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We introduce a new feature size for bounded domains in the plane endowed with an intrinsic metric.
Given a point x in a domain X, the systolic feature size of X at x measures half the length of the

shortest loop through x that is not null-homotopic in X. The resort to an intrinsic metric makes
the systolic feature size rather insensitive to the local geometry of the domain, in contrast with
its predecessors (local feature size, weak feature size, homology feature size). This reduces the
number of samples required to capture the topology of X, provided that a reliable approximation

to the intrinsic metric of X is available. Under sufficient sampling conditions involving the systolic
feature size, we show that the geodesic Delaunay triangulation DX(L) of a finite sampling L is
homotopy equivalent to X. Under similar conditions, DX(L) is sandwiched between the geodesic

witness complex CW
X (L) and a relaxed version CW

X,ν(L). In the conference version of the paper,
we took advantage of this fact and proved that the homology of DX(L) (and hence the one of X)
can be retrieved by computing the persistent homology between CW

X (L) and CW
X,ν(L). Here, we

investigate further and show that the homology of X can also be recovered from the persistent

homology associated with inclusions of type CW
X,ν(L) →֒ CW

X,ν′ (L), under some conditions on the

parameters ν ≤ ν′. Similar results are obtained for Vietoris-Rips complexes in the intrinsic metric.

The proofs draw some connections with recent advances on the front of homology inference from
point cloud data, but also with several well-known concepts of Riemannian (and even metric)
geometry. On the algorithmic front, we propose algorithms for estimating the systolic feature size
of a bounded planar domain X, selecting a landmark set of sufficient density, and computing the

homology of X using geodesic witness complexes or Rips complexes.
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1. INTRODUCTION

There are many situations where a topological domain or space X is known to us
only through a finite set of samples. Understanding global topological and geomet-
ric properties of X through its samples is important in a variety of applications,
including surface parametrization in geometry processing, non-linear dimensional-
ity reduction for manifold learning, routing and information discovery in sensor
networks, etc. Recent advances in geometric data analysis and in sensor networks
have made an extensive use of a landmarking strategy. Given a point cloud W
sampled from a hidden domain or space X, the idea is to select a subset L ⊂ W
of landmarks, on top of which some data structure is built to encode the geometry
and topology of X at a particular scale. Examples in data analysis include the
topology estimation algorithm of [de Silva and Carlsson 2004] and the multi-scale
reconstruction algorithm of [Boissonnat et al. 2007; Guibas and Oudot 2007]. Both
algorithms rely on the structural properties of the witness complex, a data struc-
ture specifically designed by de Silva [de Silva 2008] for use with the landmarking
strategy. Examples in sensor networks include the GLIDER routing scheme and its
variants [Fang et al. 2005; Fang et al. 2006]. The idea underlying these techniques
is that the use of sparse landmarks at different density levels enables us to reduce
the size of the data structures, and to perform calculations on the input data set
at different scales. Two questions arise naturally: (1) how many landmarks are
necessary to capture the invariants of a given object X at a given scale? (2) what
data structures should be built on top of them?

Manifold sampling issues have been intensively studied in the past, independently
of the context of landmarking. The first results in this vein were obtained by
Amenta, Bern, and Eppstein, for the case where X is a smoothly-embedded closed
curve in the plane or surface in 3-space [Amenta and Bern 1999; Amenta et al. 1998].
Their bound on the landmarks density depends on the local distance to the medial
axis of R2 \X (the local feature size), and the data structure built on top of L is the
so-called restricted Delaunay triangulation. Several extensions of their result have
been proposed, to deal with noisy data sets [Dey and Goswami 2006], sampled from
closed manifolds of arbitrary dimensions [Boissonnat et al. 2007; Cheng et al. 2005],
smoothly or non-smoothly embedded in Euclidean spaces [Boissonnat and Oudot
2006]. In parallel, others have focused on unions of congruent Euclidean balls and
their topological invariants. In a seminal paper [Niyogi et al. 2008], Niyogi et al.
proved that, if X is a smoothly-embedded closed manifold and L a dense enough
sampling of X, then, for a wide range of values of r, the union of the open Euclidean
balls of radius r about the points of L deformation retracts onto X.

The above results only hold for manifolds without boundary. The presence of
boundaries brings in some new issues and challenges. An interesting class of mani-
folds with boundaries is the one of bounded domains in Rn. These naturally arise
in the configuration spaces of motion planning problems in robotics, in monitoring
complex domains with sensor networks, and in many other contexts where natural
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Fig. 1. Left and center: two Lipschitz domains with very different weak feature sizes (wfs), but
similar systolic feature sizes. Right: a geodesic Voronoi edge with non-zero Lebesgue measure.

obstacles to sampling certain areas exist. By studying the stability of distance func-
tions to compact sets in Rn, Chazal and Lieutier [Chazal and Lieutier 2007] have
extended the sampling theory to a much larger class of objects, including some
non-smooth non-manifold compact sets. Their bound on the landmarks density
depends on the so-called weak feature size of X, defined as the smallest positive
critical value of the Euclidean distance to ∂X. This mild sampling condition is
shown to be sufficient for the recovery of the homology and homotopy groups of
X. Although the results of [Chazal and Lieutier 2007] are valid in a very general
setting, in many cases the weak feature size is small compared to the size of the
topological features of X, because it is bound to extrinsic quantities — see Figure
1 (center). As a result, many landmarks are wasted satisfying the sampling con-
dition of [Chazal and Lieutier 2007], whereas very few would suffice1 to capture
the topology of X. In practice, this results in a considerable waste of memory and
computation power.

The case of bounded domains suggests the use of an intrinsic metric on the do-
main, instead of the extrinsic metric provided by the embedding. This is essential
for certain classes of applications, such as sensor networks, where node location in-
formation may not be available and only the geodesic distance can be approximated
via wireless connectivity graph distances. Intrinsic metrics have been studied in the
context of Riemannian manifolds without boundary [Leibon and Letscher 2000] and,
from a more computational point of view, in the context of the so-called intrinsic
Delaunay triangulations (iDT) of triangulated surfaces without boundary [Bobenko
and Springborn 2007]. 2-D triangle meshes in 3-D that happen to coincide with
the iDT of their vertices are known to have many attractive properties for PDE
discretization [Fisher et al. 2006], and generating such iDT meshes is a topic of
considerable interest in geometry processing [Dyer et al. 2007].

Our contributions. In the paper we focus on the special case of bounded domains
in the plane – a setting which already raises numerous questions and finds important

1Here we are only discussing the number of landmarks, and not the number of sample points.
Indeed, for our approach to work in practice, an accurate approximation to the geodesic distance

in X must be provided, which may be given for free in some situations (e.g. in robotics), but
which may as well require many sample points in other cases (e.g. in sensor networks, see Section
7). In all situations, the main advantage of our approach is to build data structures on top of a

very small set of landmarks.
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applications in sensor networks. We make the novel claim that resorting to an
intrinsic metric instead of the Euclidean metric can result in significant reductions
in terms of the number of landmarks required to recover the homotopy type of a
bounded domain – an appealing fact in the context of resource-constrained nodes
used in sensor networks. To this end, we introduce a new quantity, called the systolic
feature size, or sfs for short, which measures the size of the smallest topological
feature (hole in this case) of the considered planar domain X. Specifically, given a
point x ∈ X, sfs(x) is defined as half the length of the shortest loop through x that
is not null-homotopic in X – see Figure 1 (left and center) for an illustration. In
particular, sfs(x) is infinite when x lies in a simply connected component of X. The
term systolic feature size is coined after the concept of systole, first introduced by
Loewner around 1949 and later developed by Berger, Gromov and others [Gromov
1996]. The systole at x is the length of the shortest non-contractible loop in X that
passes through x, therefore it is precisely equal to 2sfs(x).

In contrast with previous quantities, sfs depends essentially on the global topology
of X, and it is only marginally influenced by the local geometry of the domain
boundary. Under the assumption that X has Lipschitz boundaries (the actual
Lipschitz constant being unimportant in our context), we show that sfs is well-
defined, positive, and 1-Lipschitz in the intrinsic metric. Moreover, if L is a geodesic
εsfs-sample of X, for some ε ≤ 1

3 , then the cover of X formed by the geodesic
Voronoi cells of the points of L satisfies the conditions of the Nerve theorem [Borsuk
1948; Wu 1962], and therefore its dual Delaunay complex DX(L) is homotopy
equivalent to X. By geodesic εsfs-sample of X, we mean that every point x ∈ X is
at a finite geodesic distance less than ε · sfs(x) to L. In the particular case when X
is simply connected, our sampling condition only requires that L has at least one
point on each connected component of X, regardless of the local geometry of X.
In the general case, our sampling condition can be satisfied by placing a constant
number of landmarks around each hole of X, and a number of landmarks in the
remaining parts of X that is logarithmic in the ratio of the geodesic diameter of
X to the geodesic perimeter of its holes. This is rather independent of the local
geometry of the boundary ∂X and can result in selecting far fewer landmarks than
required by any of the earlier sampling conditions that guarantee topology recovery.

The systolic feature size is closely related to the concept of injectivity radius in
Riemannian geometry. We stress this relationship in the paper, by showing that,
for all point x ∈ X, sfs(x) is equal to the geodesic distance from x to its cut-locus
in X. This result also suggests a simple procedure for estimating sfs(x) at any
point x ∈ X. Using this procedure, we devise a greedy algorithm for generating
εsfs-samples of any given Lipschitz planar domain X, based on a packing strategy.
The size of the output lies within a constant factor of the optimal, the constant
depending on the doubling dimension of X. Our algorithm relies on two oracles
whose actual implementations depend on the application considered. We provide
some implementations in the context of sensor networks, based on pre-existing
distributed schemes [Fang et al. 2005; Wang et al. 2006].

We also focus on the structural properties of the so-called geodesic witness com-
plex, an analog of the usual witness complex in the intrinsic metric. In many appli-
cations, computing DX(L) can be hard, due to the difficulty of checking whether
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three or more geodesic Voronoi cells have a common intersection. This is especially
true in sensor networks, where the intersections between the Voronoi cells of the
landmarks can only be sought for among the set of nodes W , due to the lack of
further information on the underlying domain X. Therefore, it is convenient to
replace DX(L) by the geodesic witness complex CWX (L), whose computation only
requires us to perform geodesic distance comparisons, instead of locating points
equidistant to multiple landmarks. Assuming that the geodesic distance can be
computed exactly, we prove an analog of de Silva’s theorem [de Silva 2008], which
states that CWX (L) is included in DX(L) under some mild sampling conditions. We
also prove an analog of Lemma 3.1 of [Guibas and Oudot 2007], which states that
a relaxed version of CWX (L) contains DX(L) under similar conditions. The relax-
ation consists in allowing a simplex to be ν-witnessed by w if its vertices belong to
the ν + 1 nearest landmarks of w, and the relaxed complex is denoted by CWX,ν(L).
Unfortunately, as pointed out in [Guibas and Oudot 2007], it is often the case that
neither CWX (L) nor CWX,ν(L) coincides with DX(L). In the conference version of this
paper [Gao et al. 2008], we took advantage of the fact that DX(L) is sandwiched
between CWX (L) and CWX,ν(L), and we proved that the homology of DX(L) (and
hence the one of X) can be retrieved by computing the persistent homology be-
tween CWX (L) and CWX,ν(L). Thus, the homology of X can be recovered without the
need for constructing DX(L) in practice. The drawback of the approach is that the
proof of correctness requires the sampling density to be driven by the distance to
the medial axis of R2 \X, which can be arbitrarily small compared to the systolic
feature size and requires some more stringent conditions on the regularity of the
domain boundary [Gao et al. 2008].

In the present paper we consider a different approach, based on recent advances on
the front of homology inference from point cloud data [Chazal and Oudot 2008]. Fo-
cusing on the one-parameter family of relaxed geodesic witness complexes CWX,ν(L),
where parameter ν ranges over N, we show that this family is interleaved with the
one-parameter family of Čech complexes Cα(L), where parameter α ranges over R+.
The interleaving of the two families of spaces implies that the persistent homological
information they carry is similar [Chazal et al. 2009]. Now, Cα(L) is the nerve of the
union of the open geodesic balls of same radius α about the points of L, and that
its homology is related to the one of its dual union of balls via the Nerve theorem.
This union of geodesic balls covers the whole domain X and therefore shares the
same topological invariants as long as α is large enough. Thus, via unions of open
geodesic balls and their dual Čech complexes, a connection is drawn between the
homology of X and the persistent homology of the one-parameter family of relaxed
witness complexes. The weak point of this connection resides in the application of
the Nerve theorem, which requires the geodesic balls to satisfy certain local condi-
tions detailed in Definition 4.4 below. These conditions are automatically satisfied
by small enough geodesic balls on Riemannian manifolds. Nevertheless, Lipschitz
planar domains are not Riemannian manifolds, and the main point of our analysis
is to show that geodesic balls of radii at most a fraction of the systolic feature
size do satisfy the conditions of the Nerve theorem (Lemma 5.5). Our proof draws
connections between the systolic feature size and the distance to the cut locus on
the one hand (Lemma 5.6), as well as between Lipschitz planar domains and a class

ACM Journal Name, Vol. V, No. N, Month 20YY.



6 · Steve Y. Oudot et al.

of length spaces called Alexandrov spaces on the other hand (Theorem 5.10).
The paper is organized as follows: after recalling the necessary background in

Section 2, we introduce the systolic feature size and give some of its basic properties
in Section 3. Then, in Section 4, we study the topological structure of the geodesic
Delaunay triangulation. We also relate the geodesic Delaunay triangulation to the
geodesic witness complex. In Section 5 we turn the focus to the study of small
geodesic balls in Lipschitz planar domains, from which theoretical guarantees on
the homological structure of geodesic witness complexes are derived. In Section 6,
we detail our algorithms for sampling Lipschitz domains in the plane, estimating
their systolic feature size, and computing their homology. These algorithms are
adapted to the sensor networks setting in Section 7.

2. BACKGROUND AND DEFINITIONS

The ambient space is R2, endowed with the Euclidean metric, noted dE . Given
a subset X of R2, X̊, X, and ∂X, stand respectively for the interior, the closure,
and the boundary of X. For all x ∈ R2 and all r ∈ R+, BE(x, r) denotes the
open Euclidean ball of center x and of radius r. We also set I = [0, 1]. Finally,
S1, R × {0}, and R2

+, denote respectively the unit circle, the abcissa line, and the
closed upper half-plane.

2.1 Algebraic tools

Paths and loops. Given a subsetX of R2, a path inX is a continuous map I → X.
For all a, b ∈ I (a ≤ b), γ|[a,b] denotes the path s 7→ γ(a + s(b − a)), which can be
seen as the restriction of γ to the segment [a, b]. In addition, γ̄ denotes the path
s 7→ γ(1− s), which can be seen as the inverse of γ. Given two paths γ, γ′ : I → X
such that γ(1) = γ′(0), γ ·γ′ denotes their concatenation, defined by γ ·γ′(s) = γ(2s)
for 0 ≤ s ≤ 1

2 and γ · γ′(s) = γ′(2s − 1) for 1
2 ≤ s ≤ 1. A space X where all pairs

of points are connected by at least one path is said to be path-connected.
Given a point x ∈ X, a loop through x in X is a path γ in X that starts and ends

at x, i.e. such that γ(0) = γ(1) = x. For simplicity, we write γ : (I, ∂I) → (X,x).
An equivalent representation2 for γ is as a continuous map from the unit circle to
X, and in this case we write γ : (S1, 1) → (X,x) to specify that γ(1) = x. The
concatenation operation gives a monoid structure to the set of loops through a
same basepoint x ∈ X, the identity element being the constant loop I → {x} (or,
equivalently, S1 → {x}).

Homotopy of maps and spaces. Given two topological spaces X and Y , two con-
tinuous maps f, g : X → Y are said to be homotopic if there exists a continuous map
F : X×I → Y such that, for all x ∈ X, we have F (x, 0) = f(x) and F (x, 1) = g(x).
The map F is called a homotopy between f and g. It can be viewed as a path be-
tween f and g in the space of continuous maps from X to Y . Two spaces X and
Y are said to be homotopy equivalent if there exist two maps f : X → Y and
g : Y → X, such that g ◦ f is homotopic to the identity in X and f ◦ g is homo-
topic to the identity in Y . Homotopy equivalent spaces have similar topological

2The choice of a particular representation for loops depends on the context, and it is always made

explicit in the sequel.
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invariants, such as Betti numbers, homology groups, or homotopy groups.
Suppose that a homotopy F : X×I → Y between two maps f, g : X → Y keeps a

certain subspace X ′ ⊆ X fixed, that is: ∀x′ ∈ X ′, ∀t ∈ I, F (x′, t) = f(x′) = g(x′).
Then, F is called a homotopy between f and g relative to X ′, and f, g are said to be
homotopic relative to X ′. A special case of interest is when X = S1 and X ′ = {1}.
Then, the maps f and g are two loops through a same basepoint y ∈ Y that remains
fixed throughout the homotopy F . If g is the constant loop S1 → {y}, then f is
said to be null-homotopic in Y . The relation of homotopy relative to ∂I between
loops through a same basepoint y ∈ Y is an equivalence relation. The quotient
monoid, endowed with the binary operation induced by concatenation, has in fact
a group structure, and it is called the fundamental group of Y at basepoint y. If Y
is path-connected, then its fundamental group is independent (up to isomorphism)
of the chosen basepoint. And if moreover the fundamental group is trivial (i.e. all
loops through any fixed basepoint are homotopic to the constant loop), then Y is
said to be simply connected. We refer the reader to Chapter 1 of [Hatcher 2001] for
further reading on homotopy theory with fixed basepoint.

Degrees of loops. To any loop γ : S1 → S1 in the unit circle corresponds a unique
integer deg γ ∈ Z, called the degree of γ, such that deg(γ · γ′) = deg γ + deg γ′ for
all loops γ, γ′ : S1 → S1, and that deg γ = 0 for any constant map γ : S1 → {x}.
It is easily seen that deg γ̄ = −deg γ. Moreover, it can be proved that the degree
is invariant over each homotopy class of loops in S1, so that deg γ encodes the
homotopy class of the loop γ – see e.g. [Hatcher 2001, Theorem 1.7]. We can define
a similar concept for loops in the plane. Given a loop γ : S1 → R2 and a point
x ∈ R2 \ γ(S1), consider the map γx = πx ◦ γ : S1 → S1, where πx : R2 \ {x} → S1

is the radial projection onto the unit circle centered at x, define by πx(y) = y−x
dE(y,x) .

