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We introduce a new feature size for bounded domains in the pla ne endowed with an intrinsic metric.
Given a point x in a domain X , the systolic feature size of X at x measures half the length of the
shortest loop through x that is not null-homotopic in X . The resort to an intrinsic metric makes
the systolic feature size rather insensitive to the local ge ometry of the domain, in contrast with
its predecessors (local feature size, weak feature size, homology feature size). This reduces the
number of samples required to capture the topology of X , provided that a reliable approximation
to the intrinsic metric of X is available. Under su�cient sampling conditions involvin g the systolic
feature size, we show that the geodesic Delaunay triangulat ion DX (L ) of a �nite sampling L is
homotopy equivalent to X . Under similar conditions, DX (L ) is sandwiched between the geodesic
witness complex CW

X (L ) and a relaxed version CW
X;� (L ). In the conference version of the paper,

we took advantage of this fact and proved that the homology of DX (L ) (and hence the one of X )
can be retrieved by computing the persistent homology betwe en CW

X (L ) and CW
X;� (L ). Here, we

investigate further and show that the homology of X can also be recovered from the persistent
homology associated with inclusions of type CW

X;� (L ) ,! C W
X;� 0(L ), under some conditions on the

parameters � � � 0. Similar results are obtained for Vietoris-Rips complexes in the intrinsic metric.
The proofs draw some connections with recent advances on the front of homology inference from
point cloud data, but also with several well-known concepts of Riemannian (and even metric)
geometry. On the algorithmic front, we propose algorithms f or estimating the systolic feature size
of a bounded planar domain X , selecting a landmark set of su�cient density, and computin g the
homology of X using geodesic witness complexes or Rips complexes.
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1. INTRODUCTION

There are many situations where a topological domain or spaceX is known to us
only through a �nite set of samples. Understanding global topological and geomet-
ric properties of X through its samples is important in a variety of applications,
including surface parametrization in geometry processing, non-linear dimensional-
ity reduction for manifold learning, routing and information discovery in sensor
networks, etc. Recent advances in geometric data analysis and in sensor networks
have made an extensive use of alandmarking strategy. Given a point cloud W
sampled from a hidden domain or spaceX , the idea is to select a subsetL � W
of landmarks, on top of which some data structure is built to encode the geometry
and topology of X at a particular scale. Examples in data analysis include the
topology estimation algorithm of [de Silva and Carlsson 2004] and the multi-scale
reconstruction algorithm of [Boissonnat et al. 2007; Guibas and Oudot 2007].Both
algorithms rely on the structural properties of the witness complex, a data struc-
ture speci�cally designed by de Silva [de Silva 2008] for use with the landmarking
strategy. Examples in sensor networks include the GLIDER routing scheme and its
variants [Fang et al. 2005; Fang et al. 2006]. The idea underlying these techniques
is that the use of sparse landmarks at di�erent density levels enables us to reduce
the size of the data structures, and to perform calculations on the input data set
at di�erent scales. Two questions arise naturally: (1) how many landmarks are
necessary to capture the invariants of a given objectX at a given scale? (2) what
data structures should be built on top of them?

Manifold sampling issues have been intensively studied in the past, independently
of the context of landmarking. The �rst results in this vein were obtained by
Amenta, Bern, and Eppstein, for the case whereX is a smoothly-embedded closed
curve in the plane or surface in 3-space [Amenta and Bern 1999; Amenta et al. 1998].
Their bound on the landmarks density depends on the local distance to the medial
axis of R2 nX (the local feature size), and the data structure built on top of L is the
so-calledrestricted Delaunay triangulation. Several extensions of their result have
been proposed, to deal with noisy data sets [Dey and Goswami 2006], sampled from
closed manifolds of arbitrary dimensions [Boissonnat et al. 2007; Cheng et al.2005],
smoothly or non-smoothly embedded in Euclidean spaces [Boissonnat and Oudot
2006]. In parallel, others have focused on unions of congruent Euclidean balls and
their topological invariants. In a seminal paper [Niyogi et al. 2008], Niyogi et al.
proved that, if X is a smoothly-embedded closed manifold andL a dense enough
sampling ofX , then, for a wide range of values ofr , the union of the open Euclidean
balls of radius r about the points of L deformation retracts onto X .

The above results only hold for manifolds without boundary. The presence of
boundaries brings in some new issues and challenges. An interesting class of mani-
folds with boundaries is the one of bounded domains inRn . These naturally arise
in the con�guration spaces of motion planning problems in robotics, in monitoring
complex domains with sensor networks, and in many other contexts where natural
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Fig. 1. Left and center: two Lipschitz domains with very di�e rent weak feature sizes (wfs), but
similar systolic feature sizes. Right: a geodesic Voronoi e dge with non-zero Lebesgue measure.

obstacles to sampling certain areas exist. By studying the stability of distance func-
tions to compact sets in Rn , Chazal and Lieutier [Chazal and Lieutier 2007] have
extended the sampling theory to a much larger class of objects, including some
non-smooth non-manifold compact sets. Their bound on the landmarks density
depends on the so-calledweak feature sizeof X , de�ned as the smallest positive
critical value of the Euclidean distance to @X. This mild sampling condition is
shown to be su�cient for the recovery of the homology and homotopy groups of
X . Although the results of [Chazal and Lieutier 2007] are valid in a very general
setting, in many cases the weak feature size is small compared to the size of the
topological features ofX , because it is bound to extrinsic quantities | see Figure
1 (center). As a result, many landmarks are wasted satisfying the samplingcon-
dition of [Chazal and Lieutier 2007], whereas very few would su�ce1 to capture
the topology of X . In practice, this results in a considerable waste of memory and
computation power.

