New Challenges of Data Privacy in a Socially Connected World

Jie Gao

Stony Brook University
http://www.cs.stonybrook.edu/~jgao

Fall Workshop on Computational Geometry
October 27th 2018.
New Challenges in Data Privacy

- Big Data;
- Internet of Things

New law enforcements:
- Fair Information Practice Principles (FIPPs): collection limitation, purpose specification, use limitation, accountability, security, notice, and choice.
- General Data Protection Regulation (GDPR), effective 25 May 2018;
New Challenges in Data Privacy

- Big Data;
- Internet of Things

New law enforcements:

- Fair Information Practice Principles (FIPPs): collection limitation, purpose specification, use limitation, accountability, security, notice and choice.
- General Data Protection Regulation (GDPR), effective 25 May 2018;
New Challenges in Data Privacy

- Big Data;
- Internet of Things

New law enforcements:
- Fair Information Practice Principles (FIPPs): collection limitation, purpose specification, use limitation, accountability, security, notice and choice.
- General Data Protection Regulation (GDPR), effective 25 May 2018;
Protecting Data Privacy

Most work on protecting data privacy focus on databases.

- Medical records.
Protecting Data Privacy

Most work on protecting data privacy focus on databases.
- Medical records.

Privacy models:
- k-anonymity (for ID association) [Sweeney02]: each item is identical to $k - 1$ other items.
Protecting Data Privacy

Most work on protecting data privacy focus on databases.

- Medical records.

Privacy models:

- **k-anonymity** (for ID association) [Sweeney02]: each item in D is identical to $k - 1$ other items.

- **Differential privacy** [Dwork06]: add noises to query results $Q[D]$ s.t. $\forall p \in D$

\[
\frac{\text{Prob}\{Q[D] = r\}}{\text{Prob}\{Q[D \setminus p] = r\}} \leq e^{\epsilon}
\]
Protecting Data Privacy

Most work on protecting data privacy focus on databases.
- Medical records.

Privacy models:
- k-anonymity (for ID association) [Sweeney02]: each item in D is identical to $k-1$ other items.
- Differential privacy [Dwork06]: add noises to query results $Q[D]$ s.t. $\forall p \in D$

$$\frac{\text{Prob}\{Q[D] = r\}}{\text{Prob}\{Q[D \setminus p] = r\}} \leq e^\varepsilon$$

Our focus: **structured data**.
Privacy of Structured Data

Structured data: sensor data, location/trajectory data.

- Strong spatial/temporal correlations.
- Data items are not independent, unlike database records.
Privacy of Structured Data

Structured data: sensor data, location/trajectory data.

- Strong spatial/temporal correlations.
- Data items are not independent, unlike database records.

Implications: personally identifying information could be revealed through innocent records.

- Sparse sensing: reduce the amount of data collected yet still support target applications.
Privacy of Structured Data

Structured data: sensor data, location/trajectory data.

- Strong spatial/temporal correlations.
- Data items are not independent, unlike database records.

Implications: personally identifying information could be revealed through innocent records.

- Sparse sensing: reduce the amount of data collected yet still support target applications.
- Advanced network-based attacks: using explicitly the connections of data items.
Outline

- Privacy issues in trajectory data: 3 clustering algorithms.
 - Distributed r-gather problem.
 - Sensing path topology.
 - Sensing popular paths.
- Network based attacks.
 - Trajectory inference through colocation events.
 - Network de-anonymization.
Part I: Location Privacy in Mobility Data.
Populated by Wireless Devices

Smart building, smart city, smart communities: an increasing number of wireless devices, both static and mobile, populating the physical space.
Populated by Wireless Devices

Smart building, smart city, smart communities: an increasing number of wireless devices, both static and mobile, populating the physical space.
Location Privacy

Location and trajectory data can reveal personal sensitive information:

- Frequently visited locations: home or work addresses. Predictability of location $\geq 93%$

Limits of Predictability in Human Mobility, Science, 2010.
Location Privacy

Location and trajectory data can reveal personal sensitive information:

- Frequently co-located pairs: social ties.

