omega = \delta\alpha + \delta\beta + \delta\gamma = \delta d\tau$$

•
$$\sum_{e \text{ on face } f} w(e) = \sum_{i} \eta(f) - \eta(f_i)$$

•
$$\eta(f) = \left[\sum_{e \text{ on } f} w(e) + \sum_{i} \eta(f_{i})\right]/d(f)$$

- Initialize all $\eta(f) = 0$
- Run gossip with neighbors.

Homology Basis

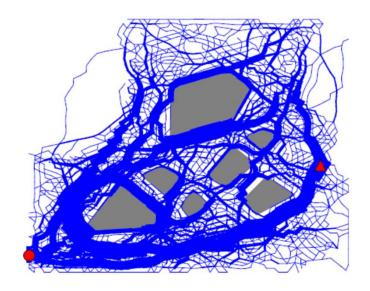
- Harmonic 1-forms form a linear space of dim k, for k holes, or 2g for a closed surface with genus g.
- Linear dependency can be checked locally.
- **Homology signature** of a trajectory: k-vector integration along k harmonic 1-forms.

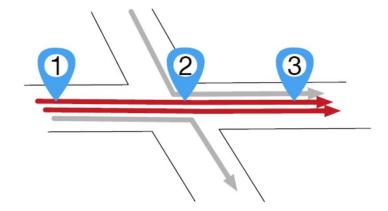
Practical Considerations

- Homology test: Integration of a cycle is **sufficiently close to zero**.
- Two trajectories are homologous if they integrate to the same values.

Vehicle Trajectories

• 243 trajectories in a city.




Table III. Descriptive nature of homology types.

#holes	#homology	max.#trajectories	#trajectories with
	types	in the same type	unique value
3	41	48	21
5	105	26	69
7	146	22	119

Part II: Traffic Pattern Query

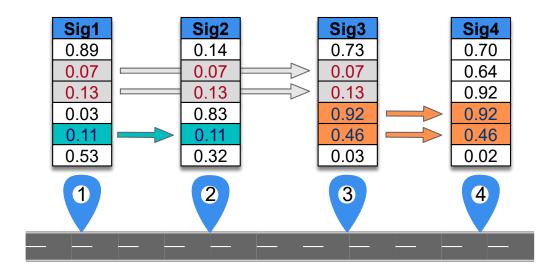
Popular Paths

- A path travelled by φ-fraction of all vehicles that appear on the path.
 - A subpath of a popular path is still popular;
 - A node stays on at most 1/φ maximally popular paths.

MinHash Signature

 Sensor i sees a set of vehicles V, and stores the min hash value h_i(V), for k hash functions.

MinHash Signature


- MinHash estimates set cardinality.
- Minhash estimates path popularity by Jaccard coefficient:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}.$$

 MinHash estimates J(A, B): X/k, X: # minhash values A, B agree with.

MinHash Signature

• # common MinHash entries along a path estimates path popularity.

MinHash and Privacy

• If two sets of trajectories differ by 1, with good chance their signatures are the same, upon randomness of the seeds.

$$\Pr\{S(D) = S^*\} \le e^{\varepsilon} \Pr\{S(\tilde{D}) = S^*\},$$

$$\varepsilon = km/n'.$$
 # vehicles each node has seen

MinHash Hierarchy

- Recursively subsample checkpoint.
- Edge (u, v): if there is at least one popular path from u to v

Traffic Pattern Queries

- By careful search in the hierarchy of m nodes.
 - Popular paths for (s, t) O(log m)
 - Popularity for a path P. O(log m)
 - All popular paths from s. O(log²m)

Summary

- Sensing with privacy consideration.
- Reduced communication cost.

Questions & Comments?

- http://www.cs.stonybrook.edu/~jgao
- Xiaotian Yin, Chien Chun Ni, Jiaxin Ding, Jie Gao, Xianfeng David Gu, Decentralized Path Homotopy Detection Using Hodge Decomposition in Sensor Networks, SigSpatial'15.
- Jiemin Zeng, Gaurish Telang, Matthew P. Johnson, Rik Sarkar, Jie Gao, Esther Arkin, Joseph S. B. Mitchell, **Mobile r-gather: Distributed Geographic Clustering for Location Anonymity**, MobiHoc'17.
- Jiaxin Ding, Chien Chun Ni, Mengyu Zhou, Jie Gao, MinHash Hierarchy for Privacy Preserving Trajectory Sensing and Query, IPSN'17.