The case of bounded domains suggests the use of an intrinsic metric on the do-
main, instead of the extrinsic metric provided by the embedding. This is essential
for certain classes of applications, such as sensor networks, where node location in-
formation may not be available and only the geodesic distance can be approximated
via wireless connectivity graph distances. Intrinsic metrics have been studied in the
context of Riemannian manifolds without boundary [Leibon and Letscher 2000] and,
from a more computational point of view, in the context of the so-called intrinsic
Delaunay triangulations (iDT) of triangulated surfaces without boundary [Bob enko
and Springborn 2007]. 2-D triangle meshes in 3-D that happen to coincide with
the iDT of their vertices are known to have many attractive properties for PDE
discretization [Fisher et al. 2006], and generating such iDT meshes is a topic of
considerable interest in geometry processing [Dyer et al. 2007].

Our contributions. In the paper we focus on the special case of bounded domains
in the plane { a setting which already raises numerous questions and �nds important

1Here we are only discussing the number of landmarks, and not t he number of sample points.
Indeed, for our approach to work in practice, an accurate app roximation to the geodesic distance
in X must be provided, which may be given for free in some situatio ns (e.g. in robotics), but
which may as well require many sample points in other cases ( e.g. in sensor networks, see Section
7). In all situations, the main advantage of our approach is t o build data structures on top of a
very small set of landmarks.
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applications in sensor networks. We make the novel claim that resorting to an
intrinsic metric instead of the Euclidean metric can result in signi�cant reductio ns
in terms of the number of landmarks required to recover the homotopy type of a
bounded domain { an appealing fact in the context of resource-constrained nodes
used in sensor networks. To this end, we introduce a new quantity, called thesystolic
feature size, or sfs for short, which measures the size of the smallest topological
feature (hole in this case) of the considered planar domainX . Speci�cally, given a
point x 2 X , sfs(x) is de�ned as half the length of the shortest loop throughx that
is not null-homotopic in X { see Figure 1 (left and center) for an illustration. In
particular, sfs(x) is in�nite when x lies in a simply connected component ofX . The
term systolic feature sizeis coined after the concept ofsystole, �rst introduced by
Loewner around 1949 and later developed by Berger, Gromov and others [Gromov
1996]. The systole atx is the length of the shortest non-contractible loop inX that
passes throughx, therefore it is precisely equal to 2sfs(x).

In contrast with previous quantities, sfs depends essentially on the global topology
of X , and it is only marginally inuenced by the local geometry of the domain
boundary. Under the assumption that X has Lipschitz boundaries (the actual
Lipschitz constant being unimportant in our context), we show that sfs is well-
de�ned, positive, and 1-Lipschitz in the intrinsic metric. Moreover, if L is a geodesic
"sfs-sample ofX , for some " � 1

3 , then the cover of X formed by the geodesic
Voronoi cells of the points ofL satis�es the conditions of the Nerve theorem [Borsuk
1948; Wu 1962], and therefore its dual Delaunay complexDX (L ) is homotopy
equivalent to X . By geodesic"sfs-sample ofX , we mean that every point x 2 X is
at a �nite geodesic distance less than" � sfs(x) to L . In the particular case whenX
is simply connected, our sampling condition only requires thatL has at least one
point on each connected component ofX , regardless of the local geometry ofX .
In the general case, our sampling condition can be satis�ed by placing a constant
number of landmarks around each hole ofX , and a number of landmarks in the
remaining parts of X that is logarithmic in the ratio of the geodesic diameter of
X to the geodesic perimeter of its holes. This is rather independent of the local
geometry of the boundary@Xand can result in selecting far fewer landmarks than
required by any of the earlier sampling conditions that guarantee topology recovery.

The systolic feature size is closely related to the concept of injectivity radius in
Riemannian geometry. We stress this relationship in the paper, by showing that,
for all point x 2 X , sfs(x) is equal to the geodesic distance fromx to its cut-locus
in X . This result also suggests a simple procedure for estimating sfs(x) at any
point x 2 X . Using this procedure, we devise a greedy algorithm for generating
"sfs-samples of any given Lipschitz planar domainX , based on a packing strategy.
The size of the output lies within a constant factor of the optimal, the constant
depending on the doubling dimension ofX . Our algorithm relies on two oracles
whose actual implementations depend on the application considered. We provide
some implementations in the context of sensor networks, based on pre-existing
distributed schemes [Fang et al. 2005; Wang et al. 2006].

We also focus on the structural properties of the so-calledgeodesic witness com-
plex, an analog of the usual witness complex in the intrinsic metric. In many appli-
cations, computing DX (L ) can be hard, due to the di�culty of checking whether
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three or more geodesic Voronoi cells have a common intersection. This is especially
true in sensor networks, where the intersections between the Voronoi cells of the
landmarks can only be sought for among the set of nodesW , due to the lack of
further information on the underlying domain X . Therefore, it is convenient to
replace DX (L ) by the geodesic witness complexCW

X (L ), whose computation only
requires us to perform geodesic distance comparisons, instead of locating points
equidistant to multiple landmarks. Assuming that the geodesic distance can be
computed exactly, we prove an analog of de Silva's theorem [de Silva 2008], which
states that CW

X (L ) is included in DX (L ) under some mild sampling conditions. We
also prove an analog of Lemma 3.1 of [Guibas and Oudot 2007], which states that
a relaxed version ofCW

X (L ) contains DX (L ) under similar conditions. The relax-
ation consists in allowing a simplex to be� -witnessed byw if its vertices belong to
the � + 1 nearest landmarks of w, and the relaxed complex is denoted byCW

X;� (L ).
Unfortunately, as pointed out in [Guibas and Oudot 2007], it is often the case that
neither CW

X (L ) nor CW
X;� (L ) coincides with DX (L ). In the conference version of this

paper [Gao et al. 2008], we took advantage of the fact thatDX (L ) is sandwiched
between CW

X (L ) and CW
X;� (L ), and we proved that the homology of DX (L ) (and

hence the one ofX ) can be retrieved by computing the persistent homology be-
tween CW

X (L ) and CW
X;� (L ). Thus, the homology of X can be recovered without the

need for constructingDX (L ) in practice. The drawback of the approach is that the
proof of correctness requires the sampling density to be driven by the distance to
the medial axis of R2 n X , which can be arbitrarily small compared to the systolic
feature size and requires some more stringent conditions on the regularity of the
domain boundary [Gao et al. 2008].