![Graph showing mobility similarity and average distance](image)
Location Privacy

Location and trajectory data can reveal personal sensitive information:

- Unique signatures: 4 spatial temporal data points can be used to identify a user from a database of 1.3 million users.

Our Approach: Application Dependent Sketches

Smart city environment: many checkpoints (WiFi APs, cell towers, surveillance cameras) that record user appearances.

Goal: Collect data sketches for data mining applications.

- Distributed;
- Low cost;
- Privacy guarantee.
Clustering Mobile Nodes with k-anonymity

Spatial cloaking for location based queries: Report a box which contains $\geq k$ users.
Clustering Mobile Nodes with k-anonymity

Spatial cloaking for location based queries: Report a box which contains $\geq k$ users.

r-gather problem.

- each cluster has at least r nodes;
- max radius of the cluster is minimized.
Clustering Mobile Nodes with k-anonymity

r-gather in the metric setting [Aggarwal et al., Armon]:

- $r = 2$, in P, matching.
- $r > 2$, NP-hard to approximate better than 2.
- 2-approximation using network flow.
Clustering Mobile Nodes with k-anonymity

r-gather in the metric setting [Aggarwal et al., Armon]:
- $r = 2$, in P, matching.
- $r > 2$, NP-hard to approximate better than 2.
- 2-approximation using network flow.

Euclidean setting:
- $r > 2$, NP-hard to app better than 1.932 for max diameter, and 1.802 for $r = 3$ ($\sqrt{35}/4 + \sqrt{3}/4$ for $r \geq 5$) for minimum enclosing ball radius. [Zeng et.al’17]
- MEB hardness: 1.938 ($r = 4$) and 1.939 ($r \geq 5$). [Johnson’17]
Clustering Mobile Nodes with k-anonymity

Kinetic r-gather:

- Compute r-NN graph.
- Find maximal independent set
- Assign remaining nodes to nearest cluster.
Clustering Mobile Nodes with k-anonymity

Kinetic r-gather:

- 4-approximation: $d(p, C(p)) \leq 2d(p, r\text{NN}(p))$.
- # changes: $O(n^2)$ for poly motion.
- Distributed algorithm.

![Decentralized Static r-Gather](image1.png)
![Decentralized Static r-Gather](image2.png)
Clustering Trajectories by Topology
Clustering Trajectories by Topology [Yin et. al’15]

Directly sense topology by using harmonic differential forms:

- Checkpoints maintain a triangulation.
- Edges are given directed weights – “differential forms”
- Summation of weights along any cycle not enclosing holes $= 0$
- Trajectories that sum up to different values have different homology.

![Diagram showing different trajectories with labeled checkpoints and edges](image_url)
Mining Popular Paths in Traffic

Popular Paths: paths travelled by ϕ-fraction of all vehicles that appear on the path.

- Popular paths are user preferred ‘high quality’ paths.
- Opportunity for public transportation.

Question: Can we learn popular paths without collecting all traffic data?
MinHash Signature [Ding et al’17]

Sensor i sees a set of vehicles V, and stores the min hash value $h_i(V)$, for k hash functions $\{h_i\}$.
MinHash Signature [Ding et. al’17]

Sensor i sees a set of vehicles V, and stores the min hash value $h_i(V)$, for k hash functions $\{h_i\}$.

- Storage per sensor: $O(k)$.
- Easy to update.
MinHash Signature

<table>
<thead>
<tr>
<th>Sig1</th>
<th>Sig2</th>
<th>Sig3</th>
<th>Sig4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.89</td>
<td>0.14</td>
<td>0.73</td>
<td>0.70</td>
</tr>
<tr>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.64</td>
</tr>
<tr>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.92</td>
</tr>
<tr>
<td>0.03</td>
<td>0.83</td>
<td>0.13</td>
<td>0.92</td>
</tr>
<tr>
<td>0.11</td>
<td>0.11</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td>0.53</td>
<td>0.32</td>
<td>0.46</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Magnitude of min hash value implies $|V|$. Estimate set intersection $|V_1 \cap V_2|$ by # shared min hash entries. Privacy protection: removal of a vehicle likely does not change the min hash signatures, upon random seeds. Support efficient (polylogarithmic) queries for popular paths.
MinHash Signature

- **Magnitude of min hash value implies** $|V|$.