Since πx is continuous over R2 \ {x}, the map γx is a continuous loop in S1. We
then define the degree of γ with respect to x as: degx γ = deg γx. It is also known
as the winding number of γ about x. Given a point x ∈ R2, if Γ is a homotopy
between two loops γ, γ′ in R2 \ {x}, then πx ◦ Γ is a homotopy between πx ◦ γ and
πx ◦ γ′ in S1, hence we have degx γ = deg(πx ◦ γ) = deg(πx ◦ γ′) = degx γ

′.

Corollary 2.1. For any point x ∈ R2 and any loops γ, γ′ : S1 → R2 \ {x}
that are homotopic in R2 \ {x}, we have degx γ = degx γ

′. In particular, if γ or γ′

is constant, then degx γ = degx γ
′ = 0.

Other useful results. We now recall two standard results of algebraic topology
that relate the unions and intersections of planar sets that are absolute neighborhood
retracts (ANR). A subset X of a topological space Y is a neighborhood retract if
there exist an open set X ⊆ Ω ⊆ Y and a retraction Ω → X, i.e. a continuous map
Ω → X whose restriction to X is the identity. A topological space X is an ANR
if every embedding of X as a closed subset of a normal space is a neighborhood
retract [Borsuk 1967]. The proofs of the two results are given in Appendix A for
completeness.

Proposition 2.2.
(i) Let X1, · · · ,Xk be compact planar sets such that the intersection of any ar-

bitrary collection of the Xi’s is a non-empty ANR. If X1, · · · ,Xk are simply
connected, then so are the path-connected components of X1 ∩ · · · ∩Xk.
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(ii) Let X,Y be compact planar sets such that X, Y and X ∩ Y are non-empty
ANR’s. If X,Y are path-connected and X∪Y is simply connected, then X∩Y
is path-connected.

2.2 Length structures

Most of the material of this section comes from Chapter 2 of [Burago et al. 2001].
The Euclidean space R2 is naturally endowed with a length structure, where admis-
sible paths are all continuous paths I → R2, and where the length of a path γ is
defined by:

|γ| = sup

{
n−1∑

i=0

dE(γ(ti), γ(ti+1)), n ∈ N, 0 = t0 ≤ t1 ≤ · · · ≤ tn = 1

}
, (1)

where the supremum is taken over all decompositions of I into an arbitrary (finite)
number of intervals. We clearly have |γ̄| = |γ|. However, |γ| is not always finite.
Take for instance Koch’s snowflake, a fractal curve defined as the limit of a sequence
of polygonal curves in the plane. It can be easily shown that, at each iteration of
the construction, the length of the curve is multiplied by 4

3 , so that the length of the
limit curve is infinite. Therefore, we have | · | : C0(I,R2) → R+ ∪{+∞}. When the
length of γ is finite, we say that γ is a rectifiable path. Note also that | · | may not be
continuous with respect to the uniform topology over C0(I,R2). Take for instance
the sequence of piecewise-linear curves γi : I → R2 defined by γi(t) =

(
t, t mod 1

i

)

if ⌊ ti⌋ is even, and γi(t) =
(
t, 1

i − (t mod 1
i )
)

if ⌊ ti⌋ is odd. This sequence converges

uniformly to the unit segment t 7→ (t, 0), yet every γi has length
√

2 therefore the
limit length is

√
2. Nevertheless, | · | is lower semi-continuous [Burago et al. 2001,

Proposition 2.3.4], which means that the limit length (here,
√

2), if it exists, must
be at least the length of the limit path (here, 1).

Any subset X of R2 inherits a length structure from R2, where the class of
admissible paths is C0(I,X), and where the length function is the same as above.
We define an intrinsic (or geodesic) metric dX over X as follows:

∀x, y ∈ X, dX(x, y) = inf {|γ|, γ : I → X, γ(0) = x, γ(1) = y} , (2)

where the infimum is taken over all paths in X connecting x and y. It is clear
that we have dX(x, y) = +∞ whenever x, y belong to different path-connected
components of X. However, the converse is not always true. Take for instance
a set X made of two disjoint disks connected by Koch’s snowflake: if x, y belong
to different disks, then all curves connecting x and y go through Koch’s snowflake
and therefore have infinite length. This raises a critical issue, which is that the
topology induced by dX on X – also called intrinsic topology – may not always
coincide3 with the topology induced by dE – also called Euclidean topology. This
is a problem since the geodesic Voronoi diagram is closely related to the intrinsic
metric dX , whereas the goal is to capture the topology of X for the extrinsic metric

3In particular, a map γ : I → X that is continuous for the Euclidean topology may not always
be continuous for the intrinsic topology. For instance, for any point x ∈ γ(I) that lies on Koch’s
snowflake, the geodesic distance between x and any other point of X is infinite, which implies
that, for any r > 0, the open geodesic ball BX(x, r) is reduced to {x}, and hence its pre-image

through γ is a closed subset of I, and not an open subset of I.
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dE . In order to bridge the gap between the two topologies, we will make further
assumptions on the subspace X in the next section.

Another issue is that some pairs of points x, y ∈ X may not have a shortest
path connecting them, i.e. a path γ : I → X such that γ(0) = x, γ(1) = y, and
|γ| = dX(x, y). This means that the infimum in Eq. (2) is not always a minimum.
As an example, take for X the closed unit disk BE(0, 1), and remove the closed disk
BE(0, 1

2 ) from it: points (−1, 0) and (1, 0) have no shortest path connecting them
in X. Nevertheless, when X is compact, the following variant of the Arzela-Ascoli
theorem applies:

Theorem 2.3 Thm. 2.5.14 and Prop. 2.5.19 of [Burago et al. 2001]. If
X is compact, then every sequence of paths with uniformly bounded length contains a
uniformly converging subsequence. As a consequence, every pair of points connected
by a rectifiable path in X has a shortest path in X.

2.3 Lipschitz domains in the plane

To deal with the issues of the previous section, we make further assumptions on
our domain X.

Definition 2.4. A Lipschitz domain in the plane is a compact embedded topo-
logical 2-submanifold of R2 with Lipschitz boundary. Formally, it is a compact
subset X of R2 such that, for all points x ∈ ∂X, there exists a neighborhood
Vx in R2 and a Lipschitz homeomorphism φx : R2 → R2, such that φx(0) = x,
φx(R × {0}) ∩ Vx = ∂X ∩ Vx, and φx(R2

+) ∩ Vx = X ∩ Vx.
Observe that, for any neighborhood V ′

x of x included in Vx, we also have φx(0) = x,
φx(R × {0}) ∩ V ′

x = ∂X ∩ V ′
x, and φx(R2

+) ∩ V ′
x = X ∩ V ′

x. Therefore, Vx can be
assumed to be arbitrarily small. Moreover, since φx(0) = x and φx is continuous,
φ−1
x (Vx) is a neighborhood of the origin in R2, hence it contains an open Euclidean

disk B about the origin. By taking φ(B) as the new neighborhood Vx around x,
we ensure that φ−1

x (X ∩ Vx) is the intersection of R2
+ with the open disk B. This

makes the pre-image of X ∩ Vx through φx convex.
The concept of Lipschitz domain is related to the classical notion of smooth sub-

manifold with boundary – see e.g. Chapter 8 of [Lee 2002], the only difference being
that the local charts φ are only required to be Lipschitz, and not C1-continuous. As
a result, the boundary of X may not be smooth. This makes the class of Lipschitz
domains quite large: in particular, it contains all smooth or polygonal domains.

Since a Lipschitz domain X is a compact subset of R2, Theorem 2.3 applies, and
therefore any pair of points of X connected by a rectifiable path in X has a shortest
path in X. Moreover, according to Rademacher’s theorem [Federer 1996, §3.1.6],
the boundary ∂X is differentiable almost everywhere. But the property of Lipschitz
domains that is most interesting to us is that their boundaries are rectifiable, since
they are locally images of Lipschitz maps [Federer 1996, §2.10.11]. This enables
to show that the pathological cases mentioned in Section 2.2 cannot occur with a
Lipschitz domain4, as stated in Theorem 2.5 below.

4In particular, the boundary of a Lipschitz domain cannot coincide locally with a fractal curve

such as Koch’s snowflake, whose length is infinite.
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Bibliographical note. Lipschitz domains are sometimes called weakly Lipschitz
manifolds [Axelsson and McIntosh 2004] in the literature, as opposed to strongly
Lipschitz manifolds [Boissonnat and Oudot 2006], for which it is further assumed
that the boundary of the domain coincides locally with the graph of some univariate
Lipschitz function. Notice also that, in contrast with [Boissonnat and Oudot 2006],
we do not make any assumption on the Lipschitz constants of the local charts. All
we need to know is that the latter are Lipschitz, so that their images are rectifiable
[Federer 1996, §2.10.11].

Theorem 2.5. If X is a Lipschitz domain in the plane, then the intrinsic topol-
ogy coincides with the Euclidean topology on X.

Proof. First, Eq. (2) implies that dE(x, y) ≤ dX(x, y) for all x, y ∈ X. It
follows that every open Euclidean ball centered in X contains the open geodesic
ball of same center and same radius. As a consequence, every open set in (X,dE)
is also open in (X,dX). This means that the intrinsic topology is finer than the
Euclidean topology. To show that, conversely, the Euclidean topology is also finer
than the intrinsic topology, we will use the following technical result:

Claim 2.5.1. If X is a Lipschitz domain in the plane, then, for all point x ∈ X,
the map y 7→ dX(x, y) is continuous for the Euclidean topology on X.

Proof. Let x, y ∈ X. We will prove that, for all ε > 0, there exists a δ > 0 such
that ∀y′ ∈ BE(y, δ) ∩X, |dX(x, y′) − dX(x, y)| < ε.

- Assume first that y ∈ X̊. Then there exists ε′ > 0 such that BE(y, ε′) ⊆
X̊. Let δ = min{ε, ε′}. For all y′ ∈ BE(y, δ), the line segment [y, y′] lies in X̊,
hence dX(y, y′) = dE(y, y′) < ε. It follows then from the triangle inequality that
|dX(x, y′) − dX(x, y)| ≤ dX(y, y′) < ε.

- Assume now that y ∈ ∂X. There exists a neighborhood Vy of y in R2 such
that X ∩ Vy = φy(R2

+) ∩ Vy, for some Lipschitz homeomorphism φy. Let cy be
the Lipschitz constant of φy. As mentioned after Definition 2.4, we can assume
without loss of generality that φ−1

y (X ∩ Vy) is the intersection of R2
+ with an open

disk centered at the origin of radius at most ε
cy

. Then, for all point y′ ∈ X ∩ Vy,
consider the path γ : s 7→ φy

(
s φ−1

y (y′)
)
. Since φ−1

y (X ∩ Vy) is convex, γ(I) is
included in X ∩ Vy, and hence in X. Moreover, the length of the line segment
[0, φ−1

y (y′)] is less than ε
cy

, hence the length of γ is less than ε, since φy is cy-

Lipschitz [Federer 1996, §2.10.11]. It follows that dX(y, y′) < ε, which implies that
|dX(x, y′) − dX(x, y)| ≤ dX(y, y′) < ε, by the triangle inequality. This concludes
the proof of the claim.

We can now show that the Euclidean topology is finer than the intrinsic topology
on X, which will end the proof of Theorem 2.5. Consider any open geodesic ball
BX(x, ε), where x ∈ X and ε > 0. Observe that BX(x, ε) = dX(x, .)−1([0, ε[),
where dX(x, .) denotes the map y 7→ dX(x, y). Since [0, ε[ is open in R+ and
dX(x, .) is continuous for the Euclidean topology, BX(x, ε) is open in (X,dE). And
since the open geodesic balls form a basis for the intrinsic topology, every open set
in (X,dX) is also open in (X,dE). This means that the Euclidean topology is finer
than the geodesic topology on X.
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From now on, X will be endowed with the Euclidean topology by default. Thanks
to Theorem 2.5, this topology will coincide with the intrinsic topology whenever X
is a Lipschitz domain.

The next result states that every path in X can be approximated within any
accuracy by a homotopic rectifiable path. This implies that the homotopy classes
of paths in X coincide with the homotopy classes of rectifiable paths. In particular,
every pair of points lying in the same path-connected component of X is connected
by a rectifiable path, and hence it has a shortest path in X, by Theorem 2.3.

Lemma 2.6. For any continuous path γ : I → X and any real number ε > 0,
there exists a rectifiable path γε : I → X, homotopic to γ relative5 to ∂I in X, such
that maxs∈I mint∈I dX(γε(s), γ(t)) < ε.

The quantity maxs∈I mint∈I dX(γε(s), γ(t)) is nothing but the semi-Hausdorff dis-
tance from γε(I) to γ(I) in the intrinsic metric. The basic idea of the proof is to
define γε as a piecewise-linear curve whose vertices lie on γ(I). This is possible
far away from the boundary of X, but not in its vicinity, where the shape of ∂X
might prevent γε(I) from being included in X. However, in the vicinity of ∂X, we
can map γ(I) to parameter space through one of the local charts φ introduced in
Definition 2.4. Since the pre-image of X is convex, we can define a piecewise-linear
curve approximating φ−1(γ(I)) in parameter space, which we then map back to a
rectifiable curve in X through φ. The rest of the section is devoted to the details
of the proof and can therefore be skipped in a first reading.

Proof. Let η be an arbitrary positive real number. According to Definition 2.4,
for all x ∈ ∂X, there exists some neighborhood Vx ⊆ R2 such that, inside Vx, X
coincides with the image of R2

+ through some Lipschitz homeomorphism φx. As
mentioned after Definition 2.4, we can assume without loss of generality that Vx
is included in BE(x, η2 ), and that the pre-image of X ∩ Vx through φx is convex.
Consider the collection of open sets {Vx}x∈∂X . This is an open cover of ∂X, which
is compact, hence there exist x1, · · · , xk such that Vx1

∪ · · · ∪ Vxk
covers ∂X. For

simplicity of notations, for all i = 1, · · · , k we rename Vxi
as Vi and φxi

as φi. The
open sets Vi will be used to shield the boundary ∂X.
For all s ∈ I, we consider an open Euclidean disk Bs about γ(s), of radius rs defined
as follows:

• if BE(γ(s), η2 ) ∩ ∂X = ∅, then rs = η
2 ;

• else, if γ(s) /∈ ∂X, then rs = dE(γ(s), ∂X), where dE(γ(s), ∂X) > 0 denotes
the Euclidean distance of γ(s) to the closed set ∂X;

• else, we have γ(s) ∈ ∂X, therefore γ(s) belongs to some neighborhood Vi,
and we choose rs > 0 such that Bs ⊆ Vi.

By construction, we have Bs ⊆ X̊ if γ(s) /∈ ∂X, and Bs ⊆ Vi for some i otherwise.
Since γ is continuous, the pre-image of γ(I)∩Bs through γ is an open subset of I.
Therefore, it is a disjoint union of open intervals in I. Consider the collection of all
these open intervals, for s spanning I. This collection of intervals forms an open
cover of I, which is compact, hence there are l intervals in the collection, I1, · · · , Il,

5As mentioned in Section 2.1, this means that the homotopy between γε and γ is constant over

∂I = {0, 1}.
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such that I = I1 ∪ · · · ∪ Il. Observe that, by construction, for all i = 1, · · · , l we
have that γ(Ii) is included in Bsi

for some si ∈ I.
We can assume without loss of generality that the family {Ii}1≤i≤l is minimal,

in the sense that the removal of any element would destroy the cover: ∀i = 1, · · · , l,⋃
j 6=i Ij + I. If it is not so, then we can always remove elements from the family

until the property is satisfied. Let us now re-order the elements of the family such
that the left endpoint of Ii is smaller than the left endpoint of Ii+1, for all i. Since
the family is minimal, the ordering on the left endpoints of the Ii is the same as the
ordering on their right endpoints. As a consequence, each Ii intersects only Ii−1

and Ii+1. Let t1 = 0, tl+1 = 1, and ti ∈ Ii−1∩Ii ∀i = 2, · · · , l. We will approximate
γ by a piecewise Lipschitz curve connecting the γ(ti). For simplicity, we rename
γ|[ti,ti+1] as γi.

By construction, for all i = 1, · · · , l we have [ti, ti+1] ⊆ Ii, hence γi(I) =
γ([ti, ti+1]) ⊆ γ(Ii), which is included in Bsi

.
- Assume first that si /∈ ∂X, which implies that Bsi

⊆ X̊ and rsi
≤ η

2 . Define
γiη as the linear interpolation between γ(ti) and γ(ti+1), namely: γiη : s 7→ (1 −
s)γ(ti) + sγ(ti+1). Since Bsi

is convex, γiη(I) is included in Bsi
and hence in

X. Moreover, we have γiη(0) = γ(ti) = γi(0), γiη(1) = γ(ti+1) = γi(1), and the

Hausdorff distance dH(γiη(I), γ([ti, ti+1])) in the Euclidean metric is less than the
diameter of Bsi

, which is bounded by η. Furthermore, the map Γ : I × I → R2

defined by Γ(s, t) = (1 − t)γiη(s) + tγi(s) is a homotopy relative to ∂I between γiη
and γi in R2. Since it is a linear interpolation between two maps whose images lie
in Bsi

, which is convex, the image of Γ is also included in Bsi
, and hence in X̊. It

follows that Γ is a homotopy relative to ∂I between γiη and γi in X.

- Assume now that si ∈ ∂X, which implies that Bsi
is included in some Vj .