In the present paper we consider a di�erent approach, based on recent advances on
the front of homology inference from point cloud data [Chazal and Oudot 2008]. Fo-
cusing on the one-parameter family of relaxed geodesic witness complexesCW

X;� (L ),
where parameter� ranges overN, we show that this family is interleaved with the
one-parameter family of �Cech complexesC� (L ), where parameter� ranges overR+ .
The interleaving of the two families of spaces implies that the persistent homological
information they carry is similar [Chazal et al. 2009]. Now,C� (L ) is the nerve of the
union of the open geodesic balls of same radius� about the points of L , and that
its homology is related to the one of its dual union of balls via the Nerve theorem.
This union of geodesic balls covers the whole domainX and therefore shares the
same topological invariants as long as� is large enough. Thus, via unions of open
geodesic balls and their dual�Cech complexes, a connection is drawn between the
homology ofX and the persistent homology of the one-parameter family of relaxed
witness complexes. The weak point of this connection resides in the application of
the Nerve theorem, which requires the geodesic balls to satisfy certain local condi-
tions detailed in De�nition 4.4 below. These conditions are automatically satis�ed
by small enough geodesic balls on Riemannian manifolds. Nevertheless, Lipschitz
planar domains are not Riemannian manifolds, and the main point of our analysis
is to show that geodesic balls of radii at most a fraction of the systolicfeature
size do satisfy the conditions of the Nerve theorem (Lemma 5.5). Our proof draws
connections between the systolic feature size and the distance to the cut locus on
the one hand (Lemma 5.6), as well as between Lipschitz planar domains and a class
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of length spaces calledAlexandrov spaceson the other hand (Theorem 5.10).
The paper is organized as follows: after recalling the necessary background in

Section 2, we introduce the systolic feature size and give some of its basicproperties
in Section 3. Then, in Section 4, we study the topological structure of the geodesic
Delaunay triangulation. We also relate the geodesic Delaunay triangulation to the
geodesic witness complex. In Section 5 we turn the focus to the study of small
geodesic balls in Lipschitz planar domains, from which theoretical guarantees on
the homological structure of geodesic witness complexes are derived. In Section 6,
we detail our algorithms for sampling Lipschitz domains in the plane, estimating
their systolic feature size, and computing their homology. These algorithms are
adapted to the sensor networks setting in Section 7.

2. BACKGROUND AND DEFINITIONS

The ambient space isR2, endowed with the Euclidean metric, noted dE . Given
a subsetX of R2, �X , X , and @X, stand respectively for the interior, the closure,
and the boundary of X . For all x 2 R2 and all r 2 R+ , BE (x; r ) denotes the
open Euclidean ball of centerx and of radius r . We also set I = [0 ; 1]. Finally,
S1, R � f 0g, and R2

+ , denote respectively the unit circle, the abcissa line, and the
closed upper half-plane.

2.1 Algebraic tools

Paths and loops.Given a subsetX of R2, a path in X is a continuous mapI ! X .
For all a; b 2 I (a � b),  j [a;b] denotes the paths 7!  (a + s(b� a)), which can be
seen as the restriction of to the segment [a; b]. In addition, � denotes the path
s 7!  (1 � s), which can be seen as the inverse of . Given two paths ;  0 : I ! X
such that  (1) =  0(0),  �  0 denotes their concatenation, de�ned by � 0(s) =  (2s)
for 0 � s � 1

2 and  �  0(s) =  0(2s � 1) for 1
2 � s � 1. A spaceX where all pairs

of points are connected by at least one path is said to bepath-connected.
Given a point x 2 X , a loop through x in X is a path  in X that starts and ends

at x, i.e. such that  (0) =  (1) = x. For simplicity, we write  : (I; @I) ! (X; x ).
An equivalent representation2 for  is as a continuous map from the unit circle to
X , and in this case we write  : (S1; 1) ! (X; x ) to specify that  (1) = x. The
concatenation operation gives a monoid structure to the set of loops through a
same basepointx 2 X , the identity element being the constant loop I ! f xg (or,
equivalently, S1 ! f xg).

Homotopy of maps and spaces.Given two topological spacesX and Y , two con-
tinuous mapsf; g : X ! Y are said to behomotopic if there exists a continuous map
F : X � I ! Y such that, for all x 2 X , we haveF (x; 0) = f (x) and F (x; 1) = g(x).
The map F is called ahomotopy betweenf and g. It can be viewed as a path be-
tween f and g in the space of continuous maps fromX to Y . Two spacesX and
Y are said to be homotopy equivalentif there exist two maps f : X ! Y and
g : Y ! X , such that g � f is homotopic to the identity in X and f � g is homo-
topic to the identity in Y . Homotopy equivalent spaces have similar topological

2The choice of a particular representation for loops depends on the context, and it is always made
explicit in the sequel.

ACM Journal Name, Vol. V, No. N, Month 20YY.



Geodesic Delaunay Triangulations in Bounded Planar Domains � 7

invariants, such as Betti numbers, homology groups, or homotopy groups.
Suppose that a homotopyF : X � I ! Y between two mapsf; g : X ! Y keeps a

certain subspaceX 0 � X �xed, that is: 8x0 2 X 0, 8t 2 I , F (x0; t) = f (x0) = g(x0).
Then, F is called a homotopy betweenf and g relative to X 0, and f; g are said to be
homotopic relative to X 0. A special case of interest is whenX = S1 and X 0 = f 1g.
Then, the mapsf and g are two loops through a same basepointy 2 Y that remains
�xed throughout the homotopy F . If g is the constant loop S1 ! f yg, then f is
said to be null-homotopic in Y . The relation of homotopy relative to @Ibetween
loops through a same basepointy 2 Y is an equivalence relation. The quotient
monoid, endowed with the binary operation induced by concatenation, has in fact
a group structure, and it is called the fundamental groupof Y at basepoint y. If Y
is path-connected, then its fundamental group is independent (up to isomorphism)
of the chosen basepoint. And if moreover the fundamental group is trivial (i.e. all
loops through any �xed basepoint are homotopic to the constant loop), thenY is
said to be simply connected. We refer the reader to Chapter 1 of [Hatcher 2001] for
further reading on homotopy theory with �xed basepoint.