<table>
<thead>
<tr>
<th>Sig1</th>
<th>Sig2</th>
<th>Sig3</th>
<th>Sig4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.89</td>
<td>0.14</td>
<td>0.73</td>
<td>0.70</td>
</tr>
<tr>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.64</td>
</tr>
<tr>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.92</td>
</tr>
<tr>
<td>0.03</td>
<td>0.83</td>
<td>0.13</td>
<td>0.92</td>
</tr>
<tr>
<td>0.11</td>
<td>0.11</td>
<td>0.92</td>
<td>0.46</td>
</tr>
<tr>
<td>0.53</td>
<td>0.32</td>
<td>0.46</td>
<td>0.02</td>
</tr>
</tbody>
</table>

The diagram illustrates the comparison of min hash signatures between different locations, showing how similar locations have closer hash values, indicating a higher degree of similarity in the data sets.
MinHash Signature

- Magnitude of min hash value implies $|V|$.
- Estimate set intersection $|V_1 \cap V_2|$ by # shared min hash entries.
MinHash Signature

<table>
<thead>
<tr>
<th>Sig1</th>
<th>Sig2</th>
<th>Sig3</th>
<th>Sig4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.89</td>
<td>0.14</td>
<td>0.73</td>
<td>0.70</td>
</tr>
<tr>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.64</td>
</tr>
<tr>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.92</td>
</tr>
<tr>
<td>0.03</td>
<td>0.83</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td>0.11</td>
<td>0.11</td>
<td>0.46</td>
<td>0.46</td>
</tr>
<tr>
<td>0.53</td>
<td>0.32</td>
<td>0.03</td>
<td>0.02</td>
</tr>
</tbody>
</table>

- **Magnitude of min hash value implies** $|V|$.
- **Estimate set intersection** $|V_1 \cap V_2|$ **by** $\#$ **shared min hash entries**.
- **Privacy protection**: removal of a vehicle likely does not change the min hash signatures, upon random seeds.

MinHash Signature

- **Magnitude of min hash value implies** $|V|$.
- **Estimate set intersection** $|V_1 \cap V_2|$ by $\#$ shared min hash entries.
- **Privacy protection**: removal of a vehicle likely does not change the min hash signatures, upon random seeds.
- **Support efficient (polylogarithmic) queries for popular paths.**

<table>
<thead>
<tr>
<th>Sig1</th>
<th>Sig2</th>
<th>Sig3</th>
<th>Sig4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.89</td>
<td>0.14</td>
<td>0.73</td>
<td>0.70</td>
</tr>
<tr>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.64</td>
</tr>
<tr>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.92</td>
</tr>
<tr>
<td>0.03</td>
<td>0.83</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td>0.11</td>
<td>0.11</td>
<td>0.46</td>
<td>0.46</td>
</tr>
<tr>
<td>0.53</td>
<td>0.32</td>
<td>0.03</td>
<td>0.02</td>
</tr>
</tbody>
</table>

21 of 41
Part II: Network based Privacy Attacks.
Network Based Location Attacks [Aronov et.al.’18]

Mobility data of privacy-aware/sensitive and privacy-indifferent users.
Network Based Location Attacks [Aronov et.al.’18]

Mobility data of privacy-aware/sensitive and privacy-indifferent users.

Question: if privacy insensitive users publish their whereabouts, how much information can we infer for privacy sensitive users?
Location Inference

Time: 9am; Location: North Hall

Time: 9:30am; Location unknown

Time: 10am; Location: CS building
Problem Definition

Consider a mixture of privacy aware users and privacy insensitive users in motion. Privacy insensitive users may occasionally report

- GPS event \((i, \tau, p)\): user \(i\) is at location \(p\) at time \(\tau\).

Meeting events

\(\chi = (i, j, \tau)\): user \(i\), \(j\) appear at the same location at time \(\tau\).

A user \(i\) has a maximum travel speed \(v_i\).

Two events \((i, j, \tau)\) and \((i, j', \tau')\) that share one user is at most \(|\tau - \tau'|v_i|\) away.