Because of the presence of ∂X in the vicinity of γ([ti, ti+1]), we can no longer
guarantee that the linear interpolation between γ(ti) and γ(ti+1) remains in X.
This is why we use the chart φj to map the arc γ([ti, ti+1]) to parameter space
φ−1
j (X ∩Vj), which is convex. Specifically, we define γiη as the image through φj of

the linear interpolation between the pre-images of γ(ti) and γ(ti+1) in φ−1
j (X∩Vj),

namely: γiη : s 7→ φj
(
(1 − s)(φ−1

j ◦ γ)(ti) + s(φ−1
j ◦ γ)(ti+1)

)
. As in the previous

case, we have γiη(0) = γi(0) and γiη(1) = γi(1). Moreover, since φ−1
j (X ∩ Vj)

is convex, we have (1 − s)(φ−1
j ◦ γ)(ti) + s(φ−1

j ◦ γ)(ti+1) ∈ φ−1
j (X ∩ Vj) for all

s ∈ I, hence γiη(I) is included in X ∩ Vj . It follows that γiη : I → X, and that

the Hausdorff distance dH(γiη(I), γi(I)) in the Euclidean metric is less than the

diameter of Vj , which is bounded by η since Vj ⊆ BE(xj ,
η
2 ). Notice also that γiη

is a Lipschitz map, hence it is rectifiable, by [Federer 1996, §2.10.11]. Finally, the
map Γ : I × I → R2 defined by Γ(s, t) = φj

(
(1 − t)(φ−1

j ◦ γiη)(s) + t(φ−1
j ◦ γi)(s)

)

is a homotopy relative to ∂I between γiη and γi in R2. Since φ−1
j ◦ Γ is a linear

interpolation between maps φ−1
j ◦ γiη and φ−1

j ◦ γi in φ−1
j (X ∩ Vj), which is convex,

the image of Γ is included in X ∩Vj . It follows that Γ is a homotopy relative to ∂I
between γiη and γi in X.

We now define γη as the concatenation of the γiη, namely: γη = γ1
η · γ2

η · · · γlη.
By concatenating the homotopies relative to ∂I between the γiη and the γi, we
obtain a homotopy relative to ∂I between γη and γ in X. Moreover, since the
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γiη are rectifiable, so is γη. We also have γη(0) = γ1
η(0) = γ1(0) = γ(0), and

γη(1) = γlη(1) = γl(1) = γ(1). Finally, the Hausdorff distance dH(γη(I), γ(I)) in

the Euclidean metric is bounded by the maximum of the dH(γiη(I), γi(I)), which is
less than η.

To conclude the proof of the lemma, we need to show that bounding the Hausdorff
distance between γ and its approximation in the Euclidean metric is sufficient for
bounding the semi-Hausdorff distance from the approximation to γ in the intrinsic
metric. Let ε be an arbitrary positive real number. Since by Theorem 2.5 the
Euclidean and geodesic topologies are equal on X, for all s ∈ I there exists an
ηs > 0 such that BE(γ(s), ηs) is included in BX(γ(s), ε). The balls BE(γ(s), ηs)
form an open cover of γ(I). Hence, for all s ∈ I, the Euclidean distance from γ(s)
to the complement of the cover in R2 is positive. Since γ and the distance to the
complement are continuous, while I is compact, the infimum η of the distances of
the γ(s) to the complement is in fact a minimum, and therefore it is positive. Now,
according to the previous paragraphs, there exists a curve γη : I → X, homotopic
to γ relative to ∂I in X, such that dH(γ(I), γη(I)) < η. It follows that γη(I) ⊂⋃
s∈I BE(γ(s), η), which is included in

⋃
s∈I BE(γ(s), ηs) ⊆

⋃
s∈I BX(γ(s), ε). This

concludes the proof of Lemma 2.6, with γε = γη.

Observe that, in the proof of Lemma 2.6, the family of balls {Bs}s∈I forms an
open cover of γ(I). Letting ζ be the quantity inf

{
dE(x, γ(I)) | x ∈ X \⋃s∈I Bs

}
>

0, the second part of the proof shows in fact that every path γ′ : I → X such that
γ′(0) = γ(0), γ′(1) = γ(1), and dE(γ′(s), γ(s)) < ζ for all s ∈ (0, 1), is homotopic
to γ relative to ∂I. Thus, we obtain the following guarantee:

Lemma 2.7. For any path γ : I → X, there exists a quantity ζ > 0 such that
every path γ′ : I → X with same endpoints as γ that satisfies dE(γ′(s), γ(s)) < ζ
for all s ∈ (0, 1) is homotopic to γ relative to ∂I.

3. THE SYSTOLIC FEATURE SIZE

Definition 3.1. Let X be a Lipschitz domain in the plane. The systolic feature
size of X at a given point x ∈ X is the quantity: sfs(x) = 1

2 inf{|γ|, γ : (S1, 1) →
(X,x) non null-homotopic in X}.
As illustrated in Figure 1 (left and center), the resort to an intrinsic metric makes
the systolic feature size rather insensitive to the local geometry of the domain X.
Indeed, sfs depends on the geodesic perimeters of the holes of X, which depend on
the geometry of X at a more global scale.

The rest of this section is devoted to the proof of some useful basic properties of
the systolic feature size.

Lemma 3.2. Let X be a Lipschitz domain in the plane, and let x be a point in
X. If the path-connected component of X that contains x is simply connected, then
sfs(x) = +∞. Else, sfs(x) < +∞, and there exists a non null-homotopic rectifiable
loop γ : (S1, 1) → (X,x) such that sfs(x) = 1

2 |γ| > 0.

Proof. Let x ∈ X. Call Xx the path-connected component of X that contains
x. Every loop through x in X is a loop in Xx. If Xx is simply connected, then the
set {γ : (S1, 1) → (Xx, x) non null-homotopic in Xx} is empty, and therefore its
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lower bound sfs(x) is infinite. Assume now that Xx is not simply connected. Then,
there exists at least one non null-homotopic loop γ0 : (S1, 1) → (Xx, x). By Lemma
2.6, we can assume without loss of generality that γ0 is rectifiable. We then have
sfs(x) ≤ 1

2 |γ0| < +∞.
Consider now a sequence (γi)i of non null-homotopic loops through x in Xx,

such that (|γi|)i converges to 2sfs(x). Such a sequence exists, since 2sfs(x) < +∞
is the infimum of the set of lengths of non null-homotopic loops through x. By
convergence, we know that there exists a rank n such that, for all i ≥ n, γi is a
rectifiable curve of length |γi| ≤ 2sfs(x)+1. Thus, the sequence (γn+i)i is uniformly
bounded by 2sfs(x)+1, which implies by Theorem 2.3 that it contains a subsequence
converging uniformly to some loop γ : (I, ∂I) → (Xx, x). It follows from Lemma
2.7 that, after a certain rank, every element in the subsequence is homotopic to γ
relative to ∂I. As a consequence, γ is not null-homotopic in X, and therefore |γ|
is positive and at least 2sfs(x). In addition, since (|γi|)i converges to 2sfs(x), the
lower semi-continuity of | · | implies that |γ| ≤ 2sfs(x). As a conclusion, we have
|γ| = 2sfs(x) > 0.

Lemma 3.3. Let X be a Lipschitz domain in the plane. The map x 7→ sfs(x)
is 1-Lipschitz in the intrinsic metric. Hence, it is continuous for the Euclidean
topology, and sfs(X) = inf{sfs(x), x ∈ X} is positive.

Proof. Let x, y ∈ X. If x, y belong to different path-connected components
of X, then we have dX(x, y) = +∞. It follows that |sfs(x) − sfs(y)| ≤ dX(x, y).
Assume now that x, y belong to the same path-connected component Xi of X. Let
γ be a shortest path between x and y in X. We are guaranteed by Theorem 2.3
and Lemma 2.6 that such a path exists. If Xi is simply connected, then sfs is
constant and equal to +∞ over Xi. Else, consider a loop γx : (S1, 1) → (X,x)
such that |γx| = 2sfs(x) < +∞. Such a loop exists, by Lemma 3.2. Then, the path
γy = γ̄ ·γx ·γ is a loop through y in X. Its length is |γx|+2|γ| = 2sfs(x)+2dX(x, y).
Moreover, the map γx 7→ γ̄ · γx · γ is known to induce an isomorphism between
the fundamental groups of Xi at basepoints x and y — see e.g. [Hatcher 2001,
Proposition 1.5]. Therefore, the loop γy is not null-homotopic in X, which implies
that sfs(y) ≤ 1

2 |γy| = sfs(x) + dX(x, y). This proves that the map x 7→ sfs(x) is
1-Lipschitz in the intrinsic metric, and hence continuous for the intrinsic topology,
but also for the Euclidean topology, by Theorem 2.5. Since X is compact, there
exists some point x ∈ X such that sfs(X) = sfs(x), which is positive, by Lemma
3.2.

Lemma 3.4. Let X be a Lipschitz domain in the plane. For all point x ∈ X,
every loop inside the open geodesic ball BX(x, sfs(x)) is null-homotopic in X.

Proof. Assume for a contradiction that there exists some point x ∈ X and
some loop γx : S1 → BX(x, sfs(x)) that is not null-homotopic in X. Since we have
maxs∈I dX(x, γx(s)) < sfs(x), Lemma 2.6 ensures that there exists a rectifiable loop
S1 → X that is homotopic to γx in X, and that is still included in BX(x, sfs(x)).
Hence, we can assume without loss of generality that γx is rectifiable. Let ζ be a
shortest path between x and y = γx(0). The path γ = ζ · γx · ζ̄ is a loop through x,
included in BX(x, sfs(x)), of length |γ| ≤ |γx| + 2dX(x, y) < +∞. Moreover, γ is
non null-homotopic in X, since it is homotopic to γx. It follows that |γ| ≥ 2sfs(x).
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For all s ∈ I, we define γs and ζs to be respectively the path γ|[0,s] and a shortest
path between x and γ(s). Let s0 = inf{s | γs · ζ̄s non null-homotopic in X}. This
means that, for all s < s0, γs · ζ̄s is null-homotopic in X, whereas for all η > 0 there
exists some s ∈ [s0, s0 + η[ such that γs · ζ̄s is not null-homotopic in X.

– If s0 = 0, then there are arbitrarily short non null-homotopic loops through
x in X, which contradicts the fact that sfs(x) > 0 (Lemma 3.2).

– If s0 = 1, then for s arbitrarily close to 1, γ|[s,1] · ζs is non null-homotopic
in X, and of length arbitrarily close to |ζs| < sfs(x), which contradicts the
definition of sfs(x) (Definition 3.1).

It follows that s0 ∈]0, 1[. For all η > 0, there exist s−η, s+η ∈ I such that s0 − η <
s−η < s0 < s+η < s0 + η, and that γs−η

· ζ̄s−η
is null-homotopic in X whereas

γs+η
· ζ̄s+η

is not. Then, ζs−η
is homotopic to γs−η

relative6 to ∂I, which implies
that ζs−η

· γ|[s−η,s+η] is homotopic to γs+η
relative to ∂I. As a result, the loop

γ′ =
(
ζs−η

· γ|[s−η,s+η]

)
· ζ̄s+η

is homotopic to γs+η
· ζ̄s+η

, which is not null-homotopic
in X. Hence, we have |γ′| ≥ 2sfs(x), by definition of sfs(x).

Now, the length of γ′ is |ζs−η
| + |γ|[s−η,s+η ]| + |ζ̄s+η

| ≤ 2maxs∈I dX(x, γ(s)) +
|γ|[s−η,s+η ]|. Since η is arbitrarily small, so is |γ|[s−η,s+η ]|, therefore |γ′| is arbitrarily
close to 2maxs∈I dX(x, γ(s)), which is less than 2sfs(x). This contradicts the fact
that |γ′| ≥ 2sfs(x), as proved in the previous paragraph.

Note that Lemma 3.4 does not imply that the ball BX(x, sfs(x)) itself is con-
tractible. It turns out that open geodesic balls of radius at most a fraction of the
systolic feature size are contractible. The proof of this fact requires some more
work though — see Section 5.

4. GEODESIC DELAUNAY TRIANGULATION AND WITNESS COMPLEX

Given a Lipschitz domain X in the plane, and a set of landmarks L ⊂ X that is
dense enough with respect to the systolic feature size of X, we show in Section
4.1 that the geodesic Delaunay triangulation DX(L) has the same homotopy type
as X (Theorem 4.3). Furthermore, for any set of witnesses W ⊆ X that is dense
enough compared to L, we prove in Section 4.2 that DX(L) is sandwiched between
the geodesic witness complex CWX (L) and its relaxed version CWX,ν(L) (Theorems
4.14 and 4.17). Densities of point clouds are measured according to the following
definition, where the scalar field h will be chosen to be either a constant function
or a fraction of the systolic feature size:

Definition 4.1. Given a Lipschitz planar domain X and a function h : X →
R+∪{+∞}, a set L ⊆ X is a geodesic h-sample of X if we have dX(x,L) < h(x) for
all points x ∈ X. In addition, L is h-sparse if we have dX(p, q) ≥ min{h(p), h(q)}
for all points p 6= q ∈ L.

It follows from the definition that any geodesic h-sample L of X must have points in
every path-connected component of X, because geodesic distances to L are required
to be finite (dX(x,L) < h(x)). We will see in Section 6.2 how to generate geodesic
εsfs-samples of Lipschitz planar domains.

6As mentioned in Section 2.1, this means that the homotopy between ζs−η and γs−η is constant

over ∂I = {0, 1}.
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4.1 Geodesic Delaunay triangulations

Geodesic Voronoi diagrams are nothing but Voronoi diagrams in the intrinsic metric:

Definition 4.2. Given a subset X of R2, and a finite subset L of X, the
geodesic Voronoi diagram of L in X, or VX(L) for short, is a cellular decom-
position of X, where the cell of a point p ∈ L is defined as the locus of all the points
x ∈ X such that dX(x, p) ≤ dX(x, q) ∀q ∈ L. The nerve of VX(L) is called the
geodesic Delaunay triangulation of L in X, noted DX(L).

Given a simplex σ ∈ DX(L), we call VX(σ) its dual Voronoi face. Note that, in
contrast with the Euclidean case, VX(σ) does not always have Lebesgue measure
zero when the dimension of σ is non-zero, as illustrated in Figure 1 (right).

Theorem 4.3. If X is a Lipschitz domain in the plane, and L a geodesic εsfs-
sample of X, for some ε ≤ 1

3 , then DX(L) and X are homotopy equivalent.

The rest of Section 4.1 is devoted to the proof of Theorem 4.3. The proof relies
on the so-called Nerve theorem, stated as Theorem 4.5 below, which relies on the
concept of good cover:

Definition 4.4. Let U be a finite collection of closed (resp. open) subsets of X
whose union covers X. Then, U is a good closed (resp. open) cover of X if for
any non-empty subset V ⊆ U the common intersection between the elements of V is
either empty or contractible.

Theorem 4.5 from [Borsuk 1948; Wu 1962], see also [Hatcher 2001].
The nerve of a good closed (resp. open) cover of X is homotopy equivalent to X.

Here, we take U to be the collection of the geodesic Voronoi cells: U = {VX(p), p ∈
L}. The nerve of this collection is precisely the geodesic Delaunay triangulation
DX(L). Thus, proving Theorem 4.3 comes down to showing that any collection of
cells of VX(L) has an empty or contractible intersection, and then invoking Theorem
4.5. Our proof proceeds in three steps: first, we show that every single Voronoi
cell is contractible (Section 4.1.1); then, we show that any pair of Voronoi cells has
an empty or contractible intersection (Section 4.1.2); finally, we show inductively
that any arbitrary collection of Voronoi cells has an empty or contractible common
intersection (Section 4.1.3).

Along the way, our proof uses several results of algebraic topology (including the
ones of Proposition 2.2) that require non-empty intersections of geodesic Voronoi
cells to be ANR’s. This fact turns out to be true in any Lipschitz planar domain,
and it can be shown using the local continuity of the geodesic flow, proved7 in
Sections 5.1 and 5.2, as well as some nesting properties of neighborhood retracts,
stated in Theorem III.3 of [Daverman 2007]. This minor and rather technical aspect
of our proof does not bring any particular insights into the problem. Therefore, it is
omitted for the convenience of exposition, and in the sequel non-empty intersections
of geodesic Voronoi cells are admitted to be ANR’s.

7The statements and proofs from Sections 5.1 and 5.2 do not rely on the results of this section,

therefore they can be invoked here.

ACM Journal Name, Vol. V, No. N, Month 20YY.



Geodesic Delaunay Triangulations in Bounded Planar Domains · 17

4.1.1 Voronoi cells

Lemma 4.6. Under the hypotheses of Theorem 4.3, every cell of VX(L) is path-
connected.

Proof. Let p ∈ L, and let x ∈ VX(p). Let γ : I → X be a shortest path
from p to x in X. Such a path γ exists since x and p lie in the same path-
connected component of X, dX(x, p) being finite due to the fact that L is a geodesic
εsfs-sample of X. We will show that γ(I) ⊆ VX(p). Assume for a contradiction
that γ(s) /∈ VX(p) for some s ∈ I. This means that there exists a point q ∈
L \ {p} such that dX(γ(s), q) < dX(γ(s), p). By the triangle inequality, we have
dX(q, x) ≤ dX(q, γ(s))+dX(γ(s), x), where dX(q, γ(s)) < dX(p, γ(s)) ≤ |γ|[0,s]| and
dX(γ(s), x) ≤ |γ|[s,1]|. Hence, we have dX(q, x) < |γ|[0,s]|+ |γ|[s,1]| = |γ| = dX(p, x),
which contradicts the assumption that x ∈ VX(p). Therefore, γ(I) ⊆ VX(p), and x
is path-connected to p in VX(p).

Lemma 4.7. Under the hypotheses of Theorem 4.3, every cell of VX(L) is simply
connected.

Proof. Let p ∈ L. By Lemma 4.6, VX(p) is path-connected. Assume for a
contradiction that VX(p) is not simply connected. Then, since VX(p) ⊆ X is
a bounded subset of R2, its complement in R2 has at least two path-connected
components, only one of which is unbounded, by the Alexander duality – see e.g.
[Hatcher 2001, Theorem 3.44]. Let H be a bounded path-connected component of
R2 \ VX(p). H can be viewed as a hole in VX(p).