Degrees of loops.To any loop  : S1 ! S1 in the unit circle corresponds a unique
integer deg 2 Z, called the degreeof  , such that deg( �  0) = deg  + deg  0 for
all loops ;  0 : S1 ! S1, and that deg  = 0 for any constant map  : S1 ! f xg.
It is easily seen that deg � = � deg . Moreover, it can be proved that the degree
is invariant over each homotopy class of loops inS1, so that deg encodes the
homotopy class of the loop { seee.g. [Hatcher 2001, Theorem 1.7]. We can de�ne
a similar concept for loops in the plane. Given a loop : S1 ! R2 and a point
x 2 R2 n  (S1), consider the map x = � x �  : S1 ! S1, where � x : R2 n f xg ! S1

is the radial projection onto the unit circle centered at x, de�ne by � x (y) = y � x
dE (y;x ) .

Since � x is continuous over R2 n f xg, the map  x is a continuous loop in S1. We
then de�ne the degree of with respect to x as: degx  = deg  x . It is also known
as the winding number of  about x. Given a point x 2 R2, if � is a homotopy
between two loops;  0 in R2 n f xg, then � x � � is a homotopy between � x �  and
� x �  0 in S1, hence we have degx  = deg(� x �  ) = deg( � x �  0) = degx  0.

Corollary 2.1. For any point x 2 R2 and any loops;  0 : S1 ! R2 n f xg
that are homotopic in R2 n f xg, we havedegx  = degx  0. In particular, if  or  0

is constant, then degx  = degx  0 = 0 .

Other useful results. We now recall two standard results of algebraic topology
that relate the unions and intersections of planar sets that areabsolute neighborhood
retracts (ANR). A subset X of a topological spaceY is a neighborhood retract if
there exist an open setX � 
 � Y and a retraction 
 ! X , i.e. a continuous map

 ! X whose restriction to X is the identity. A topological space X is an ANR
if every embedding ofX as a closed subset of a normal space is a neighborhood
retract [Borsuk 1967]. The proofs of the two results are given in Appendix A for
completeness.

Proposition 2.2.
(i) Let X 1; � � � ; X k be compact planar sets such that the intersection of any ar-

bitrary collection of the X i 's is a non-empty ANR. If X 1; � � � ; X k are simply
connected, then so are the path-connected components ofX 1 \ � � � \ X k .
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(ii) Let X; Y be compact planar sets such thatX , Y and X \ Y are non-empty
ANR's. If X; Y are path-connected andX [ Y is simply connected, thenX \ Y
is path-connected.

2.2 Length structures

Most of the material of this section comes from Chapter 2 of [Burago et al. 2001].
The Euclidean spaceR2 is naturally endowed with a length structure, where admis-
sible paths are all continuous pathsI ! R2, and where the length of a path  is
de�ned by:

j j = sup

(
n � 1X

i =0

dE ( (t i );  (t i +1 )) ; n 2 N; 0 = t0 � t1 � � � � � tn = 1

)

; (1)

where the supremum is taken over all decompositions ofI into an arbitrary (�nite)
number of intervals. We clearly have j� j = j j. However, j j is not always �nite.
Take for instance Koch's snowake, a fractal curve de�ned as the limit of a sequence
of polygonal curves in the plane. It can be easily shown that, at each iteration of
the construction, the length of the curve is multiplied by 4

3 , so that the length of the
limit curve is in�nite. Therefore, we have j � j : C0(I; R2) ! R+ [ f + 1g . When the
length of  is �nite, we say that  is a recti�able path. Note also that j � j may not be
continuous with respect to the uniform topology over C0(I; R2). Take for instance
the sequence of piecewise-linear curves i : I ! R2 de�ned by  i (t) =

�
t; t mod 1

i

�

if bt
i c is even, and i (t) =

�
t; 1

i � (t mod 1
i )

�
if bt

i c is odd. This sequence converges
uniformly to the unit segment t 7! (t; 0), yet every  i has length

p
2 therefore the

limit length is
p

2. Nevertheless,j � j is lower semi-continuous [Burago et al. 2001,
Proposition 2.3.4], which means that the limit length (here,

p
2), if it exists, must

be at least the length of the limit path (here, 1).
Any subset X of R2 inherits a length structure from R2, where the class of

admissible paths isC0(I; X ), and where the length function is the same as above.
We de�ne an intrinsic (or geodesic) metric dX over X as follows:

8x; y 2 X; dX (x; y) = inf fj  j;  : I ! X;  (0) = x;  (1) = yg; (2)

where the in�mum is taken over all paths in X connecting x and y. It is clear
that we have dX (x; y) = + 1 whenever x; y belong to di�erent path-connected
components ofX . However, the converse is not always true. Take for instance
a set X made of two disjoint disks connected by Koch's snowake: ifx; y belong
to di�erent disks, then all curves connecting x and y go through Koch's snowake
and therefore have in�nite length. This raises a critical issue, which is that the
topology induced by dX on X { also called intrinsic topology { may not always
coincide3 with the topology induced by dE { also called Euclidean topology. This
is a problem since the geodesic Voronoi diagram is closely related to the intrinsic
metric dX , whereas the goal is to capture the topology ofX for the extrinsic metric

3 In particular, a map  : I ! X that is continuous for the Euclidean topology may not always
be continuous for the intrinsic topology. For instance, for any point x 2  (I ) that lies on Koch's
snowake, the geodesic distance between x and any other point of X is in�nite, which implies
that, for any r > 0, the open geodesic ball B X (x; r ) is reduced to f xg, and hence its pre-image
through  is a closed subset of I , and not an open subset of I .
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dE . In order to bridge the gap between the two topologies, we will make further
assumptions on the subspaceX in the next section.