Q: Can we infer feasibility region of the meeting events \(R = \{R(\chi), \forall \chi\}\) (which will imply location information of privacy aware users)?
Problem Definition

Consider a mixture of privacy aware users and privacy insensitive users in motion. Privacy insensitive users may occasionally report

- GPS event \((i, \tau, p) \): user \(i \) is at location \(p \) at time \(\tau \).
- Meeting events \(\chi = (i, j, \tau) \): user \(i, j \) appear at the same location at time \(\tau \).
Problem Definition

Consider a mixture of privacy aware users and privacy insensitive users in motion. Privacy insensitive users may occasionally report

- GPS event \((i, \tau, p)\): user \(i\) is at location \(p\) at time \(\tau\).
- Meeting events \(\chi = (i, j, \tau)\): user \(i, j\) appear at the same location at time \(\tau\).

A user \(i\) has a maximum travel speed \(v_i\).
Problem Definition

Consider a mixture of privacy aware users and privacy insensitive users in motion. Privacy insensitive users may occasionally report

- GPS event \((i, \tau, p)\): user \(i\) is at location \(p\) at time \(\tau\).
- Meeting events \(\chi = (i, j, \tau)\): user \(i, j\) appear at the same location at time \(\tau\).

A user \(i\) has a maximum travel speed \(v_i\).

Two events \((i, j, \tau)\) and \((i, j', \tau')\) that share one user is at most \(|\tau - \tau'|v_i\) away.
Problem Definition

Consider a mixture of privacy aware users and privacy insensitive users in motion. Privacy insensitive users may occasionally report

- **GPS event** \((i, \tau, p)\): user \(i\) is at location \(p\) at time \(\tau\).
- **Meeting events** \(\chi = (i, j, \tau)\): user \(i, j\) appear at the same location at time \(\tau\).

A user \(i\) has a maximum travel speed \(v_i\).

Two events \((i, j, \tau)\) and \((i, j', \tau')\) that share one user is at most \(|\tau - \tau'|v_i\) away.

Q: Can we infer feasibility region of the meeting events

\[R = \{ R(\chi), \forall \chi \} \](which will imply location information of privacy aware users)?
Results

- Solving R is a convex problem – all distance constraints are convex.
Results

- Solving R is a convex problem – all distance constraints are convex.
- If we measure distance by ℓ_∞, we can separate different dimensions and obtain a nearly linear running time algorithm.
Results

- Solving R is a convex problem – all distance constraints are convex.
- If we measure distance by ℓ_∞, we can separate different dimensions and obtain a nearly linear running time algorithm.
- If we use ℓ_2 distance, the region boundary may have high complexity, e.g., depending on $O(n)$ parameters.
Results

- Solving R is a convex problem – all distance constraints are convex.
- If we measure distance by ℓ_∞, we can separate different dimensions and obtain a nearly linear running time algorithm.
- If we use ℓ_2 distance, the region boundary may have high complexity, e.g., depending on $O(n)$ parameters.
- But we can compute ε-approximations in nearly linear running time.
Results

- Solving R is a convex problem – all distance constraints are convex.
- If we measure distance by ℓ_∞, we can separate different dimensions and obtain a nearly linear running time algorithm.
- If we use ℓ_2 distance, the region boundary may have high complexity, e.g., depending on $O(n)$ parameters.
- But we can compute ε-approximations in nearly linear running time.
- If we enforce speed lower bound, the problem is $\exists R$-complete.
Results

- Solving R is a convex problem – all distance constraints are convex.
- If we measure distance by ℓ_∞, we can separate different dimensions and obtain a nearly linear running time algorithm.
- If we use ℓ_2 distance, the region boundary may have high complexity, e.g., depending on $O(n)$ parameters.
- But we can compute ε-approximations in nearly linear running time.
- If we enforce speed lower bound, the problem is $\exists R$-complete.
- If the domain has holes, the problem is NP-hard.
Simulations

6,099 taxis in a region of area $1,847 \text{ km}^2$ in one hour, and 14,534 meeting events.
Simulations

6,099 taxis in a region of area 1,847 km2 in one hour, and 14,534 meeting events.