We claim that H is included in X. Indeed, consider a loop γ : S1 → VX(p)
that winds around H – such a loop exists since H is bounded by VX(p). Take any
point x ∈ VX(p). For all y ∈ VX(p), we have dX(x, y) ≤ dX(x, p) + dX(p, y) ≤
ε sfs(x)+ ε sfs(y), which is at most 2ε

1−ε sfs(x) since sfs is 1-Lipschitz in the intrinsic

metric. Thus, VX(p) is included in the open geodesic ball BX(x, 2ε
1−ε sfs(x)), where

2ε
1−ε ≤ 1 since ε ≤ 1

3 . Therefore, γ : S1 → VX(p) is null-homotopic in X, by Lemma

3.4. Let Γ : S1 × I → X be a homotopy between γ and a constant map in X. For
any point x ∈ H, we have degx γ 6= 0 since the loop γ winds around H. If x did
not belong to Γ(S1 × I), then Γ would be a homotopy between γ and a constant
map in R2 \ {x}, thus by Corollary 2.1 we would have degx γ = 0, thereby raising
a contradiction. It follows that Γ(S1 × I) contains all the points of H, which is
therefore included in X.

As a consequence, the hole is caused by the presence of some sites of L \ {p},
whose geodesic Voronoi cells form H. Assume for simplicity that there is only one
such site q, the case of several sites being similar. We then have VX(q) = H, and
∂H = VX(q) ∩ VX(p). Consider the Euclidean ray [p, q), and call x its first point
of intersection with ∂H beyond q. The line segment [q, x] is included in H ⊆ X,
therefore we have dX(x, q) = dE(x, q), which yields:

dX(x, p) ≥ dE(x, p) = dE(x, q) + dE(q, p) = dX(x, q) + dE(q, p) > dX(x, q).

This contradicts the fact that x belongs to ∂H and hence to VX(p).

Since planar sets are aspherical [Cannon et al. 2002], their homotopy groups of
dimension 2 or more are trivial. As a consequence, geodesic Voronoi cells have
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the same homotopy groups as a point, up to isomorphism. Since in addition they
are ANR’s, they are homotopy equivalent to CW-complexes [James 1995, Chapter
26,§2]. Therefore, by Whitehead’s theorem, they are homotopy equivalent to a
point. Hence,

Proposition 4.8. Under the hypotheses of Theorem 4.3, every cell of VX(L) is
contractible.

4.1.2 Intersection of pairs of Voronoi cells. We will now prove that the geodesic
Voronoi cells have pairwise empty or contractible intersections. Given two sites
p, q ∈ L whose cells intersect, we first study the topological type of their union
VX(p)∪VX(q), from which we can deduce the topological type of their intersection
VX(p) ∩ VX(q).

Lemma 4.9. Under the hypotheses of Theorem 4.3, the union of any pair of
intersecting cells of VX(L) is simply connected.

Proof. Let p, q ∈ L be such that VX(p)∩VX(q) 6= ∅. The outline of the proof is
the same as for Lemma 4.7. First, since by Lemma 4.6 VX(p) and VX(q) are path-
connected, so is their union. Assume now for a contradiction that VX(p) ∪ VX(q)
is not simply connected, and consider a hole H in VX(p)∪VX(q). Let x ∈ VX(p)∩
VX(q). For any point y ∈ VX(p), we have dX(x, y) ≤ dX(x, p) + dX(p, y) <
ε sfs(x)+ ε sfs(y), which is at most 2ε

1−ε sfs(x) since sfs is 1-Lipschitz in the intrinsic
metric. Idem for the points of VX(q). As a consequence, VX(p)∪VX(q) is included
in the open geodesic ball BX(x, 2ε

1−ε sfs(p)), where 2ε
1−ε ≤ 1 since ε ≤ 1

3 . Therefore,
by the same argument as in the proof of Lemma 4.7, H is included in X.

It follows that the hole is caused by the presence of some sites of L \ {p, q},
whose geodesic Voronoi cells form H. Assume for simplicity that there is only one
such site u, the case of several sites being similar. We then have VX(u) = H, and
∂H = VX(u) ∩ (VX(p) ∪ VX(q)). Consider the Euclidean line l passing through u
and perpendicular to (p, q). Let x, y be the first points of intersection of l with ∂H
in each direction, starting from u. Since angles x̂up and p̂uy sum up to ±π, one of
them (say x̂up) is obtuse. This implies that x̂uq is also obtuse. Assume without loss
of generality that dX(x, p) ≤ dX(x, q). Since the line segment [u, x] is included in
H ⊆ X, we have dX(x, u) = dE(x, u). Hence, using Pythagoras’ theorem together
with the fact that x̂up is obtuse, we get:

dX(x, p)2 ≥ dE(x, p)2 ≥ dE(x, u)2 +dE(u, p)2 = dX(x, u)2 +dE(u, p)2 > dX(x, u)2.

Now, x belongs to ∂H and hence to VX(p)∪VX(q). Moreover, we assumed without
loss of generality that dX(x, p) ≤ dX(x, q), therefore x belongs to VX(p), which
contradicts the above equation. It follows that VX(p)∪VX(q) is simply connected,
which concludes the proof of the lemma.

Using the above result, we can now show that VX(p) ∩ VX(q) is contractible:

Proposition 4.10. Under the hypotheses of Theorem 4.3, the intersection of
any pair of cells of VX(L) is either empty or contractible.

Proof. Let p, q ∈ L be such that VX(p) ∩ VX(q) 6= ∅. Proposition 2.2 (i) tells
us that every path-connected component of VX(p) ∩ VX(q) is simply connected,
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since by Lemma 4.7 VX(p) and VX(q) are. Moreover, Proposition 2.2 (ii) tells us
that VX(p) ∩ VX(q) is path-connected, since by Lemma 4.6 VX(p) and VX(q) are,
and since by Lemma 4.9 their union is simply connected. It follows then from the
asphericity of planar sets and from Whitehead’s theorem that VX(p) ∩ VX(q) is
contractible.

4.1.3 Intersection of arbitrary numbers of Voronoi cells. The following result,
combined with Theorem 4.5, concludes the proof of Theorem 4.3:

Proposition 4.11. Under the hypotheses of Theorem 4.3, for any k sites
p1, · · · , pk ∈ L, the intersection VX(p1)∩· · ·∩VX(pk) is either empty or contractible.

Proof. The proof is by induction on k. Cases k = 1 and k = 2 were proved in
Sections 4.1.1 and 4.1.2 respectively. Assume now that the result is true up to some
k ≥ 2, and consider k+1 sites p1, · · · , pk+1 ∈ L such that VX(p1)∩· · ·∩VX(pk+1) 6=
∅.

Observe first that VX(p1)∩· · ·∩VX(pk+1) is the intersection of
⋂k
i=1 VX(pi) with

VX(pk+1), which by the induction hypothesis are both simply connected. Hence,
each path-connected component of their intersection VX(p1)∩· · ·∩VX(pk+1) is also
simply connected, by Proposition 2.2 (i).

Consider now the union
(⋂k

i=1 VX(pi)
)
∪VX(pk+1), which is path-connected since

both
⋂k
i=1 VX(pi) and VX(pk+1) are. Observe that the union can be rewritten as

follows:
(

k⋂

i=1

VX(pi)

)
∪ VX(pk+1) =

k⋂

i=1

(VX(pi) ∪ VX(pk+1)) .

By the induction hypothesis (more precisely, according to the case k = 2), every

VX(pi) ∪ VX(pk+1) is simply connected, hence so is
⋂k
i=1 (VX(pi) ∪ VX(pk+1)), by

Proposition 2.2 (i). It follows then from Proposition 2.2 (ii) that the intersection

VX(p1) ∩ · · · ∩ VX(pk+1) is path-connected, since both
⋂k
i=1 VX(pi) and VX(pk+1)

are, and since their union is simply connected.
Thus, VX(p1) ∩ · · · VX(pk+1) is simply connected, and it follows from the as-

phericity of planar sets and from Whitehead’s theorem that VX(p1)∩ · · · VX(pk+1)
is contractible.

4.2 Geodesic witness complexes

Witness complexes in the intrinsic metric are defined in the same way as in the
Euclidean metric:

Definition 4.12. Given a subset X of R2, and two subsets W,L of X such that
L is finite,
• given a point w ∈ W and a simplex σ = [p0, · · · , pl] with vertices in L, w is a
witness of σ if for all i = 0, · · · , l, dX(w, pi) is finite and bounded from above by
dX(w, q) for all q ∈ L \ {p0, · · · , pl};
• the geodesic witness complex of L relative to W , or CWX (L) for short, is the
maximal abstract simplicial complex with vertices in L, whose faces are witnessed
by points of W .
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Observe that a point w ∈ W may only witness simplices whose vertices lie in the
same path-connected component of X as w. The fact that CWX (L) is an abstract
simplicial complex means that a simplex belongs to the complex only if all its faces
do. In the sequel, W is called the set of witnesses, while L is referred to as the set
of landmarks.

As in the Euclidean case, there exists a stronger notion of witness complex, where
each witness is required to be equidistant to the vertices of the simplex σ. In this
case, σ is a Delaunay simplex, and therefore the strong witness complex is included
in the Delaunay triangulation. In his seminal work [de Silva 2008], de Silva shows
that the weak witness complex is also included in the Delaunay triangulation, in
the Euclidean metric. Below we give an equivalent of this result in the intrinsic
metric – see Theorem 4.14. The proof uses the same kind of machinery as in [Attali
et al. 2007], and it relies on the following fact:

Lemma 4.13. Let X be a Lipschitz domain in the plane, and L a geodesic εsfs-
sample of X, for some ε ≤ 1. Let x be a point of X, and p its (k+1)th nearest point
of L in the intrinsic metric. If x and p lie in the same path-connected component

of X, then dX(x, p) <
(

3+ε
1−ε

)k
ε sfs(x). Else, dX(x, p) = +∞.

Proof. The proof is by induction on k. We call Xx the path-connected compo-
nent of X that contains x.

- Case k = 0: by definition, p is a nearest neighbor of x in L for the geodesic
distance. Since L is a geodesic εsfs-sample of X, we have dX(x, p) < ε sfs(x) =(

3+ε
1−ε

)k
ε sfs(x).

- General case: assume that the result holds up to some k ≥ 0. Let p0, · · · , pk+1

denote the k + 2 points of L closest to x in the intrinsic metric, ordered according
to their geodesic distances to x. If pk+1 /∈ Xx, then we have dX(x, pk+1) = +∞,
which proves the result for k + 1. Assume now that pk+1 ∈ Xx. This implies
that all the pi also belong to Xx, since their geodesic distances to x are bounded
by dX(x, pk+1) < +∞. By the induction hypothesis, we have dX(x, p0) ≤ · · · ≤
dX(x, pk) <

(
3+ε
1−ε

)k
ε sfs(x). Since pk+1 lies in Xx, the latter is not covered by

VX(p0) ∪ · · · ∪ VX(pk). Therefore, there is a point p ∈ L \ {p0, · · · , pk} such that
VX(p) intersects the geodesic Voronoi cell of pi, for some i ∈ {0, · · · , k}. Note that
p may or may not be pk+1 itself. Let y ∈ VX(pi) ∩ VX(p). Since L is a geodesic
εsfs-sample of X, we have dX(y, pi) = dX(y, p) < ε sfs(y). Thus, by the triangle
inequality and the induction hypothesis, we get:

dX(x, y) ≤ dX(x, pi) + dX(pi, y) <

(
3 + ε

1 − ε

)k
ε sfs(x) + ε sfs(y).

Since sfs is 1-Lipschitz in the intrinsic metric, we have sfs(y) ≤ sfs(x) + dX(x, y),

which, by the above equation, is at most

(
1 + ε

(
3+ε
1−ε

)k)
sfs(x) + ε sfs(y). It

follows that sfs(y) ≤ (1−ε)k+ε(3+ε)k

(1−ε)k+1 sfs(x). Now, since p /∈ {p0, · · · , pk}, we have

dX(x, pk+1) ≤ dX(x, p), which by the triangle inequality is at most dX(x, pi) +

2dX(y, pi). By the induction hypothesis, dX(x, pi) is bounded by
(

3+ε
1−ε

)k
ε sfs(x),
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while our previous computations show that 2dX(y, pi) < 2ε (1−ε)k+ε(3−ε)k

(1−ε)k+1 sfs(x).

In the end, we obtain:

dX(x, pk+1) < ε

((
3 + ε

1 − ε

)k
+ 2

(1 − ε)k + ε(3 + ε)k

(1 − ε)k+1

)
sfs(x) ≤ ε

(
3 + ε

1 − ε

)k+1

sfs(x),

thus proving the result for k + 1.

In the special case where the point cloud L is a geodesic ε-sample of X, with a
uniform bound ε on its density, the upper bound on the geodesic distance between x
and its kth nearest point of L drops down to (1+2k)ε, by the same proof. It is worth
pointing out the influence of the sampling regularity on the upper bound, which
becomes exponential in k when the sampling is non-uniform, whereas it remains
linear in k when the sampling is uniform. While it is clear that the linear bound
in the uniform sampling case is tight, it is still unknown at this time whether the
exponential bound in the non-uniform sampling case is tight or not.

Theorem 4.14. Let X be a Lipschitz domain in the plane, and L a geodesic
εsfs-sample of X. If ε ≤ 1

4k+1 , for some integer k ≥ 0, then the k-skeleton of
CWX (L) is included in DX(L) for all W ⊆ X.

Proof. The proof is by induction on k. There will be in fact two inductions,
therefore we call this one Ik, for clarity.

- Case k = 0: every point of L is a vertex of DX(L), whether it is witnessed by
a point of W or not.

- General case of Ik: assume that the result holds up to some k ≥ 0. Assume
further that ε ≤ 1

4k+2 . Let σ = [p0, · · · , pk+1] be a simplex of CWX (L), and let
w0 ∈ W be a witness of σ. Consider without loss of generality that the pi are
ordered such that dX(w0, p0) ≥ · · · ≥ dX(w0, pk+1). Then, the closed geodesic ball
B0 = BX(w0,dX(w0, p0)) contains the pi and no other point of L. Moreover, p0

belongs to ∂B0. We will prove by induction that B0 can be shrunk to some closed
geodesic ball Bk+1 such that all the pi lie on ∂Bk+1, while Bk+1 still contains no
other point of L. The center of Bk+1 will then be equidistant to all the vertices of
σ, and the latter will therefore be proved to be in DX(L). The induction, named
Ir for clarity, states that there is a closed geodesic ball Br that contains the pi and
no other point of L, and such that p0, · · · , pr lie on ∂Br.

• Case r = 0: initially, we have p0 ∈ ∂B0, and B0 contains the pi and no other
point of L.
• General case of Ir (0 ≤ r < k): assume that we have found a closed geodesic

ball Br that satisfies the requirements. In particular, we have p0, · · · , pr ∈ ∂Br.
This means that the center wr of Br belongs to V ′

X(p0)∩· · ·∩V ′
X(pr), where V ′

X(pi)
denotes the cell of pi (i ≤ r) in the geodesic Voronoi diagram of L\{pr+1, · · · , pk+1}.
Moreover, since [p0, · · · , pk+1] belongs to CWX (L), so does its subsimplex [p0, · · · , pr],
which therefore belongs also to DX(L), by the induction hypothesis of Ik. Hence,
VX(p0) ∩ · · · ∩ VX(pr) is not empty. Let w̃r ∈ VX(p0) ∩ · · · ∩ VX(pr). Since the
cell of any pi in VX(L \ {pr+1, · · · , pk+1}) contains the cell of pi in VX(L), w̃r also
belongs to V ′

X(p0) ∩ · · · ∩ V ′
X(pr).

We claim that V ′
X(p0) ∩ · · · ∩ V ′

X(pr) is path-connected. Indeed, for any point
x ∈ X, the geodesic distance from x to L is finite, because L is a geodesic εsfs-
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sample of X. And since w0 witnesses [p0, · · · , pk+1], all the pi lie in the same
path-connected component of X as w0, therefore the geodesic distance between
x and L \ {pr+1, · · · , pk+1} is still finite, and by Lemma 4.13 it is bounded by(

3+ε
1−ε

)k+1

ε sfs(x). This quantity is less than 4k+1ε sfs(x) ≤ 1
4 sfs(x), since by the

induction hypothesis of Ik we have ε ≤ 1
4k+2 <

1
5 . Hence, L \ {pr+1, · · · , pk+1} is a

geodesic ε′sfs-sample of X, for some ε′ ≤ 1
3 . As a consequence, V ′

X(p0)∩· · ·∩V ′
X(pr)

is path-connected, by Proposition 4.11.
Since wr and w̃r both belong to V ′

X(p0)∩ · · · ∩ V ′
X(pr), which is path-connected,

there exists a path γ : I → V ′
X(p0)∩· · ·∩V ′

X(pr) such that γ(0) = wr and γ(1) = w̃r.
For all s ∈ I, γ(s) is equidistant to p0, · · · , pr, and closer to these points than to
any other point of L \ {pr+1, · · · , pk+1}, in the intrinsic metric. Moreover, for all
j = r + 1, · · · , k + 1, the map fj : s 7→ dX(γ(s), p0) − dX(γ(s), pj) is continuous,
and we have fj(0) = dX(wr, p0) − dX(wr, pj) ≥ 0 since Br contains pj and has p0

on its boundary, whereas fj(1) = dX(w̃r, p0)−dX(w̃r, pj) ≤ 0 since w̃r is a witness
of [p0, · · · , pr]. Thus, fj(s) = 0 for at least one value s ∈ I. Let sj be the smallest
such s.

Consider now j̃ = argminj=r+1,··· ,k+1sj , and assume without loss of generality

that j̃ = r + 1. We then have fr+1(sr+1) = 0 and fj(sr+1) ≥ 0 for all j =
r + 2, · · · , k + 1. This means that the point wr+1 = γ(sr+1) is equidistant to
p0, · · · , pr+1, and farther from these points than from pr+2, · · · , pk+1. In addition,
wr+1 is closer to p0, · · · , pr+1 than to any other point of L \ {pr+2, · · · , pk+1},
since wr+1 ∈ γ(I) ⊆ V ′

X(p0). It follows that the closed geodesic ball Br+1 =
BX(wr+1,dX(wr+1, p0)) contains p0, · · · , pk+1 and no other point of L, and that
p0, · · · , pr+1 lie on ∂Br+1. This concludes the induction Ir, and hereby also the
induction Ik.