Another issue is that some pairs of pointsx; y 2 X may not have a shortest
path connecting them, i.e. a path  : I ! X such that  (0) = x,  (1) = y, and
j j = d X (x; y). This means that the in�mum in Eq. (2) is not always a minimum.
As an example, take forX the closed unit diskBE (0; 1), and remove the closed disk
BE (0; 1

2 ) from it: points ( � 1; 0) and (1; 0) have no shortest path connecting them
in X . Nevertheless, whenX is compact, the following variant of the Arzela-Ascoli
theorem applies:

Theorem 2.3 Thm. 2.5.14 and Prop. 2.5.19 of [Burago et al. 2001 ]. If
X is compact, then every sequence of paths with uniformly bounded length contains a
uniformly converging subsequence. As a consequence, everypair of points connected
by a recti�able path in X has a shortest path inX .

2.3 Lipschitz domains in the plane

To deal with the issues of the previous section, we make further assumptions on
our domain X .

Definition 2.4. A Lipschitz domain in the plane is a compact embedded topo-
logical 2-submanifold of R2 with Lipschitz boundary. Formally, it is a compact
subset X of R2 such that, for all points x 2 @X, there exists a neighborhood
Vx in R2 and a Lipschitz homeomorphism� x : R2 ! R2, such that � x (0) = x,
� x (R � f 0g) \ Vx = @X\ Vx , and � x (R2

+ ) \ Vx = X \ Vx .

Observe that, for any neighborhoodV 0
x of x included in Vx , we also have� x (0) = x,

� x (R � f 0g) \ V 0
x = @X\ V 0

x , and � x (R2
+ ) \ V 0

x = X \ V 0
x . Therefore, Vx can be

assumed to be arbitrarily small. Moreover, since� x (0) = x and � x is continuous,
� � 1

x (Vx ) is a neighborhood of the origin inR2, hence it contains an open Euclidean
disk B about the origin. By taking � (B ) as the new neighborhoodVx around x,
we ensure that � � 1

x (X \ Vx ) is the intersection of R2
+ with the open disk B . This

makes the pre-image ofX \ Vx through � x convex.
The concept of Lipschitz domain is related to the classical notion of smooth sub-

manifold with boundary { see e.g. Chapter 8 of [Lee 2002], the only di�erence being
that the local charts � are only required to be Lipschitz, and notC1-continuous. As
a result, the boundary of X may not be smooth. This makes the class of Lipschitz
domains quite large: in particular, it contains all smooth or polygonal domains.

Since a Lipschitz domainX is a compact subset ofR2, Theorem 2.3 applies, and
therefore any pair of points ofX connected by a recti�able path in X has a shortest
path in X . Moreover, according to Rademacher's theorem [Federer 1996,x3.1.6],
the boundary @Xis di�erentiable almost everywhere. But the property of Lipschitz
domains that is most interesting to us is that their boundaries are recti�able, since
they are locally images of Lipschitz maps [Federer 1996,x2.10.11]. This enables
to show that the pathological cases mentioned in Section 2.2 cannot occur with a
Lipschitz domain4, as stated in Theorem 2.5 below.

4 In particular, the boundary of a Lipschitz domain cannot coi ncide locally with a fractal curve
such as Koch's snowake, whose length is in�nite.
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Bibliographical note. Lipschitz domains are sometimes calledweakly Lipschitz
manifolds [Axelsson and McIntosh 2004] in the literature, as opposed tostrongly
Lipschitz manifolds [Boissonnat and Oudot 2006], for which it is further assumed
that the boundary of the domain coincides locally with the graph of some univariate
Lipschitz function. Notice also that, in contrast with [Boissonnat and Oudot 2006],
we do not make any assumption on the Lipschitz constants of the local charts. All
we need to know is that the latter are Lipschitz, so that their images are recti�able
[Federer 1996,x2.10.11].

Theorem 2.5. If X is a Lipschitz domain in the plane, then the intrinsic topol-
ogy coincides with the Euclidean topology onX .

Proof. First, Eq. (2) implies that d E (x; y) � dX (x; y) for all x; y 2 X . It
follows that every open Euclidean ball centered inX contains the open geodesic
ball of same center and same radius. As a consequence, every open set in (X; dE )
is also open in (X; dX ). This means that the intrinsic topology is �ner than the
Euclidean topology. To show that, conversely, the Euclidean topology is also �ner
than the intrinsic topology, we will use the following technical result:

Claim 2.5.1. If X is a Lipschitz domain in the plane, then, for all point x 2 X ,
the map y 7! dX (x; y) is continuous for the Euclidean topology onX .

Proof. Let x; y 2 X . We will prove that, for all " > 0, there exists a� > 0 such
that 8y0 2 BE (y; � ) \ X , jdX (x; y0) � dX (x; y)j < " .

- Assume �rst that y 2 �X . Then there exists "0 > 0 such that BE (y; "0) �
�X . Let � = min f "; " 0g. For all y0 2 BE (y; � ), the line segment [y; y0] lies in �X ,
hence dX (y; y0) = d E (y; y0) < " . It follows then from the triangle inequality that
jdX (x; y0) � dX (x; y)j � dX (y; y0) < " .

- Assume now that y 2 @X. There exists a neighborhoodVy of y in R2 such
that X \ Vy = � y (R2

+ ) \ Vy , for some Lipschitz homeomorphism� y . Let cy be
the Lipschitz constant of � y . As mentioned after De�nition 2.4, we can assume
without loss of generality that � � 1

y (X \ Vy ) is the intersection of R2
+ with an open

disk centered at the origin of radius at most "
cy

. Then, for all point y0 2 X \ Vy ,

consider the path  : s 7! � y
�
s � � 1

y (y0)
�
. Since � � 1

y (X \ Vy ) is convex,  (I ) is
included in X \ Vy , and hence in X . Moreover, the length of the line segment
[0; � � 1

y (y0)] is less than "
cy

, hence the length of  is less than " , since � y is cy -
Lipschitz [Federer 1996,x2.10.11]. It follows that dX (y; y0) < " , which implies that
jdX (x; y0) � dX (x; y)j � dX (y; y0) < " , by the triangle inequality. This concludes
the proof of the claim.