- If each taxi reports beginning and the end of the hour, we can bound feasibility region of each meeting event by a 10km by 12km region.
Simulations

6,099 taxis in a region of area $1,847\, km^2$ in one hour, and 14,534 meeting events.

- If each taxi reports beginning and the end of the hour, we can bound feasibility region of each meeting event by a 10km by 12km region.
- If 1/3 taxis do not report their locations while others report every 5mins, feasibility region has height about 1.6km.
Network Alignment – De-anonymization [Ni et. al 18]

Consider the same group of people who participate in two social network platforms:
- Private network: identities not revealed, e.g., Facebook.
Network Alignment – De-anonymization [Ni et. al 18]

Consider the same group of people who participate in two social network platforms:

- Private network: identities not revealed, e.g., Facebook.
- Public network: identities shown in public, e.g., LinkedIn.
Network Alignment – De-anonymization [Ni et. al 18]

Consider the same group of people who participate in two social network platforms:

- Private network: identities not revealed, e.g., Facebook.
- Public network: identities shown in public, e.g., LinkedIn.

The two networks have almost the same topology.
Network Alignment – De-anonymization [Ni et. al 18]

Consider the same group of people who participate in two social network platforms:

- **Private network**: identities not revealed, e.g., Facebook.
- **Public network**: identities shown in public, e.g., LinkedIn.

The two networks have almost the same topology.

De-anonymization: If we can align the two networks by vertex correspondences, the identities of the private network are thus revealed.
Graph Isomorphism

Given a pair of graphs G_1, G_2, find a one-to-one correspondence of the vertices in G_1 to vertices in G_2 such that (u, v) is an edge in G_1 if and only if their corresponding nodes $f(u), f(v)$ are connected in G_2.

Graph Isomorphism

Given a pair of graphs G_1, G_2, find a one-to-one correspondence of the vertices in G_1 to vertices in G_2 such that (u, v) is an edge in G_1 if and only if their corresponding nodes $f(u), f(v)$ are connected in G_2.

![Graph Diagram]
Graph Isomorphism

One of the most fundamental problems in theoretical computer science.

- In NP.
Graph Isomorphism

One of the most fundamental problems in theoretical computer science.

- In NP.
- Nov 2015/Jan 2017, László Babai claimed quasi-polynomial time algorithm: $O(\exp(\log^{O(1)} n))$.
Graph Isomorphism

One of the most fundamental problems in theoretical computer science.

- In NP.
- Nov 2015/Jan 2017, László Babai claimed quasi-polynomial time algorithm: $O\left(\exp(\log^{O(1)} n)\right)$.
- Many practical algorithms: e.g., NAUTY.
Graph Isomorphism

One of the most fundamental problems in theoretical computer science.

- In NP.
- Nov 2015/Jan 2017, László Babai claimed quasi-polynomial time algorithm: $O(\exp(\log^{O(1)} n))$.
- Many practical algorithms: e.g., NAUTY.
- Subgraph isomorphism is NP-complete.
Graph Isomorphism

One of the most fundamental problems in theoretical computer science.

- In NP.
- Nov 2015/Jan 2017, László Babai claimed quasi-polynomial time algorithm: $O(\exp(\log^{O(1)} n))$.
- Many practical algorithms: e.g., NAUTY.
- Subgraph isomorphism is NP-complete.
- **Approximate graph isomorphism**: find the best correspondence between vertices in G_1 and G_2 s.t. if u, v are connected in G_1 their corresponding nodes are likely connected in G_2.
Our Solution: A Geometric Approach

How to align two sets of points in the plane, assuming that some landmarks ℓ_i are already aligned?

Any point p can be represented by the barycentric coordinates (d_1, d_2, d_3), d_i is distance to ℓ_i.

If the barycentric coordinates of p and p' are similar, we match p and p'.

$p = (d_1, d_2, d_3)$

$p' = (d'_1, d'_2, d'_3)$
Our Solution: A Geometric Approach

How to align two sets of points in the plane, assuming that some landmarks \(\ell_i \) are already aligned?