Note that, for the conclusion of Theorem 4.14 to hold, it is mandatory to make an
assumption on the density of the landmarks set L, since otherwise some boundary
effects could occur. As an example, take for X an annulus and for L a set of
three landmarks evenly distributed around the hole of the annulus: DX(L) is then
reduced to the boundary of the triangle formed by the three landmarks, whereas
since L has only three points, the triangle is witnessed and therefore it belongs to
CWX (L).

Our next result (Theorem 4.17) is an analog of Theorem 3.2 of [Guibas and Oudot
2007]. It involves a relaxed version of the witness complex, defined as follows:

Definition 4.15. Given a subset X of R2, two subsets W,L of X such that L is
finite, and an integer ν ≥ 0, a simplex σ with vertices in L is ν-witnessed by w ∈W
if the vertices of σ belong to the path-connected component of X that contains w
and to the ν + 1 landmarks closest to w in the intrinsic metric. The geodesic ν-
witness complex of L relative to W , or CWX,ν(L) for short, is the maximum abstract
simplicial complex made of ν-witnessed simplices. Its dimension is at most ν.

Theorem 4.17 assumes that L is a ε
1+ε sfs-sparse sample, which means by Definition

4.1 that every pair of landmarks p 6= q must satisfy dX(p, q) ≥ ε
1+ε min{sfs(p), sfs(q)}.

The bound on ε depends on the doubling dimension of (X,dX), defined as the small-
est integer d such that every open (resp. closed) geodesic ball can be covered by
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a union of 2d open (resp. closed) geodesic balls of half its radius. The doubling
dimension measures the shape complexity of X, and it can be arbitrarily large. As
an example, take for X a comb-shaped domain made of a rectangle of dimensions
1×2, to which are glued k branches of length 1 and width 2

2k−1 as shown in Figure 2
(left). The geodesic distance from any point of X to the center point p is at most 2,
so that X is covered by the closed geodesic ball BX(p, 2). Consider now the closed
geodesic balls BX(qi, 1), 1 ≤ i ≤ k, where points qi are located at the tips of the k
branches of X. Every ball BX(qi, 1) is included in the branch of qi, therefore the
balls BX(qi, 1) are pairwise disjoint. Thus, at least k closed geodesic balls of radius
1 can be packed inside a closed geodesic ball of radius 2, which implies that the
doubling dimension of (X,dX) is at least log2 k, according to the following result
by Kolmogorov and Tikhomirov:

Lemma 4.16 from [Kolmogorov and Tikhomirov 1961]. Given any subset
Y of X, and any real number r > 0, the maximum number of pairwise-disjoint open
(resp. closed) geodesic balls of radius r that can be packed inside Y is at most the
minimum number of open (resp. closed) geodesic balls of radius r that are necessary
to cover Y .

Theorem 4.17. Let X be a Lipschitz domain in the plane, of doubling dimen-
sion d. Let W be a geodesic δsfs-sample of X, and L a geodesic εsfs-sample of X
that is also ε

1+ε sfs-sparse. If ε + 2δ < 1, then, for any integer ν ≥ 2ld − 1, where

l =
⌈
log2

3+ε+2δ/ε

1−ε−2δ

⌉
, DX(L) is included in CWX,ν(L).

Proof. Let σ be a simplex of DX(L), and let c be a point of its dual geodesic
Voronoi cell VX(σ). Since W is a geodesic δsfs-sample of X, there is a point w ∈W
at geodesic distance at most δ sfs(c) from c. Moreover, since L is a geodesic εsfs-
sample of X, every vertex v of σ is at geodesic distance less than ε sfs(c) from
c. It follows that dX(w, v) < (δ + ε) sfs(c). Now, since L is ε

1+ε sfs-sparse, every
two landmarks v, v′ located in the open geodesic ball BX(w, (ε+ δ) sfs(c)) satisfy:
dX(v, v′) ≥ ε

1+ε sfs(v), assuming without loss of generality that sfs(v) ≤ sfs(v′).
Since sfs is 1-Lipschitz in the intrinsic metric (Lemma 3.3), we have: sfs(v) ≥
sfs(c)−dX(v, c) ≥ sfs(c)− (ε+2δ) sfs(c) = (1− ε− 2δ) sfs(c). Thus, the landmarks

inside BX(w, (ε + δ) sfs(c)) are at least ε(1−ε−2δ)
1+ε sfs(c) away from one another in

the intrinsic metric. Hence, they are centers of pairwise-disjoint open geodesic balls

of same radius ε(1−ε−2δ)
2(1+ε) sfs(c), packed inside the open geodesic ball of center c and

radius (ε+ δ + ε(1−ε−2δ)
2(1+ε) )sfs(c) = 3ε+ε2+2δ

2(1+ε) sfs(c). According to Lemma 4.16, there

are at most 2ld such balls, where l =
⌈
log2

3ε+ε2+2δ
ε(1−ε−2δ)

⌉
=
⌈
log2

3+ε+2δ/ε

1−ε−2δ

⌉
. It follows

that σ is ν-witnessed by w whenever ν ≥ 2ld−1. Since this is true for every simplex
σ of DX(L), the latter is included in CWX,ν(L) whenever ν ≥ 2ld − 1.

It follows from Theorems 4.14 and 4.17 that, whenever L and W are dense
enough, DX(L) is sandwiched between CWX (L) and CWX,ν(L), provided that ν is
chosen sufficiently large. The simulation results presented in Section 7 suggest
that even small values of ν are sufficient in practice. Note however that, in some
cases, neither CWX (L) nor CWX,ν(L) coincides exactly with DX(L). This fact, already
observed in [Guibas and Oudot 2007] in a Euclidean setting, motivates the use of
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Fig. 2. Left: a Lipschitz domain with doubling dimension at least k. Right: the size of {q1, · · · , qk}

is k
2

times that of {p, p′}, although both point sets are geodesic sfs-samples of the domain and

q1, · · · , qk are centers of pairwise-disjoint geodesic balls of same radius sfs
2

.

persistent homology between CWX (L) and CWX,ν(L) for computing the homology of
DX(L) without building the latter complex explicitly.

5. UNIONS OF GEODESIC BALLS AND THEIR NERVES

Given a Lipschitz domain X in the plane, and two finite subsets W ⊆ L ⊂ X, we
saw in the previous section (Theorems 4.14 and 4.17) that the following sequence
of inclusions holds provided that W,L are dense with respect to the systolic feature
size of X and that the relaxation parameter ν is large enough:

CWX (L) ⊆ DX(L) ⊆ CWX,ν(L).

In the conference version of this paper [Gao et al. 2008] we showed how the
above sequence of inclusions can be used to infer the homology of the domain
X. Specifically, considering singular homology with coefficients in an arbitrary
field, we showed that the inclusion CWX (L) →֒ DX(L) induces surjective homomor-
phisms at homology level, while the inclusion DX(L) →֒ CWX,ν(L) induces injective
homomorphisms. Intuitively, this means that the homology classes of cycles of
DX(L) already exist in CWX (L) and do not die in CWX,ν(L). As a result, the inclu-

sion CWX (L) →֒ CWX,ν(L) encodes the same homological information as DX(L), and
therefore as X itself, by Theorem 4.3. More formally, for all k ∈ N, the rank of
the linear map Hk(CWX (L)) → Hk(CWX,ν(L)) induced by the inclusion between the
witness complexes is equal to the kth Betti number of DX(L), which by Theorem
4.3 coincides with the kth Betti number of X.

In this section we want to proceed further and study the ranks of the linear
maps induced at homology level by inclusions of type CWX,ν(L) →֒ CWX,ν′(L), where
0 ≤ ν ≤ ν′ are arbitrary values of the relaxation parameter. Moreover, we want to
study other families of simplicial complexes that are also easy to build in practice.
In particular, we are interested in Rips complexes in the geodesic distance:

Definition 5.1. Given a finite point set L ⊂ X and a real parameter α > 0,
the (Vietoris-)Rips complex Rα(L) is the abstract simplicial complex of vertex set
L whose simplices correspond to non-empty subsets of L of diameter less than α in
the geodesic distance dX .
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Our analysis uses the approach of [Chazal and Oudot 2008], which we will now
describe briefly and adapt to our context. The main idea of [Chazal and Oudot
2008] is to relate Rips and witness complexes to the so-called Čech complexes,
defined below:

Definition 5.2. Given a finite point set L ⊂ X and a real parameter α > 0,
the Čech complex Cα(L) is the nerve of the union of open geodesic balls of same
radius α about the points of L.

Since Čech complexes can be potentially difficult to compute, they are not meant
to be constructed in practice. However, they can be used as an intermediate alge-
braic construction for the analysis of the topological structures of Rips or witness
complexes. Indeed, on the one hand, the topology of the Čech complex is tied to
the one of its dual union of balls via the Nerve Theorem 4.5, provided that the balls
form a good cover of the union, as per Definition 4.4. On the other hand, as proved
e.g. in [Chazal and Oudot 2008], the one-parameter family of Čech complexes is
interleaved with the one-parameter family of Rips complexes in the following sense:

∀α > 0, Cα
2
(L) ⊆ Rα(L) ⊆ Cα(L). (3)

The analysis of [Chazal and Oudot 2008] uses the above interleaving property to
derive relations between the ranks of the linear maps induced at homology level
by inclusions between Rips complexes and the ranks of linear maps induced by
inclusions between Čech complexes. More precisely, from Eq. (3) one deduces the
following sequence of inclusions for all β ≥ 2α:

Cα/2(L) ⊆ Rα(L) ⊆ Cα(L) ⊆ Rβ(L) ⊆ Cβ(L). (4)

By simple algebraic arguments, this sequence of inclusions implies the following
inequalities between the ranks of the homomorphisms induced at homology level
by inclusions: ∀β ≥ 2α, ∀k ∈ N,

rank Hk(Cα/2(L)) → Hk(Cβ(L)) ≤ rank Hk(Rα(L)) → Hk(Rβ(L)) ≤ dim Hk(Cα(L)).
(5)

These inequalities provide upper and lower bounds on the ranks of the linear maps
induced at homology level by inclusions of type Rα(L) →֒ Rβ(L). The rest of the
analysis of [Chazal and Oudot 2008] consists in working out sufficient conditions
under which the upper and lower bounds coincide with the Betti numbers of X.
To do so, it relates the one-parameter family of Čech complexes to its dual one-
parameter family of unions of balls. Recall indeed from Definition 5.2 that Cα(L) is
the nerve of the union of open geodesic balls of same radius α about the points of
L. Let us call Lα this union, and {Lα} the associated collection of open geodesic
balls. The analysis of [Chazal and Oudot 2008] provides the following key result,
which can be viewed as a persistent variant of the Nerve Theorem 4.5:

Lemma 5.3. For any parameters α ≤ β, if {Lα} forms a good open cover of Lα

and {Lβ} forms a good open cover of Lβ, then there exist homotopy equivalences
Lα → Cα(L) and Lβ → Cβ(L) that commute with the canonical inclusions Lα →֒ Lβ

and Cα(L) →֒ Cβ(L) at homology level.

In other words, the inclusions Lα →֒ Lβ and Cα(L) →֒ Cβ(L) carry the same
homological information, that is: for all k ∈ N, the linear maps Hk(L

α) → Hk(L
β)
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and Hk(Cα(L)) → Hk(Cβ(L)) induced by inclusions have the same rank.
Now, if we assume that L is a geodesic ε-sample of some length space X, then Lα

coincides with X as soon as α > ε, and for all β ≥ α > ε, the canonical inclusion
Lα →֒ Lβ is the identity of X, which implies that the rank of Hk(L

α) → Hk(L
β)

coincides with the kth Betti number of X. Combined with Lemma 5.3, this fact
implies that, for all α > 2ε and β ≥ 2α such that {Lα/2}, {Lα}, {Lβ} form good
open covers of Lα/2, Lα, Lβ respectively, the rank of Hk(Cα/2(L)) → Hk(Cβ(L))
and the dimension of Hk(Cα(L)) coincide with the kth Betti number of X. Thus,
the upper and lower bounds in Eq. (5) coincide with the kth Betti number of X,
which implies the following:

Theorem 5.4. Let X be a length space that admits a finite geodesic ε-sample
L. Then, for all k ∈ N, for all α > 2ε and β ≥ 2α such that {Lα/2}, {Lα}, {Lβ}
form good open covers of Lα/2, Lα, Lβ respectively, the rank of the homomorphism
Hk(Rα(L)) → Hk(Rβ(L)) induced by inclusion coincides with the kth Betti number
of X.

In [Chazal and Oudot 2008], the analysis takes place in Euclidean space Rd, where
balls are convex and their intersections contractible (if not empty). In [Chazal
et al. 2009], the analysis is extended to the case of compact Riemannian manifolds,
with or without boundary, where geodesic balls are convex and their intersections
contractible (if not empty) up to the so-called convexity radius of the manifold.
Thus, the assumption of having good covers in Theorem 5.4 holds as long as β is
smaller than the convexity radius. In the present context, the domain X is not
a Riemannian manifold since its boundary can be non-smooth. Yet, the above
properties of geodesic balls still hold provided that the radii are not more than a
fraction of the systolic feature size of X:

Lemma 5.5. If X is a Lipschitz planar domain, then any finite collection of open
geodesic balls of radii at most 1

3 sfs(X) forms a good open cover of its union in X.

Combined with Theorem 5.4, this result implies that, if L is a geodesic ε-sample
of a Lipschitz planar domain X, for some ε < 1

12 sfs(X), then, for any choice of
parameters α ∈ (2ε, 1

6 sfs(X)] and β ∈ [2α, 1
3 sfs(X)], the Betti numbers of X can

be obtained as the ranks of the homomorphisms induced at homology level by the
inclusion Rα(L) →֒ Rβ(L).

Lemma 5.5 is the main new result of this section. Its proof turns out to be rather
elaborate, and in fact it draws some interesting connections between the systolic
feature size and the distance to the cut locus on the one hand (see Lemma 5.6
in Section 5.1), as well as between Lipschitz planar domains and a class of length
spaces called Alexandrov spaces on the other hand (see Theorem 5.10 in Section
5.2). The proof is detailed in Sections 5.1 and 5.2, while Section 5.3 adapts the
above analysis to the case of witness complexes.

5.1 Systolic feature size and cut locus

A noticeable feature of the systolic feature size is its close relationship with the
so-called cut-locus. For any given path γ : I → X, we call support of γ the set
γ(I). If γ is a shortest path between x = γ(0) and y = γ(1), then γ(I) is called a
shortest path support between x and y. Note that different paths may have identical
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supports. In particular, a shortest path support may be shared by shortest paths
as well as non-shortest paths (think of the latter as moving back and forth along
the support). Given a point x ∈ X, the cut-locus of x in X, or CLX(x) for short, is
the locus of the points of X having at least two different shortest paths supports to
x in X. In other words, a point y ∈ X belongs to CLX(x) iff there exist two paths
γ, γ′ : I → X such that γ(0) = γ′(0) = x, γ(1) = γ′(1) = y, |γ| = |γ′| = dX(x, y),
and γ(I) 6= γ′(I). The geodesic distance from x to its cut-locus is denoted by
dX(x,CLX(x)).

Lemma 5.6. If X is a Lipschitz domain in the plane, then ∀x ∈ X, sfs(x) =
dX(x,CLX(x)).

Proof. We first show that sfs(x) ≥ dX(x,CLX(x)). This is clearly true if the
path-connected component Xi of X that contains x is simply connected, since in
such a case we have sfs(x) = +∞. Assume now that Xi is not simply connected,
and let γ : (S1, 1) → (X, 1) be a non null-homotopic loop through x in X, of
length 2sfs(x) < +∞. Such a loop exists, by Lemma 3.2. Moreover, according to
[Burago et al. 2001, Proposition 2.5.9], we can assume without loss of generality
that γ is parameterized with constant speed, that is: ∀s ∈ I, |γ[0,s]| = s|γ|. We

then have |γ[0,1/2]| = |γ[1/2,1]| = 1
2 |γ| = sfs(x). Call respectively γ′ and γ′′ the paths

γ[0,1/2] and γ[1/2,1]. These are two paths between x and y = γ(1/2) in X, hence
their lengths are at least dX(x, y). We claim that |γ′| = |γ′′| = dX(x, y). Indeed,
let ζ be a shortest path from x to y in X. Since γ is not null-homotopic in X,
γ′ and γ̄′′ are not homotopic relative to ∂I in X, and therefore γ′ · ζ̄ or γ̄′′ · ζ̄
(say γ′ · ζ̄) is not null-homotopic in X. It follows that |γ′ · ζ̄| ≥ 2sfs(x). Now, if
|ζ| < |γ′′|, then we have |γ′ · ζ̄| = |γ′| + |ζ| < |γ′| + |γ′′| = |γ| = 2sfs(x), which
raises a contradiction with the previous sentence. Therefore, |γ′| = |γ′′| = |ζ| =
dX(x, y). Finally, we claim that the supports of γ′ and γ′′ are distinct. Assume for a
contradiction that γ′(I) = γ′′(I). Then, for all s′ ∈ [0, 1/2], there exists s′′ ∈ [1/2, 1]
such that γ(s′) = γ(s′′). This implies that dX(x, γ(s′)) = dX(x, γ(s′′)). But since
γ′ and γ̄′′ are shortest paths from x to y in X, we have dX(x, γ(s′)) = |γ[0,s′]| and
dX(x, γ(s′′)) = |γ[s′′,1]|. It follows that s′ = 1−s′′, because γ is parameterized with
constant speed. This means that γ′ = γ̄′′, which implies that γ = γ′ · γ′′ is null-
homotopic in X, which contradicts our assumption. Thus, we have γ′(I) 6= γ′′(I),
as well as |γ′| = |γ′′| = dX(x, y), which means that y belongs to CLX(x). Therefore,
sfs(x) = |γ′| = |γ′′| = dX(x, y) ≥ dX(x,CLX(x)).