We can now show that the Euclidean topology is �ner than the intrinsic topology
on X , which will end the proof of Theorem 2.5. Consider any open geodesic ball
BX (x; " ), where x 2 X and " > 0. Observe that BX (x; " ) = d X (x; :) � 1([0; " [),
where dX (x; :) denotes the map y 7! dX (x; y). Since [0; " [ is open in R+ and
dX (x; :) is continuous for the Euclidean topology,BX (x; " ) is open in (X; dE ). And
since the open geodesic balls form a basis for the intrinsic topology, everyopen set
in (X; dX ) is also open in (X; dE ). This means that the Euclidean topology is �ner
than the geodesic topology onX .
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From now on, X will be endowed with the Euclidean topology by default. Thanks
to Theorem 2.5, this topology will coincide with the intrinsic topology wheneverX
is a Lipschitz domain.

The next result states that every path in X can be approximated within any
accuracy by a homotopic recti�able path. This implies that the homotopy classes
of paths in X coincide with the homotopy classes of recti�able paths. In particular,
every pair of points lying in the same path-connected component ofX is connected
by a recti�able path, and hence it has a shortest path in X , by Theorem 2.3.

Lemma 2.6. For any continuous path  : I ! X and any real number " > 0,
there exists a recti�able path  " : I ! X , homotopic to  relative5 to @Iin X , such
that maxs2 I mint 2 I dX ( " (s);  (t)) < " .

The quantity max s2 I mint 2 I dX ( " (s);  (t)) is nothing but the semi-Hausdor� dis-
tance from  " (I ) to  (I ) in the intrinsic metric. The basic idea of the proof is to
de�ne  " as a piecewise-linear curve whose vertices lie on (I ). This is possible
far away from the boundary of X , but not in its vicinity, where the shape of @X
might prevent  " (I ) from being included in X . However, in the vicinity of @X, we
can map  (I ) to parameter space through one of the local charts� introduced in
De�nition 2.4. Since the pre-image ofX is convex, we can de�ne a piecewise-linear
curve approximating � � 1( (I )) in parameter space, which we then map back to a
recti�able curve in X through � . The rest of the section is devoted to the details
of the proof and can therefore be skipped in a �rst reading.

Proof. Let � be an arbitrary positive real number. According to De�nition 2.4,
for all x 2 @X, there exists some neighborhoodVx � R2 such that, inside Vx , X
coincides with the image ofR2

+ through some Lipschitz homeomorphism� x . As
mentioned after De�nition 2.4, we can assume without loss of generality thatVx

is included in BE (x; �
2 ), and that the pre-image of X \ Vx through � x is convex.

Consider the collection of open setsf Vx gx 2 @X. This is an open cover of@X, which
is compact, hence there existx1; � � � ; xk such that Vx 1 [ � � � [ Vx k covers@X. For
simplicity of notations, for all i = 1 ; � � � ; k we renameVx i as Vi and � x i as � i . The
open setsVi will be used to shield the boundary @X.
For all s 2 I , we consider an open Euclidean diskBs about  (s), of radius r s de�ned
as follows:

� if BE ( (s); �
2 ) \ @X= ; , then r s = �

2 ;
� else, if  (s) =2 @X, then r s = d E ( (s); @X), where dE ( (s); @X) > 0 denotes

the Euclidean distance of (s) to the closed set@X;
� else, we have (s) 2 @X, therefore  (s) belongs to some neighborhoodVi ,

and we chooser s > 0 such that Bs � Vi .
By construction, we have Bs � �X if  (s) =2 @X, and Bs � Vi for somei otherwise.
Since is continuous, the pre-image of (I ) \ Bs through  is an open subset ofI .
Therefore, it is a disjoint union of open intervals in I . Consider the collection of all
these open intervals, fors spanning I . This collection of intervals forms an open
cover of I , which is compact, hence there arel intervals in the collection, I 1; � � � ; I l ,

5As mentioned in Section 2.1, this means that the homotopy bet ween  " and  is constant over
@I= f 0; 1g.
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such that I = I 1 [ � � � [ I l . Observe that, by construction, for all i = 1 ; � � � ; l we
have that  (I i ) is included in Bsi for somesi 2 I .

We can assume without loss of generality that the familyf I i g1� i � l is minimal,
in the sense that the removal of any element would destroy the cover:8i = 1 ; � � � ; l ,S

j 6= i I j + I . If it is not so, then we can always remove elements from the family
until the property is satis�ed. Let us now re-order the elements of the family such
that the left endpoint of I i is smaller than the left endpoint of I i +1 , for all i . Since
the family is minimal, the ordering on the left endpoints of the I i is the same as the
ordering on their right endpoints. As a consequence, eachI i intersects only I i � 1

and I i +1 . Let t1 = 0, t l +1 = 1, and t i 2 I i � 1 \ I i 8i = 2 ; � � � ; l . We will approximate
 by a piecewise Lipschitz curve connecting the (t i ). For simplicity, we rename
 j [t i ;t i +1 ] as  i .

By construction, for all i = 1 ; � � � ; l we have [t i ; t i +1 ] � I i , hence  i (I ) =
 ([t i ; t i +1 ]) �  (I i ), which is included in Bsi .

- Assume �rst that si =2 @X, which implies that Bsi � �X and r si � �
2 . De�ne

 i
� as the linear interpolation between  (t i ) and  (t i +1 ), namely:  i

� : s 7! (1 �
s) (t i ) + s (t i +1 ). Since Bsi is convex,  i

� (I ) is included in Bsi and hence in
X . Moreover, we have i

� (0) =  (t i ) =  i (0),  i
� (1) =  (t i +1 ) =  i (1), and the

Hausdor� distance dH ( i
� (I );  ([t i ; t i +1 ])) in the Euclidean metric is less than the

diameter of Bsi , which is bounded by � . Furthermore, the map � : I � I ! R2

de�ned by �( s; t) = (1 � t) i
� (s) + t i (s) is a homotopy relative to @Ibetween  i

�
and  i in R2. Since it is a linear interpolation between two maps whose images lie
in Bsi , which is convex, the image of � is also included inBsi , and hence in �X . It
follows that � is a homotopy relative to @Ibetween i

� and  i in X .
- Assume now that si 2 @X, which implies that Bsi is included in someVj .