- Any point \(p \) can be represented by the barycentric coordinates \((d_1, d_2, d_3)\), \(d_i \) is distance to \(\ell_i \).
- If the barycentric coordinates of \(p \) and \(p' \) are similar, we match \(p \) and \(p' \).
Quantify the ‘Position’ of a Node in a Network

In a social network there are often nodes that can be easily identified as *landmarks*. Define the position of a node wrt landmarks.
Quantify the ‘Position’ of a Node in a Network

In a social network there are often nodes that can be easily identified as *landmarks*. Define the position of a node wrt landmarks.

Q: What distance to use?
Quantify the ‘Position’ of a Node in a Network

In a social network there are often nodes that can be easily identified as landmarks. Define the position of a node wrt landmarks.

Q: What distance to use?
- Tie strength – Trouble: not easy to measure.
Quantify the ‘Position’ of a Node in a Network

In a social network there are often nodes that can be easily identified as landmarks. Define the position of a node wrt landmarks.

Q: What distance to use?

- Tie strength – Trouble: not easy to measure.
- Count # hops to these landmarks – Trouble: small world property;
Quantify the ‘Position’ of a Node in a Network

In a social network there are often nodes that can be easily identified as landmarks. Define the position of a node wrt landmarks.

Q: What distance to use?

- Tie strength – Trouble: not easy to measure.
- Count # hops to these landmarks – Trouble: small world property;
- Distances from some geometric embedding (spectral embedding, Tutte embedding).
Quantify the ‘Position’ of a Node in a Network

In a social network there are often nodes that can be easily identified as *landmarks*. Define the position of a node wrt landmarks.

Q: What distance to use?
- Tie strength – Trouble: not easy to measure.
- Count # hops to these landmarks – Trouble: small world property;
- Distances from some geometric embedding (spectral embedding, Tutte embedding).

Q: Robust to noises (edge insertion/deletion)?
Robustness: Remove Two Edges

Left: Spectral embedding; Right: Tutte/Spring embedding.
Robustness: Remove Two Edges

Left: Hop count; Right: our metric.
Robustness: Remove Two Edges

Left: Hop count; Right: our metric.

Q: How is our metric defined?
Discrete Ricci Curvature

Definition (Ollivier)

Let \((X, d)\) be a metric space and let \(m_1, m_2\) be two probability measures on \(X\). For any two distinct points \(x, y \in X\), the (Ollivier-) Ricci curvature along \(xy\) is defined as

\[
\kappa(x, y) := 1 - \frac{W_1(m_x, m_y)}{d(x, y)},
\]

where \(m_x (m_y)\) is a probability distribution defined on \(x (y)\) and its neighbors, \(W_1(\mu_1, \mu_2)\) is the \(L_1\) optimal transportation distance between two probability measure \(\mu_1\) and \(\mu_2\) on \(X\):

\[
W_1(\mu_1, \mu_2) := \inf_{\psi \in \Pi(\mu_1, \mu_2)} \int d(u, v) d\psi(u, v)
\]
Edge Weights Generated by Ricci flow

Given a graph G in which $d(x, y)$ is the weight of the edge xy and $\kappa(x, y)$ is the discrete Ricci curvature, we run

$$d_{i+1}(x, y) = (d_i(x, y) - \varepsilon \cdot \kappa_i(x, y) \cdot d_i(x, y)) \cdot N$$

Until convergence, where N is to rescale to make sure total edge weights remain the same.

At the limit, $W(x, y)/d(x, y)$ is the same for all edges.
Ricci Flow Metric

Intuition: flatten the network – shrink an edge if it is within a well connected community; stretch an edge if otherwise, s.t., the network curvature is uniform everywhere.
Evaluation on Resilience

Randomly remove 10 edges in a random regular graph.
Evaluation on Matching Performance

- Randomly remove one node in a random regular graph with degree 12.
- Right: remove randomly 10 edges in a protein protein network.
Conclusions

Protecting privacy is not easy.
Conclusions

Protecting privacy is not easy.

- Current privacy regulations do not rule out social attacks.
- Tradeoff between utility and privacy.
- More technical solutions are needed.
Acknowledgement

- Boris Aronov, Alon Efrat, Ming Li, Joseph S. B. Mitchell, Valentin Polishchuk, Boyang Wang, Hanyu Quan, Xianfeng David Gu, Rik Sarkar, Matt Johnson.
- Questions and comments?