Let us now show that sfs(x) ≤ dX(x,CLX(x)). Assume for a contradiction that
there is a point y ∈ CLX(x) such that dX(x, y) < sfs(x). Point y has at least two
shortest paths γ, γ′ from x whose supports differ. Assume without loss of generality
that γ, γ′ are parameterized with constant speed. Then, for all 0 ≤ s < s′ ≤ 1,
we have γ(s) 6= γ(s′), since otherwise the path γ[0,s] · γ[s′,1] would connect x to y
and be strictly shorter than γ, hereby contradicting the fact that the latter is a
shortest path from x to y. Thus, γ is an injection from I to X. Given any points
u, v ∈ γ(I), with γ−1(u) ≤ γ−1(v), we call γuv the path γ[γ−1(u),γ−1(v)]. By the
same argument, γ′ is also an injection from I to X, and we use the same notation
for subpaths.

Since the supports of γ and γ′ differ, we have γ(I)\γ′(I) 6= ∅ or γ′(I)\γ(I) 6= ∅ –
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say γ(I)\γ′(I) 6= ∅. Let γuv be a maximal subarc of γ satisfying γuv(]0, 1[)∩γ′(I) =
∅. Here, u and v are the two endpoints of γuv, and by maximality we have u 6= v
and u, v ∈ γ(I) ∩ γ′(I). Since γuv and γ′uv are injective, and since their images in
X have common endpoints but disjoint relative interiors, the path γ′uv · γ̄vu is a
simple loop, and therefore it divides the plane into two connected components, one
of which (called C) is bounded, by the Jordan curve theorem. Moreover, we have
∂C = (γ′uv · γ̄vu)(I), and the degree of the loop with respect to any point of C is
non-zero. Now, since γ, γ′ are shortest paths from x to y, with dX(x, y) < sfs(x),
the image of the loop γ′uv · γ̄vu lies in the open geodesic ball BX(x, sfs(x)). Hence,
by Lemma 3.4, the loop is null-homotopic in X, and since its degree with respect
to the points of C is non-zero, any homotopy with a constant map in X passes
through the points of C, which therefore belong to X. Thus, between points u and
v, γ and γ′ sandwich a region C that is included in X. We will show that there
exist shortcuts to γ, γ′ in C, hereby contradicting the fact that γ and γ′ are shortest
paths from x to y in X.

Consider the line segment [u, v], and choose a positively-oriented orthonormal
frame such that point u is at the origin, line (u, v) is vertical, and point v lies above
u. Let λuv denote the path s 7→ (1 − s)u+ sv.

- If [u, v] is included in C, then the paths γxu · λuv · γvy and γ′xu · λuv · γ′vy
connect x to y in X. And since γuv(I) and γ′uv(I) differ, one of them at least (say
γuv(I)) differs from [u, v], which implies that |γuv| > dE(u, v) = |λuv| and hence
that |γ| > |γxu · λuv · γvy|, which contradicts the fact that γ is a shortest path from
x to y in X.

- If now [u, v] is not included in C, then there is a point p ∈ [u, v] that does not
belong to C. On the horizontal line passing through p, C lies on the right or on the
left of (u, v), say on the right. Let c be a rightmost point of C. We have c /∈ {u, v}
because c lies on the right of line (u, v). Note that c ∈ ∂C, and assume without
loss of generality that c ∈ γuv(I), which implies that c /∈ γ′uv(I) since c /∈ {u, v}.
Let α be the connected component of γuv(I) \ (u, v) that contains c. Since γuv is a
simple arc, α is a subarc of γuv, starting and ending on (u, v), and passing through
c. Let l be the vertical line passing through c. Note that C does not intersect the
right half-plane bounded by l. Nevertheless, other components of ∂C \ (u, v) may
touch l, including some subarcs of γ′uv. However, by paring C infinitesimally in
their vicinity, one can easily ensure that α is the only arc of ∂C that touches l.
Hence, from now on, we assume without loss of generality that l ∩ C ⊆ α. This
implies that γ′uv(I) does not touch l, since α ⊆ γuv(]0, 1[), which does not intersect
γ′uv(I). Therefore, the rightmost vertical line l′ touching γ′uv(I) lies on the left of
l. Let δ > 0 denote the Euclidean distance between l and l′.

Consider the open Euclidean ball BE(c, δ). Since c ∈ C, there exists a point c′′

lying in C ∩ BE(c, δ). Since C is open in R2, we have c′′ /∈ ∂C. Let l′′ be the
vertical line passing through c′′. Note that l′′ is located on the right of l′. Let u′′

and v′′ be the first points of intersection of l′′ with ∂C above and below c′′. We have
[u′′, v′′] ⊆ C. Moreover, u′′ 6= v′′ because c′′ /∈ ∂C. In addition, u′′ and v′′ belong
to γuv(I), since they lie on l′′ and hence on the right of l′. Finally, [u′′, v′′] differs
from γu′′v′′(I) because [u′′, v′′] passes through c′′ /∈ ∂C. As a result, the path λu′′v′′ ,
defined by s 7→ (1 − s)u′′ + sv′′, is included in C ⊆ X, it connects points u′′, v′′
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of γuv(I), and it is shorter than γu′′v′′ . It follows that the path γxu′′ · λu′′v′′ · γv′′y
connects x to y in X, and is strictly shorter than γ, which contradicts the fact that
γ is a shortest path from x to y in X. This shows that every point y inside the
open geodesic ball BX(x, sfs(x)) has only one shortest path support to x. It follows
that sfs(x) ≤ dX(x,CLX(x)), which concludes the proof of Lemma 5.6.

The fact that the geodesic distance of a point x ∈ X to its cut-locus is equal
to half the length of the shortest non null-homotopic loop through x was already
known in the case of planar domains with polygonal boundaries [Mitchell 1991].
Lemma 5.6 above extends this result to the case of planar domains with Lipschitz
boundaries.

5.2 Lipschitz planar domains are Alexandrov spaces

The background material used in this section comes from Chapters 4 and 9 of
[Burago et al. 2001], to which we refer the reader for further details.

We call geodesic triangle any collection of three distinct points a, b, c ∈ X con-
nected by three shortest paths supports τab, τbc, τca in X. Note that the three
vertices alone may not define a geodesic triangle uniquely since there may be sev-
eral different shortest paths supports connecting a same pair of vertices.

Definition 5.7. Given a geodesic triangle of vertices a, b, c ∈ X, a comparison
triangle is a triangle (ā, b̄, c̄) in the Euclidean plane such that dE(ā, b̄) = dX(a, b),
dE(b̄, c̄) = dX(b, c), and dE(c̄, ā) = dX(c, a).

Although three distinct points in X may not define a unique geodesic triangle,
they always define a unique comparison triangle up to an isometry of the Euclidean
plane.

Definitions 5.8 and 5.9 below consider the shapes of small enough geodesic tri-
angles as a criterion for a length space to have bounded curvature. This criterion
is inspired from results in Riemannian geometry, where manifolds of negative cur-
vature tend to have skinny triangles, whereas manifolds of positive curvature have
rather fat triangles. Here, the skinniness of a geodesic triangle is measured with
respect to a comparison triangle in the Euclidean plane.

Definition 5.8 Angle condition. A geodesic triangle (a, b, c, τab, τbc, τca) sat-
isfies the angle condition if the angles formed by τab, τbc, τca at the vertices a, b, c
are well-defined and at most the corresponding angles in a comparison triangle.

In the above definition, by angle between two paths α, β : I → X emanating from a
same point p = α(0) = β(0) is meant the limit quantity lims,t→0 ∠̃(α(s), p, β(t)), if

it exists, where ∠̃(α(s), p, β(t)) denotes the inner angle8 at the vertex corresponding
to p in a comparison triangle of (p, α(s), β(t)). This limit may not always exist in
general. Below we prove that, in the special case of Lipschitz planar domains, small
enough geodesic triangles have concave edges (Claim 5.10.3) whose tangents at the
vertices of the triangles are well-defined, which implies that angles between edges
are also well-defined.

8This angle is defined uniquely because the comparison triangle is defined uniquely up to an

isometry of the Euclidean plane.
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Definition 5.9. A length space X is an Alexandrov space with non-positive
curvature if around each point of X there is a neighborhood such that every geodesic
triangle within this neighborhood satisfies the angle condition of Definition 5.8.

Alexandrov spaces of non-positive curvature are sometimes called CAT(0)-spaces
in the literature, where CAT stands for Cartan-Alexandrov-Toponogov, and where
(0) indicates the upper bound on the curvature. Note also that curvature bounds
are usually derived from distance conditions, not angle conditions. As proved in
[Burago et al. 2001, Theorem. 4.3.5], distance and angle conditions are in fact
equivalent.

The main result of this section is that Lipschitz planar domains are CAT(0)-
spaces:

Theorem 5.10. Every Lipschitz domain X in the plane, endowed with the length
structure inherited from (R2,dE), is an Alexandrov space of non-positive curvature.
More precisely, for any open geodesic ball B ⊂ X of radius at most 1

3 sfs(X), and
for any distinct points a, b, c ∈ B, the geodesic triangle formed by a, b, c and their
(unique) shortest paths supports satisfies the angle condition of Definition 5.8.

The proof of the theorem uses four intermediate results, stated as Claims 5.10.1
through 5.10.4 and proved on the fly.

Proof of Theorem 5.10. Observe first that, since the diameter of B is less than
sfs(X), the shortest paths supports between a, b, c are defined uniquely, by Lemma
5.6. For more clarity, we call τab, τbc, and τca these paths supports — dashed in
Figure 3 (left).

Claim 5.10.1. The paths supports τab, τbc and τca are simple planar curves that
pairwise intersect along connected subarcs incident to their common endpoints.

Proof. Since τab, τbc and τca are shortest paths supports, they have to be simple,
since otherwise they could be shortened. Consider now τab and τbc. These paths
supports intersect at their common endpoint b. Assume that they have another
point b′ of intersection. Then, the arc of τab that connects b to b′ is a shortest path
support between the two points in X. Idem for the arc of τbc that connects b to b′.
Therefore, these two arcs coincide, by Lemma 5.6. It follows that τab and τbc must
intersect along a common subarc incident to their common endpoint b. The same
is true for τbc and τca on the one hand, and for τca and τab on the other hand.

Let τbb′ be the common subarc of τab and τbc, τcc′ the common subarc of τbc and
τca, and τaa′ the common subarc of τca and τab. The shortest paths supports τa′b′ ,
τb′c′ and τc′a′ are then uniquely defined as subarcs of τab, τbc and τca respectively.
Note that if a′ = b′ or a′ = c′ or b′ = c′, then it must be the case that a′ = b′ = c′,
by Claim 5.10.1.

Claim 5.10.2. If a′ = b′ = c′, then the curve τ = τa′b′ ∪ τb′c′ ∪ τc′a′ is reduced
to a point. Else, τ is a simple closed curve whose complement in R2 has two path-
connected components, one of which (called Ω) is bounded and contained in X.

Proof. Since τa′b′ , τb′c′ , τc′a′ are shortest paths supports, they are reduced to
a same point if a′ = b′ = c′. Else, we have a′ 6= b′, b′ 6= c′ and a′ 6= c′, and the
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Fig. 3. Left: a geodesic triangle (a, b, c) in a Lipschitz planar domain (light grey). Shortest paths
supports are dashed. The non-singular part of the triangle, of vertices a′, b′, c′ and interior Ω, is
shown in dark grey. Right: bold segments show the possible locations of b̄′ and c̄′ on rays [a, b̄)

and [a, c̄).

definition of a′, b′, c′ derived from Claim 5.10.1 ensures that τ is a simple closed
curve. Then, the Jordan curve theorem guarantees that τ divides R2 into two
distinct connected components, one of which (called Ω) is bounded. Let γa′b′ : I →
X be a shortest path between a′ and b′, γb′c′ : I → X a shortest path between b′ and
c′, and γc′a′ : I → X a shortest path between c′ and a′. Let now γ = γa′b′ ·γb′c′ ·γc′a′ .
We have γ(I) = τ . Furthermore,

|γ| = dX(a′, b′) + dX(b′, c′) + dX(c′, a′) ≤ dX(a, b) + dX(b, c) + dX(c, a) < 2sfs(X),

which implies that γ is null-homotopic inX, by definition of sfs(X). Let Γ : S1×I →
X be a homotopy between γ and a constant map in X. For any point x ∈ Ω, we
have degx γ = ±1 since the loop γ winds once around Ω. If x did not belong to
Γ(S1 × I), then Γ would be a homotopy between γ and a constant map in R2 \{x},
thus by Corollary 2.1 we would have degx γ = 0, thereby raising a contradiction.
It follows that Γ(S1 × I) contains all the points of Ω, which is therefore included in
X.

It follows from Claim 5.10.2 that the geodesic triangle formed by τa′b′ , τb′c and
τc′a′ is either reduced to a point, or an embedded triangle in the plane, whose
interior Ω is included in X. From now on, we denote the triangle by (a′, b′, c′) for
simplicity.

Claim 5.10.3. The triangle (a′, b′, c′) has concave edges.

Proof. Consider an edge of the triangle, say for instance τa′,b′ . For any pair of
points x, y on this edge, consider the Euclidean segment [x, y]. We will show that
[x, y] ∩ Ω = ∅. Assume for a contradiction that this is not the case, and let (x′, y′)
be a connected component of [x, y] ∩ Ω. This component is an open subsegment
of [x, y], and its endpoints lie on τa′b′ . Call τa′x′ the subarc of τa′b′ that connects
a′ to x′ and τy′b′ the subarc of τa′b′ that connects y′ to b′. Replacing τa′b′ by
τa′x′ ∪ (x′, y′)∪ τy′b yields a path support between a′ and b′ that is strictly shorter
than τa′b′ , yet still included in X (since Ω ⊂ X). This contradicts the fact that
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τa′b′ is a shortest path support between a′ and b′ in X.

The fact that the edges of (a′, b′, c′) are concave implies that their tangents at
the three vertices are well-defined when a′, b′, c′ are distinct, as shown in Figure 3
(right).

We can now prove that the inner angles of the geodesic triangle (a, b, c) are well-
defined, taking for instance the case of vertex a: if a 6= a′, then τab and τca coincide
in the vicinity of a (as in Figure 3 (left) for instance), and therefore the inner angle
â is zero; if a = a′ = b′ = c′, then a lies on the shortest path support τbc, and
therefore â = π, since a, b, c are assumed to be distinct; else, a = a′ and a′, b′, c′

are distinct, and â coincides with the angle formed by the two rays emanating from
a and tangent to τab and τca respectively9. In every case, the inner angle â is
well-defined. The same is true for b̂ and ĉ.

Claim 5.10.4. The angles â, b̂, ĉ are not larger than the corresponding angles in
a comparison triangle.

Proof. Take for instance vertex a. If a 6= a′, then we have â = 0, which cannot
be more than the value of the corresponding angle in a comparison triangle. If
a = a′ = b′ = c′, then we have â = π. But since a belongs to the shortest path
support τbc, we have dX(b, c) = dX(b, a)+dX(a, c), which implies that a comparison
triangle must be flat, with an inner angle at a equal to π. Consider finally the case
where a = a′ and a′, b′, c′ are distinct. Let [a, b̄) and [a, c̄) be the rays emanating
from a and tangent to τab and τca respectively. On [a, b̄), the point b̄ is placed such
that its Euclidean distance to a is equal to dX(a, b). Similarly, we place point c̄ on
[a, c̄) such that dE(a, c̄) = dX(a, c). Assume that the following inequality holds:

dE(b̄, c̄) ≤ dX(b, c). (6)

Then, any comparison triangle of (a, b, c) must have an inner angle at a that is at
least the angle â between [a, b̄) and [a, c̄), which proves the claim.

Let us now prove Eq. (6). Since the triangle (a, b′, c′) is embedded in the plane
with concave edges, b′ and c′ must lie outside the wedge formed by rays [a, b̄) and
[a, c̄), and the edge τb′c′ (as well as the Euclidean segment [b′, c′]) must intersect
the wedge. Let b′′ be the unique intersection point between [b′, c′] and [a, b̄), and
c′′ the unique intersection point between [b′, c′] and [a, c̄). We place a point b̄′

on [a, b̄) such that dE(a, b̄′) = dX(a, b′). We also let b̄′1, b̄
′
2 ∈ [a, b̄) be such that

dE(b̄′1, a) = dE(b′, a) and dE(b̄′2, b
′′) = dE(b′, b′′). Since the edge τa,b′ is concave,

it coincides with the graph of some convex real-valued function in an appropriate
orthogonal frame of abcissa line (a, b′). Observe that the Euclidean line segments
[a, b′′] and [b′′, b′], once concatenated, also form a concave triangle edge, therefore
[a, b′′]∪ [b′′, b′] coincides with the graph of some convex function in the same frame
as above. And since [a, b′′] ∪ [b′′, b′] lies below τa,b′ in that frame, its length must

9This is an easy consequence of the concavity of the edges of (a, b′, c′). Indeed, when two points

p ∈ τab′ and q ∈ τc′a converge to a, the ratios
dX (p,a)
dE(p,a)

and
dX (q,a)
dE(q,a)

converge to 1. Furthermore,

for p, q close enough to a, the Euclidean line segment [p, q] is included in (a′, b′, c′) and therefore

in X, which implies that
dX (p,q)
dE(p,q)

= 1. Thus, as p, q converge to a, the angle of a comparison

triangle tends to dpaq, which converges to the angle between the tangents to τab and τca.
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be greater. As a result, we have:

dE(a, b′) ≤ dX(a, b′) ≤ dE(a, b′′) + dE(b′′, b′).