Because of the presence of@X in the vicinity of  ([t i ; t i +1 ]), we can no longer
guarantee that the linear interpolation between  (t i ) and  (t i +1 ) remains in X .
This is why we use the chart � j to map the arc  ([t i ; t i +1 ]) to parameter space
� � 1

j (X \ Vj ), which is convex. Speci�cally, we de�ne  i
� as the image through� j of

the linear interpolation between the pre-images of (t i ) and  (t i +1 ) in � � 1
j (X \ Vj ),

namely:  i
� : s 7! � j

�
(1 � s)( � � 1

j �  )( t i ) + s(� � 1
j �  )( t i +1 )

�
. As in the previous

case, we have i
� (0) =  i (0) and  i

� (1) =  i (1). Moreover, since � � 1
j (X \ Vj )

is convex, we have (1� s)( � � 1
j �  )( t i ) + s(� � 1

j �  )( t i +1 ) 2 � � 1
j (X \ Vj ) for all

s 2 I , hence  i
� (I ) is included in X \ Vj . It follows that  i

� : I ! X , and that
the Hausdor� distance dH ( i

� (I );  i (I )) in the Euclidean metric is less than the
diameter of Vj , which is bounded by � since Vj � BE (x j ; �

2 ). Notice also that  i
�

is a Lipschitz map, hence it is recti�able, by [Federer 1996,x2.10.11]. Finally, the
map � : I � I ! R2 de�ned by �( s; t) = � j

�
(1 � t)( � � 1

j �  i
� )(s) + t(� � 1

j �  i )(s)
�

is a homotopy relative to @I between  i
� and  i in R2. Since � � 1

j � � is a linear
interpolation between maps� � 1

j �  i
� and � � 1

j �  i in � � 1
j (X \ Vj ), which is convex,

the image of � is included in X \ Vj . It follows that � is a homotopy relative to @I
between i

� and  i in X .
We now de�ne  � as the concatenation of the i

� , namely:  � =  1
� �  2

� � � �  l
� .

By concatenating the homotopies relative to @I between the  i
� and the  i , we

obtain a homotopy relative to @I between  � and  in X . Moreover, since the
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 i
� are recti�able, so is  � . We also have  � (0) =  1

� (0) =  1(0) =  (0), and
 � (1) =  l

� (1) =  l (1) =  (1). Finally, the Hausdor� distance d H ( � (I );  (I )) in
the Euclidean metric is bounded by the maximum of the dH ( i

� (I );  i (I )), which is
less than � .

To conclude the proof of the lemma, we need to show that bounding the Hausdor�
distance between and its approximation in the Euclidean metric is su�cient for
bounding the semi-Hausdor� distance from the approximation to  in the intrinsic
metric. Let " be an arbitrary positive real number. Since by Theorem 2.5 the
Euclidean and geodesic topologies are equal onX , for all s 2 I there exists an
� s > 0 such that BE ( (s); � s) is included in BX ( (s); " ). The balls BE ( (s); � s)
form an open cover of (I ). Hence, for all s 2 I , the Euclidean distance from (s)
to the complement of the cover in R2 is positive. Since and the distance to the
complement are continuous, whileI is compact, the in�mum � of the distances of
the  (s) to the complement is in fact a minimum, and therefore it is positive. Now,
according to the previous paragraphs, there exists a curve � : I ! X , homotopic
to  relative to @I in X , such that dH ( (I );  � (I )) < � . It follows that  � (I ) �S

s2 I BE ( (s); � ), which is included in
S

s2 I BE ( (s); � s) �
S

s2 I BX ( (s); " ). This
concludes the proof of Lemma 2.6, with " =  � .

Observe that, in the proof of Lemma 2.6, the family of balls f Bsgs2 I forms an
open cover of (I ). Letting � be the quantity inf

�
dE (x;  (I )) j x 2 X n

S
s2 I Bs

	
>

0, the second part of the proof shows in fact that every path 0 : I ! X such that
 0(0) =  (0),  0(1) =  (1), and dE ( 0(s);  (s)) < � for all s 2 (0; 1), is homotopic
to  relative to @I. Thus, we obtain the following guarantee:

Lemma 2.7. For any path  : I ! X , there exists a quantity � > 0 such that
every path  0 : I ! X with same endpoints as that satis�es dE ( 0(s);  (s)) < �
for all s 2 (0; 1) is homotopic to  relative to @I.

3. THE SYSTOLIC FEATURE SIZE

Definition 3.1. Let X be a Lipschitz domain in the plane. Thesystolic feature
size of X at a given point x 2 X is the quantity: sfs(x) = 1

2 inf fj  j;  : (S1; 1) !
(X; x ) non null-homotopic in X g.

As illustrated in Figure 1 (left and center), the resort to an intrinsic met ric makes
the systolic feature size rather insensitive to the local geometry of the domain X .
Indeed, sfs depends on the geodesic perimeters of the holes ofX , which depend on
the geometry of X at a more global scale.

The rest of this section is devoted to the proof of some useful basic properties of
the systolic feature size.

Lemma 3.2. Let X be a Lipschitz domain in the plane, and letx be a point in
X . If the path-connected component ofX that contains x is simply connected, then
sfs(x) = + 1 . Else, sfs(x) < + 1 , and there exists a non null-homotopic recti�able
loop  : (S1; 1) ! (X; x ) such that sfs(x) = 1

2 j j > 0.