This implies that point b̄′ lies in-between b̄′1 and b̄′2 along the ray [a, b̄). Similarly,
placing c̄′ on [a, c̄) such that dE(a, c̄′) = dX(a, c′), and letting c̄′1, c̄

′
2 ∈ [a, c̄) be

such that dE(c̄′1, a) = dE(c′, a) and dE(c̄′2, c
′′) = dE(c′, c′′), we have that c̄′ lies in-

between c̄′1 and c̄′2 along [a, c̄). Assuming without loss of generality that dX(a, b′) ≥
dX(a, c′), we then have

dE(b̄′, c̄′) ≤ dE(b̄′2, c̄
′
1). (7)

In addition, since [b′, c′] crosses the wedge bounded by [a, b̄) = [a, b′′) and [a, c̄) =
[a, c̄′1), point c̄′1 lies inside the wedge bounded by [a, b′′) and [a, c′). Now, inside
this wedge, the arc of circle ∂BE(a,dE(a, c′)) is included in the closed Euclidean
ball BE(b′′,dE(b′′, c′)). It follows that dE(b′′, c̄′1) ≤ dE(b′′, c′), and by the triangle
inequality,

dE(b̄′2, c̄
′
1) ≤ dE(b̄′2, b

′′)+dE(b′′, c̄′1) = dE(b′, b′′)+dE(b′′, c̄′1) ≤ dE(b′, b′′)+dE(b′′, c′),

which is equal to dE(b′, c′). It follows that dE(b̄′2, c̄
′
1) ≤ dX(b′, c′). Combined with

Eq. (7), this inequality yields dE(b̄′, c̄′) ≤ dX(b′, c′). Now, recall that dX(b, b′) =
dX(a, b)−dX(a, b′) since b′ lies on the shortest path support τab. Idem, dX(c, c′) =
dX(a, c) − dX(a, c′) since c′ lies on the shortest path support τca. Therefore, we
have dE(b̄, b̄′) = dX(b, b′) and dE(c̄, c̄′) = dX(c, c′). Combining these relations with
the triangle inequality, we obtain:

dE(b̄, c̄) ≤ dE(b̄, b̄′) + dE(b̄′, c̄′) + dE(c̄′, c̄) ≤ dX(b, b′) + dX(b′, c′) + dX(c′, c),

which is equal to dX(b, c) since b′, c′ lie on the shortest path support τbc between b
and c. This proves Eq. (6), and thus also the claim.

Claim 5.10.4 concludes the proof of Theorem 5.10.

Open geodesic balls of X in which the angle condition of Definition 5.8 is satisfied
by all geodesic triangles are often called normal balls in the literature. They enjoy
many interesting properties, among which the most important ones to us are the
fact that normal balls are convex (i.e. any two points in a normal ball B have
a unique shortest path support, which is also included in B), and the fact that
for any point p ∈ X the map q 7→ γpq, where γpq is a shortest path from p to q
parametrized with constant speed, is uniquely defined and continuous within any
normal ball that contains p. As a result, intersections of normal balls are either
empty, or convex and contractible — see Propositions 9.1.16 and 9.1.17 as well as
Remark 9.1.18 of [Burago et al. 2001]. Combined with Theorem 5.10, this fact
proves Lemma 5.5.

5.3 The case of witness complexes

The one-parameter families of Čech and witness complexes can be interleaved in a
same way as in Eq. (3), modulo some additional conditions on the landmarks and
witnesses densities:
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Lemma 5.11. Let X be a Lipschitz domain in the plane, of doubling dimension
d. Let W be a geodesic δ-sample of X, and L an ε-sparse geodesic ε-sample of X.
For any parameter α > 0, we have Cα(L) ⊆ CWX,ν(L) as soon as ν ≥ 2ld, where

l = ⌈log2
2α+ε+2δ

ε ⌉. Conversely, for any parameter ν, we have CWX,ν(L) ⊆ Cα(L) for
all values α ≥ (2ν + 3)ε.

Proof. Let α > 0 be a parameter, and σ = [p0, · · · , pk] a simplex of Cα(L).
The open geodesic balls BX(pi, α) have a non-empty common intersection. Let c
be a point in the intersection, and let w ∈ W be a point of W closest to c in the
intrinsic metric. We then have dX(w, c) ≤ δ, which implies that dX(w, pi) < α+ δ
for all i = 0, · · · , k. Now, since L is ε-sparse, the points of L that lie within
geodesic distance α + δ of w are centers of pairwise-disjoint open geodesic balls of
same radius ε

2 , packed inside the open ball BX(w,α + δ + ε
2 ). Since the doubling

dimension of X is d, the maximum possible number of such balls is at most 2ld,
where l = ⌈log2

2α+ε+2δ
ε ⌉. This implies that the vertices of σ are among the 2ld

points of L nearest to w in the intrinsic metric. As a result, w is a ν-witness of σ
as soon as ν ≥ 2ld. Since this is true for any simplex σ ∈ Cα(L), we conclude that
Cα(L) ⊆ CWX,ν(L) for all ν ≥ 2ld.

Let now ν ∈ N be a parameter, and σ a simplex of CWX,ν(L). Consider any ν-
witness w of σ. The vertices of σ are among the ν + 1 points of L closest to w in
the geodesic distance, and they all lie in the same path-connected component of X
as w. Therefore, their geodesic distances to w are less than (2ν + 3)ε, according to
Lemma 4.13 and its subsequent comment. Thus, for all α ≥ (2ν + 3)ε, w belongs
to the open geodesic balls of same radius α centered at the vertices of σ, whose
common intersection is therefore non-empty. It follows that CWX,ν(L) ⊆ Cα(L).

Letting l(α) = ⌈log2
2α+ε+2δ

ε ⌉ and ν(α) = 2l(α)d, we deduce from Lemma 5.11 the
following inclusions, which correspond to the ones of Eq. (3) for witness complexes:
∀α > 0,

Cα(L) ⊆ CWX,ν(α)(L) ⊆ C(2ν(α)+3)ε(L).

The above inclusions induce a sequence similar to the one of Eq. (4): ∀β ≥ (2ν(α)+
3)ε,

Cα(L) ⊆ CWX,ν(α)(L) ⊆ Cβ(L) ⊆ CWX,ν(β)(L) ⊆ C(2ν(β)+3)ε(L).

This sequence provides upper and lower bounds on the ranks of the homomorphisms
induced at homology level by the inclusion CWX,ν(α)(L) →֒ CWX,ν(β)(L), as in Eq. (5):

∀β ≥ (2ν(α) + 3)ε, ∀k ∈ N,

rank Hk(Cα(L)) → Hk(C(2ν(β)+3)ε(L)) ≤ rank Hk(C
W
X,ν(α)(L)) → Hk(C

W
X,ν(β)(L)) ≤ dimHk(Cβ(L)).

Equality between the upper and lower bounds is guaranteed by Lemma 5.5, using
the same analysis as in the introduction of Section 5 and assuming that α > ε and
(2ν(β) + 3)ε ≤ 1

3 sfs(X). We thus obtain:

Theorem 5.12. Let X be a Lipschitz planar domain, W a geodesic δ-sample of
X, and L a finite geodesic ε-sample of X. Then, for any choice of parameters α and
β ≥ (2ν(α) + 3)ε such that α > ε and (2ν(β) + 3)ε ≤ 1

3 sfs(X), the Betti numbers
of X can be obtained as the ranks of the homomorphisms induced at homology level
by the inclusion CWX,ν(α)(L) →֒ CWX,ν(β)(L), provided that δ, ε are small enough.
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6. ALGORITHMS

In this section, we describe high-level procedures for estimating sfs, for generat-
ing geodesic εsfs-samples, and for computing the homology of a Lipschitz planar
domain. Our algorithms rely essentially on two oracles, whose implementations de-
pend on the application considered. Section 7 will be devoted to the implementation
of such oracles on a sensor network.

6.1 Computing the systolic feature size

Lemma 5.6 suggests a simple procedure for computing the systolic feature size:
given a Lipschitz domain X in the plane, and a point x ∈ X, grow a geodesic
ball B about x at constant speed, starting with a radius of zero, and ending when
B covers the path-connected component Xx of X containing x. Meanwhile, focus
on the wavefront ∂B as the radius of B increases – this wavefront evolves as the
iso-level sets of the geodesic distance to x:

– if at some stage the wavefront self-intersects, meaning that there is a point
y ∈ ∂B with at least two different shortest paths supports to x, then interrupt
the growing process and return the current value of the radius of B;

– else, stop once B covers Xx and return +∞.
By detecting the first self-intersection event in the growing process, the procedure
finds a point of CLX(x) closest to x in the intrinsic metric, and therefore it returns
dX(x,CLX(x)), which by Lemma 5.6 is equal to sfs(x). The procedure relies on
two oracles: the first one detects whether B covers Xx entirely; the second one
detects whether the wavefront self-intersects at a given value r of the radius of B,
or rather, between two given values r1 < r2 of the radius of B.

6.2 Generating geodesic εsfs-samples

Given a Lipschitz domain X in the plane, and a real number ε > 0, we can use
the procedure of Section 6.1 to generate geodesic εsfs-samples of X. Our algorithm
relies on a greedy packing strategy that builds a point set L iteratively by inserting
at each iteration a point of X that is far away from the current point set L in the
intrinsic metric.

In the initialization phase, the algorithm selects an arbitrary point p ∈ X and
sets L = {p}. It also assigns to p the open geodesic ball Bp of center p and radius
ε

1+ε sfs(p), where sfs(p) is estimated using the procedure of Section 6.1. If sfs(p) =
+∞, then Bp coincides with the path-connected component of X containing p.
The main loop of the algorithm proceeds in a similar fashion. At each iteration,
an arbitrary point q ∈ X \⋃p∈LBp is selected and inserted in L. Point q is then
assigned the open geodesic ball Bq of center q and radius ε

1+ε sfs(q). The process
stops when X \⋃p∈LBp = ∅.

The algorithm uses a variant of an oracle of Section 6.1, which can tell whether
a given union of geodesic balls covers X, and return a point outside the union in
the negative. Upon termination, every point x ∈ X lies in some open ball Bp, and
we have dX(x,L) ≤ dX(x, p) < ε

1+ε sfs(p), which is at most ε sfs(x) since sfs is 1-
Lipschitz in the intrinsic metric (Lemma 3.3). Moreover, dX(x, p) is finite because
Bp is included in the path-connected component of X containing p. Therefore,
upon termination, L is a geodesic εsfs-sample of X. Let us show that the algorithm
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indeed terminates:

Lemma 6.1. For all ε > 0, the algorithm terminates.

Proof. Our approach is to bound the pairwise Euclidean distances between
the points of L from below by some positive value, and then to apply a packing
argument. Let h = min{1, sfs(X)}. Note that we do not use sfs(X) directly, since
the latter might be infinite. In contrast, 0 < h < +∞.

Consider any two points p, q inserted in L by the algorithm, and assume without
loss of generality that q was inserted after p. If sfs(p) = +∞, then the ball Bp
coincides with Xp, the path-connected component of X that contains p. Therefore,
q does not belong to Xp, and we have dX(p, q) = +∞ > hε

1+ε . If sfs(p) < +∞, then

dX(p, q) is at least the radius of Bp, which is equal to ε
1+ε sfs(p) ≥ ε

1+ε sfs(X) ≥ hε
1+ε .

In any case, we have dX(p, q) ≥ hε
1+ε for all points p, q ∈ L. We will now bound this

quantity from below by another quantity depending on dE(p, q), which will then
enable us to use a packing argument.

Consider the set K of all pairs of points x, y of X such that dX(x, y) ≥ hε
1+ε .

K is a closed subset of X × X, which is compact since X is, hence K itself is

also compact. It follows that the map10 g(x, y) = dE(x,y)
dX(x,y) reaches its minimum m

over K. This minimum is positive since ∀(x, y) ∈ K, we have dX(x, y) > 0, which
implies that x 6= y and hence that dE(x, y) > 0.

From the previous paragraphs, we deduce that, for all points p, q ∈ L, dE(p, q) is
at least m dX(p, q) ≥ mhε

1+ε . Hence, the points of L are centers of pairwise-disjoint

open Euclidean balls of same radius mhε
2(1+ε) > 0, packed inside X ⊕BE

(
0, mhε

2(1+ε)

)
,

where ⊕ stands for the Minkowski sum. SinceX is compact, so isX⊕BE
(
0, mhε

2(1+ε)

)
,

which therefore contains only finitely many disjoint open Euclidean balls of same
positive radius. It follows that L is finite. And since the algorithm inserts one point
in L per iteration, the process terminates.

We will now show that the size of the output of the algorithm lies within a
constant factor of the optimal, the constant depending on the doubling dimension
of (X,dX).

Lemma 6.2. For any ε ∈]0, 1[, the output landmarks set is ε
1+ε sfs-sparse, and

its size is within 2ld times the size of any geodesic εsfs-sample of X, where l =⌈
log2

3+3ε+2ε2

1−ε

⌉
and where d is the doubling dimension of (X,dX).

The influence of the doubling dimension d of X is illustrated in Figure 2 (right),
where the domain consists of two copies of the domain of Figure 2 (left), glued
together along the tips of their branches. The systolic feature size at any point of
X is at least half the perimeter of a hole, which is equal to 2 + 2

2k−1 . Consider
the sets P = {p, p′} and Q = {q1, · · · , qk}. For any point x ∈ X, the geodesic
distance from x to P is at most 2, as in the case of Figure 2 (left). As for the
geodesic distance from x to Q, it is at most 2 + 2

2k−1 . Both distances are bounded
from above by sfs(x), so that P and Q are geodesic sfs-samples of X. Now, for any

10This map is well-defined since dX(x, y) ≥ hε
1+ε

> 0 for all (x, y) ∈ K.
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qi ∈ Q, the geodesic distance from qi to any other qj is greater than half the length
of the shortest loop through qi that winds around a hole. Therefore, the geodesic
distance from qi to Q \ {qi} is greater than sfs(qi). It follows that Q is sfs-sparse.
However, the size of Q is k

2 times the size of P , where k is of the order of 2d, as
observed before Theorem 4.17.

Proof of Lemma 6.2. Let L be the output landmarks set. Given any two points
p 6= q ∈ L, assume without loss of generality that p was inserted in L before q.
Then, q does not belong to the open geodesic ball of center p and radius ε

1+ε sfs(p).
Hence, dX(p, p) ≥ ε

1+ε sfs(p), which is at least ε
1+ε min{sfs(p), sfs(q)}. Therefore,

L is ε
1+ε sfs-sparse.

Let now L′ ⊂ X be any geodesic εsfs-sample of X. Consider the function π :
L → L′ that maps each point of L to its nearest neighbor in L′ in the intrinsic
metric, breaking ties arbitrarily. We then have |L| =

∑
q∈L′ |π−1({q})|. Therefore,

to bound the size of L, it is enough to bound the size of each set π−1({q}).
Let q ∈ L′, and let p1, · · · , pk be the points of π−1({q}). All the points pi belong

to the path-connected component Xq of X that contains q, since L′ is a geodesic
εsfs-sample of X. If sfs(q) = +∞, then Xq is simply connected, and therefore the
algorithm picks only one point from Xq. It follows that |π−1(q)| = 1. Assume from
now on that sfs(q) < +∞, which means that Xq is not simply connected and hence
that the sfs(pi) are finite.

Since L′ is a geodesic εsfs-sample of L, for all i = 1, · · · , k we have dX(pi, q) <
ε sfs(pi), which is at most ε

1−ε sfs(q) since sfs is 1-Lipschitz in the intrinsic metric
(Lemma 3.3). Hence, the pi belong to the open geodesic ball of center q and
radius ε

1−ε sfs(q). Moreover, assuming without loss of generality that p1, · · · , pk
were inserted in L in this order, we have that, for all 1 ≤ i < j ≤ k, pj does
not belong to the open geodesic ball of center pi and radius ε

1+ε sfs(pi). Hence,
dX(pi, pj) ≥ ε

1+ε sfs(pi), which is at least ε
(1+ε)2 sfs(q) since dX(pi, q) ≤ ε sfs(pi)

and since sfs is 1-Lipschitz in the intrinsic metric. Therefore, the pi are centers of
pairwise-disjoint open geodesic balls of radius ε

2(1+ε)2 sfs(q), packed inside the open

geodesic ball of center q and radius
(

1
1−ε + 1

2(1+ε)2

)
ε sfs(q) = 3+3ε+2ε2

2(1−ε)(1+ε)2 ε sfs(q).

It follows from the previous paragraph that the size of π−1({q}) is bounded by the
maximum number of open geodesic balls of radius ε

2(1+ε)2 sfs(q) that can be packed

inside an open geodesic ball of radius 3+3ε+2ε2

2(1−ε)(1+ε)2 ε sfs(q). By Lemma 4.16, this

number is at most the minimum number n of geodesic balls of radius ε
2(1+ε)2 sfs(q)

that are necessary to cover a geodesic ball of radius 3+3ε+2ε2

2(1−ε)(1+ε)2 ε sfs(q). The

ratio between the two radii is 3+3ε+2ε2

1−ε , therefore n is at most
(
2d
)l

= 2ld, where

l =
⌈
log2

3+3ε+2ε2

1−ε

⌉
and d is the doubling dimension of (X,dX). Thus, for all point

q of L′, the size of π−1(q) is at most 2ld, which implies that |L| ≤ 2ld |L′|.

Note that the algorithm introduced in this section can also be used to generate
(uniform) ε-sparse geodesic ε-samples of X, for any input ε > 0. It suffices indeed
to remove the estimation of sfs from the algorithm, which is no longer needed, and
to consider open geodesic balls of radius ε instead of radius ε

1+ε sfs. The arguments
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of the proofs of Lemmas 6.1 and 6.2 still hold in this context, and the technical
details are slightly simpler.

6.3 Computing the homology of Lipschitz domains in the plane

Given a finite sampling L of some Lipschitz planar domain X, a variant of the
procedure of Section 6.1 can be used to build DX(L): grow geodesic balls around
the points of L at same speed, and report the intersections between the fronts. The
homology of DX(L) gives then the homology of X, provided that L is dense enough,
by Theorem 4.3. However, in many practical situations, X is only known through
a finite sampling W , which makes it hard to detect the intersections between more
than two fronts. In this type of discrete setting, it is relevant to replace the con-
struction of DX(L) by the ones of CWX,ν(L) or Rα(L), for some subset L ⊆ W of
landmarks, since these constructions only require to compare geodesic distances at
the points of L or W . The Betti numbers of DX(L) (and hence the one of X) can
then be obtained as the ranks of the homomorphisms induced at homology level by
the inclusions CWX,ν(L) →֒ CWX,ν′(L) or Rα(L) →֒ Rα′(L), for well-chosen parameters
ν, ν′ or α, α′, thanks to the results of Section 5.

More precisely, if we choose for instance to use witness complexes, then we can
select two integer parameters ν ≤ ν′ and build CWX,ν(L) and CWX,ν′(L) by means of
comparisons between the geodesic distances from the points of W to the points of L.
Then, using simplicial homology with coefficients in a field, which in practice will
be Z/2 – omitted in our notations, we have that for all k ∈ N the inclusion map i :
CWX,ν(L) →֒ CWX,ν′(L) induces a homomorphism i∗k : H∆

k (CWX,ν(L)) → H∆
k (CWX,ν′(L)).

By applying the persistence algorithm [Zomorodian and Carlsson 2005] to the filtra-
tion CWX,ν(L) →֒ CWX,ν′(L), we can compute the rank of i∗k. Now, thanks to Theorem
5.12, for any given choice of parameters ν′ > ν′ > 0, the rank of i∗k coincides with
the kth Betti number of X provided that W,L are dense enough (i.e. that δ, ε are
small enough). Thus, the homology of the domain can be inferred using witness
complexes, under sufficient sampling density.

7. APPLICATION TO SENSOR NETWORKS

We have implemented the algorithms of Section 6 in the context of sensor networks,
where the nodes do not have geographic locations, and where the intrinsic metric
is approximated by the shortest path length in the connectivity graph G = (W,E),
which is assumed to comply with the geodesic unit disk graph model. This means
that each node has a geodesic communication range of µ, so that two nodes w,w′ ∈
W are connected in the graph iff dX(w,w′) ≤ µ. All edges have a unit weight, and
we denote by dG the associated graph distance – also called hop-count distance.
This geodesic unit disk graph model is the analog of the standard Euclidean unit
disk graph model in the intrinsic metric.

Lemma 7.1. Assume that W is a geodesic δ-sample of X, with δ < µ
2 . Then,

for all nodes w,w′ ∈W , we have:

dX(w,w′)

µ
≤ dG(w,w′) ≤ dX(w,w′)

µ

(
1 +

4δ

µ
+

µ

dX(w,w′)

)

Proof. Let w,w′ ∈ W be two nodes of the graph. We first give an upper
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bound on dG. Consider a shortest path ζ from w to w′ inside X. We have |ζ| =
dX(w,w′). Let 0 = t0 ≤ t1 ≤ · · · ≤ tm−1 ≤ tm = 1 be distributed along I
in such a way that dX(ζ(ti), ζ(ti+1)) = µ − 2δ for all i = 0, · · · ,m − 2, while

dX(ζ(tm−1), ζ(tm)) ≤ µ − 2δ. Clearly, we have m =
⌈

dX(w,w′)
µ−2δ

⌉
. For all i, let

wi be a point of W closest to ζ(ti) in the intrinsic metric. Since W is a geodesic
δ-sample of X, we have w0 = ζ(t0) = w, wm = ζ(tm) = w′, and dX(wi, ζ(ti)) ≤
δ for any other i. It follows from the triangle inequality that: dX(wi, wi+1) ≤
dX(wi, ζ(ti)) + dX(ζ(ti), ζ(ti+1)) + dX(ζ(ti+1), wi+1) ≤ µ. Therefore, [wi, wi+1] is
an edge of the communication graph G, and thus to ζ corresponds a path γ in G.
Both ζ and γ connect w to w′ and are made of m pieces stitched together. Hence,

dG(w,w′) ≤ m =
⌈

dX(w,w′)
µ−2δ

⌉
, which is bounded from above by:

‰

dX(w, w′)

µ

„

1 +
4δ

µ

«ı

≤
dX(w, w′)

µ

„

1 +
4δ

µ

«

+1 =
dX(w, w′)

µ

„

1 +
4δ

µ
+

µ

dX(w, w′)

«

.

Let us now give a lower bound on dG. Let γ be any path from w to w′ in the
communication graph G. For any consecutive nodes wi, wi+1 along the path, we
have dX(wi, wi+1) ≤ µ since [wi, wi+1] is an edge of G. Therefore, by the triangle

inequality, γ must have at least
⌈

dX(w,w′)
µ

⌉
edges. Since this is true for any path γ

from w to w′ in G, dG(w,w′) ≥
⌈

dX(w,w′)
µ

⌉
≥ dX(w,w′)

µ .

Assume now that L is a ε
1+ε sfs-sparse geodesic εsfs-sample11 of X. Suppose that

δ << µ << ε << 1. Given a witness w ∈ W , every landmark p ∈ L that is not its
closest landmark satisfies: dX(w, p) = Ω(ε) >> µ, which implies that dG(w, p) is

an accurate approximation to dX(w,p)
µ , by Lemma 7.1. If now p is the landmark

closest to w, then we may as well have dX(w, p) << µ, but in this case we also have
dX(w, p) << dX(w, q) for all q ∈ L \ {p}, which implies that dG(w, p) < dG(w, q).
As a result, dG may change the order of the distances between the landmarks and w,
but interverted distances must have similar values. In this respect, we can say that
dX is a faithful approximation to dX , as it is known that the persistent homology of
the family of ν-witness complexes is stable under such small perturbations [Chazal
et al. 2009].

Systolic feature size computation. Given a node x, we estimate the geodesic dis-
tance of x to its cut-locus, which by Lemma 5.6 is equal to sfs(x). Wang et al.
[Wang et al. 2006] proposed a distributed algorithm for detecting the cut-locus,
which works as follows: the node x sends a flood message with initial hop count
1; each node receiving the message forwards it after incrementing the hop count.
Thus, every node learns its minimum hop count to the node x. Then, each pair
of neighbors check whether their least common ancestor (LCA) is at hop-count
distance at least d. If so, then they also check whether their two shortest paths to
the LCA contain nodes at least d away from each other (by looking at the d

2 -ring
neighborhoods of the nodes of the paths). Every pair satisfying these conditions is
called a cut pair. As proved in [Wang et al. 2006], every hole of perimeter greater

11One may as well assume that L is an ε-sparse geodesic ε-sample of X, in a uniform version of

the setting.
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than d yields a cut pair. Then, every cut node checks its neighbors, and if it has
the minimum hop count, then it reports back to x with the hop count value. Thus,
x gets a report from one node on each connected component of the cut-locus, and
learns the systolic feature size as the minimum hop value.

Landmarks selection and witness complex computation. The landmarks selection
procedure implements the incremental algorithm of Section 6.2 in a distributed
manner. A node has two states, covered and uncovered. A covered node lies inside
the geodesic ball of some landmark. Initially, all the nodes are uncovered. They
wait for different random periods of time, after which they promote themselves
to the status of landmark. Each new landmark floods the network, computes its
systolic feature size, and informs all the nodes within its geodesic ball to be covered.
Thus, every node eventually becomes covered or a landmark itself.

The geodesic witness complex is computed in a similar way as in [Fang et al. 2005].
The selected landmarks flood the network, and every node records its minimum hop
counts to them. With this information, it determines which simplices it witnesses.
A round of information aggregation collects all the simplices and constructs the
witness complex in a centralized manner. In a planar setting, where only the Betti
numbers β0 and β1 are non-zero, we only need to build the 2-skeleton of the witness
complex. Therefore, each node may store only its three nearest landmarks, and it
may avoid forwarding messages from other landmarks. This reduces the message
complexity drastically.

As for ν-witness complexes, they are computed with the exact same procedure,
except that each node stores its geodesic distances to its ν + 1 nearest landmarks.

Simulation results and discussion. Figures 4 through 8 present our simulation
results. We consider n sensor nodes randomly distributed in a Lipschitz planar
domain. Two nodes within unit Euclidean distance of each other are connected,
so that the resulting communication network is a unit disk graph. The average
node degree in this graph is denoted by d. The intrinsic metric is approximated
by the graph distance in the connectivity network, where each edge can be either
unweighted (hop-count distance) or weighted by its Euclidean length (weighted
graph distance). Our aim is to evaluate the dependency of the landmarks selection
and homology computation on various parameters. For the homology computation
we use the pair of complexes CWX (L) and CWX,ν(L), where L is the landmarks set and
ν is an integer parameter that ranges typically between 2 and 11. The inclusion
CWX (L) ⊆ CWX,ν(L) holds because we restrict our construction to the 2-skeleta of
the complexes. Figure 4 shows a typical example, with ε = 0.5 (a) and ε = 0.25
(b). In both cases, only the genuine 3 holes persist and are therefore identified as
non-trivial 1-cycles in the geodesic Delaunay triangulation.

• Nodes density. We vary the number of nodes from 217 to 355. The aver-
age degree remains the same. The result is shown in Figure 5. Again, the
persistent homology between the witness complex CWX (L) and the ν-witness
complex CWX,ν(L) gives the homology of the domain. Thus, only the intrinsic
geometry of the domain matters, not the scale of the network, as long as the
latter remains dense enough.
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• Landmarks density. Figure 6 shows our results on the same setup as above,
with ε = 0.85 (a) and ε = 0.15 (b). In the first case, only two holes are
captured, because of the low landmarks density. In the second case, three
non-genuine holes are not destroyed in the ν-witness complex, because the
value of the relaxation parameter ν is too small given the relatively low nodes
density. Increasing ν from 2 to 4 produces the correct answer (c). But setting
ν to too high a value (ν = 11, ε = 0.25) destroys some of the genuine holes
(d). Throughout our experiments, the algorithm produced correct results
with small values of ν (ν ≤ 4), provided that the nodes and landmarks sets
were reasonably dense. This demonstrates the practicality of our approach,
despite the large theoretical bounds stated in Theorems 4.14 and 4.17.

• Weighted graph distance vs. hop-count distance. Since the hop-count distance
is a poor approximation to the geodesic distance, the range of values of ε that
work fine with it is reduced. In Figure 7 for instance, the scheme works well
with ε = 0.5, but not with ε = 0.25, in contrast with the results of Figure 4.

• Packing strategy. Figure 8 shows some of our sampling results. It appears
that different packing strategies can produce samples of very different sizes,

as predicted by Lemma 6.1. Maximizing the ratio dX(q,L)
sfs(q) at each iteration

seems to be a very effective strategy in practice, but it is also time-consuming,
and it tends to choose landmarks near the boundaries of the domain, which
can be a quality or a defect, depending on the application considered.

8. CONCLUSION

We have introduced a new quantity, called the systolic feature size, and showed that
it is well-suited for the sampling and analysis of Lipschitz domains in the plane.
In particular, given a domain X and a landmarks set L that is sufficiently densely
sampled from X, the bound on the density depending on the systolic feature size
of X, we have proved that the geodesic Delaunay triangulation of L is homotopy
equivalent to X. The systolic feature size depends essentially on the global topology
of X, and it is rather insensitive to the local geometry. As a result, it enables to
have very sparse sets of landmarks, which makes it a convenient theoretical tool
for geometric data analysis. In this context, we have devised generic procedures
for estimating the systolic feature size and for generating geodesic εsfs-samples of
Lipschitz planar domains.

With more practical applications in mind, we have focused on the geodesic wit-
ness complex and its relaxed version, proving that these two complexes sandwich
the geodesic Delaunay triangulation under some conditions. As an application, we
have shown that it is possible to estimate the homology of a Lipschitz planar do-
main X from a finite set of landmarks L without actually building DX(L) explicitly,
by constructing CWX (L) and CWX,ν(L) and computing their persistent homology. To
give theoretical guarantees to this approach, we proved in the conference version
of the paper that the persistent homology between CWX (L) and CWX,ν(L) coincides
with the homology of DX(L), yet under some fairly stringent sampling conditions.
Our practical experiments in the context of sensor networks suggest that milder
conditions should be sufficient. Taking a different approach in the present paper,
we have uncovered some sufficient conditions that depend solely on the systolic
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feature size.

This work can be improved in several ways:
– One may look at bounded domains in higher-dimensional Euclidean spaces,

with applications in robotics and geometric data analysis. Note that our
approach relies on cycles bounding holes being non-contractible. In higher
dimensions, voids cannot stop cycles from contracting to a point, so our frame-
work does not apply as it is, and higher-dimensional homotopy groups need
to be considered.

– Another possible improvement would be to generate homology bases whose
elements isolate the various holes of X. There exists some work along this
line, but for a slightly different context [Freedman and Chen 2007].

– Finally, in order to make the approach fully practical, it would be necessary
to devise distributed variants of the procedures that build the simplicial com-
plexes and compute the persistent homology. Whether such variants exist is
still an open question at this time.
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(a) n = 217, d ≈ 7.66, ε = 0.5, ν = 2, weighted graph distance.

(b) n = 217, d ≈ 7.66, ε = 0.25, ν = 2, weighted graph distance.

Fig. 4. From left to right: witness complex, relaxed witness complex, persistence barcode
of the filtration.
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(a) n = 353, d ≈ 7.66, ε = 0.5, ν = 2, weighted graph distance.

(b) n = 353, d ≈ 7.66, ε = 0.25, ν = 2, weighted graph distance.

Fig. 5. Same setting as above, with a higher nodes density.
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(a) n = 353, d ≈ 7.66, ε = 0.85, ν = 2, weighted graph distance.

(b) n = 353, d ≈ 7.66, ε = 0.15, ν = 2, weighted graph distance.

(c) n = 353, d ≈ 7.66, ε = 0.15, ν = 4, weighted graph distance.

(d) n = 353, d ≈ 7.66, ε = 0.25, weighted graph distance. Left: witness complex; Middle:
ν = 2; Right: ν = 11.

Fig. 6. Effect of varying parameter ν, versus landmarks density.
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(a) n = 217, d ≈ 7.66, ε = 0.5, ν = 2, hop-count distance.

(b) n = 217, d ≈ 7.66, ε = 0.25, ν = 2, hop-count distance.

Fig. 7. Same setting as above, with the weighted graph distance replaced by the hop-count
distance.

(a) ε = 1
3
, random landmarks selection outside

S

p∈L Bp.

(b) ε = 1
3
, insertion of node q that maximizes dX (q,L)

sfs(q)
outside

S

p∈L Bp.

Fig. 8. Landmarks sets obtained by two different packing strategies, and their geodesic
witness complexes.
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A. APPENDIX – PROOF OF PROPOSITION 2.2

We use singular homology with real coefficients, so that our homology groups are
vector spaces over the field R – omitted in our notations. Please refer to [Hatcher
2001, Chapter 2] for an introduction to homology theory.

Proof of (i). The proof is by induction on k. The case k = 1 is trivially
true. Assume now that the result is true up to some k ≥ 1, and consider k + 1
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planar sets X1, · · · ,Xk+1 satisfying the hypotheses of Proposition 2.2 (i). Notice
that each path-connected component of X1 ∩ · · · ∩Xk+1 is the intersection of some

path-connected component Y of
⋂k
i=1Xi with Z = Xk+1, which by the induction

hypothesis are simply connected. Intuitively, the presence of a hole in the intersec-
tion Y ∩ Z would automatically imply the presence of a hole in Y or in Z. Thus,
the path-connected components of Y ∩ Z must be simply connected, since Y and
Z are.

Formally, since Y , Z and Y ∩ Z are ANR’s, the triad (Y ∪ Z, Y, Z) is excisive
and the Mayer-Vietoris long exact sequence holds:

· · · → H2(Y ∪ Z)
∂2→ H1(Y ∩ Z)

φ→ H1(Y ) ⊕H1(Z) → · · ·
Since Y and Z are simply connected, we have H1(Y ) = H1(Z) = 0, therefore
kerφ = H1(Y ∩ Z). By exactness, kerφ is also equal to im ∂2, which is trivial
since we have H2(Y ∪ Z) = 0, Y and Z being subsets of R2. As a result, we have
H1(Y ∩ Z) = 0. Since H1(Y ∩ Z) is the direct sum of the H1(C), for C ranging
over all the path-connected components of Y ∩ Z, we have H1(C) = 0 for each
path-connected component C of Y ∩Z. This implies that the fundamental group of
C is trivial: indeed, since C is a path-connected planar set, its fundamental group is
either free or uncountable, and therefore it is trivial if and only if its abelianization
(which is precisely H1(C)) is. As a conclusion, C is simply connected, which proves
the result for k + 1 and thereby concludes the induction.

To prove (ii), we need an easy intermediate result:

Lemma A.1. If X,Y are path-connected planar sets such that X ∩ Y 6= ∅, then
X ∪ Y is path-connected.

Proof. Let p ∈ X ∩ Y , and let q be any other point of X ∪ Y . If q ∈ X, then
there exists a path between p and q in X, which is path-connected. Otherwise, q lies
in Y , and there exists a path between p and q in Y , which is also path-connected.
Therefore, every point of X ∪Y is path-connected to p in X ∪Y , which is therefore
path-connected.

We can now prove (ii):

Proof of (ii). Assume that X ∩ Y is not empty. Intuitively, the topological
type of X ∪ Y partially determines the topological type of X ∩ Y , in the sense
that X ∪ Y would have a hole if ever X ∩ Y were not path-connected, since X,Y
themselves are path-connected. Formally, since X, Y and X ∩ Y are ANR’s, the
triad (X ∪ Y,X, Y ) is excisive and the Mayer-Vietoris long exact sequence holds:

· · · → H1(X ∪ Y )
∂1→ H0(X ∩ Y )

φ→ H0(X) ⊕H0(Y )
ψ→ H0(X ∪ Y )

∂0→ 0.

Since X ∩ Y 6= ∅, Lemma A.1 tells us that X ∪ Y is path-connected, therefore
dimH0(X ∪ Y ) = 1. This implies that dim ker ∂0 = 1, and hence that rank ψ =
dim ker ∂0 = 1, by exactness. By the homomorphism theorem, we have dim kerψ =
dim(H0(X) ⊕ H0(Y )) − rank ψ, which is equal to 1 since X and Y are path-
connected. Hence, by exactness, rank φ = dim kerψ = 1. Moreover, since by
assumption X ∪Y is simply connected, we have dimH1(X ∪Y ) = 0, which implies
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that rank ∂1 = 0. By exactness, we have dim kerφ = rank ∂1 = 0. Hence, by the
homomorphism theorem, dimH0(X ∩ Y ) = dim kerφ + rank φ = 1, which means
that X ∩ Y is path-connected.
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