Proof. Let x 2 X . Call X x the path-connected component ofX that contains
x. Every loop through x in X is a loop in X x . If X x is simply connected, then the
set f  : (S1; 1) ! (X x ; x) non null-homotopic in X x g is empty, and therefore its
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lower bound sfs(x) is in�nite. Assume now that X x is not simply connected. Then,
there exists at least one non null-homotopic loop 0 : (S1; 1) ! (X x ; x). By Lemma
2.6, we can assume without loss of generality that 0 is recti�able. We then have
sfs(x) � 1

2 j 0j < + 1 .
Consider now a sequence ( i ) i of non null-homotopic loops through x in X x ,

such that (j i j) i converges to 2sfs(x). Such a sequence exists, since 2sfs(x) < + 1
is the in�mum of the set of lengths of non null-homotopic loops through x. By
convergence, we know that there exists a rankn such that, for all i � n,  i is a
recti�able curve of length j i j � 2sfs(x)+1. Thus, the sequence ( n + i ) i is uniformly
bounded by 2sfs(x)+1, which implies by Theorem 2.3 that it contains a subsequence
converging uniformly to some loop : (I; @I) ! (X x ; x). It follows from Lemma
2.7 that, after a certain rank, every element in the subsequence is homotopic to
relative to @I. As a consequence, is not null-homotopic in X , and therefore j j
is positive and at least 2sfs(x). In addition, since (j i j) i converges to 2sfs(x), the
lower semi-continuity of j � j implies that j j � 2sfs(x). As a conclusion, we have
j j = 2sfs(x) > 0.

Lemma 3.3. Let X be a Lipschitz domain in the plane. The mapx 7! sfs(x)
is 1-Lipschitz in the intrinsic metric. Hence, it is continuous f or the Euclidean
topology, andsfs(X ) = inf f sfs(x); x 2 X g is positive.

Proof. Let x; y 2 X . If x; y belong to di�erent path-connected components
of X , then we have dX (x; y) = + 1 . It follows that jsfs(x) � sfs(y)j � dX (x; y).
Assume now that x; y belong to the same path-connected componentX i of X . Let
 be a shortest path betweenx and y in X . We are guaranteed by Theorem 2.3
and Lemma 2.6 that such a path exists. If X i is simply connected, then sfs is
constant and equal to +1 over X i . Else, consider a loop x : (S1; 1) ! (X; x )
such that j x j = 2sfs(x) < + 1 . Such a loop exists, by Lemma 3.2. Then, the path
 y = � �  x �  is a loop through y in X . Its length is j x j +2 j j = 2sfs(x)+2d X (x; y).
Moreover, the map  x 7! � �  x �  is known to induce an isomorphism between
the fundamental groups of X i at basepoints x and y | see e.g. [Hatcher 2001,
Proposition 1.5]. Therefore, the loop y is not null-homotopic in X , which implies
that sfs(y) � 1

2 j y j = sfs(x) + d X (x; y). This proves that the map x 7! sfs(x) is
1-Lipschitz in the intrinsic metric, and hence continuous for the intrinsic top ology,
but also for the Euclidean topology, by Theorem 2.5. SinceX is compact, there
exists some pointx 2 X such that sfs(X ) = sfs(x), which is positive, by Lemma
3.2.

Lemma 3.4. Let X be a Lipschitz domain in the plane. For all point x 2 X ,
every loop inside the open geodesic ballBX (x; sfs(x)) is null-homotopic in X .

Proof. Assume for a contradiction that there exists some pointx 2 X and
some loop x : S1 ! BX (x; sfs(x)) that is not null-homotopic in X . Since we have
maxs2 I dX (x;  x (s)) < sfs(x), Lemma 2.6 ensures that there exists a recti�able loop
S1 ! X that is homotopic to  x in X , and that is still included in BX (x; sfs(x)).
Hence, we can assume without loss of generality that x is recti�able. Let � be a
shortest path betweenx and y =  x (0). The path  = � �  x � �� is a loop through x,
included in BX (x; sfs(x)), of length j j � j  x j + 2d X (x; y) < + 1 . Moreover,  is
non null-homotopic in X , since it is homotopic to  x . It follows that j j � 2sfs(x).
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For all s 2 I , we de�ne  s and � s to be respectively the path  j [0;s] and a shortest
path between x and  (s). Let s0 = inf f s j  s � �� s non null-homotopic in X g. This
means that, for all s < s 0,  s � �� s is null-homotopic in X , whereas for all� > 0 there
exists somes 2 [s0; s0 + � [ such that  s � �� s is not null-homotopic in X .

{ If s0 = 0, then there are arbitrarily short non null-homotopic loops through
x in X , which contradicts the fact that sfs(x) > 0 (Lemma 3.2).

{ If s0 = 1, then for s arbitrarily close to 1,  j [s;1] � � s is non null-homotopic
in X , and of length arbitrarily close to j� s j < sfs(x), which contradicts the
de�nition of sfs( x) (De�nition 3.1).

It follows that s0 2]0; 1[. For all � > 0, there exist s� � ; s+ � 2 I such that s0 � � <
s� � < s 0 < s + � < s 0 + � , and that  s� � � �� s� � is null-homotopic in X whereas
 s+ � � �� s+ � is not. Then, � s� � is homotopic to  s� � relative6 to @I, which implies
that � s� � �  j [s� � ;s+ � ] is homotopic to  s+ � relative to @I. As a result, the loop
 0 =

�
� s� � �  j [s� � ;s+ � ]

�
� �� s+ � is homotopic to  s+ � � �� s+ � , which is not null-homotopic

in X . Hence, we havej 0j � 2sfs(x), by de�nition of sfs( x).
Now, the length of  0 is j� s� � j + j j [s� � ;s+ � ] j + j �� s+ � j � 2 maxs2 I dX (x;  (s)) +

j j [s� � ;s+ � ] j. Since� is arbitrarily small, so is j j [s� � ;s+ � ] j, therefore j 0j is arbitrarily
close to 2 maxs2 I dX (x;  (s)), which is less than 2sfs(x). This contradicts the fact
that j 0j � 2sfs(x), as proved in the previous paragraph.

Note that Lemma 3.4 does not imply that the ball BX (x; sfs(x)) itself is con-
tractible. It turns out that open geodesic balls of radius at most a fraction of the
systolic feature size are contractible. The proof of this fact requires somemore
work though | see Section 5.

4. GEODESIC DELAUNAY TRIANGULATION AND WITNESS COMPLEX

Given a Lipschitz domain X in the plane, and a set of landmarksL � X that is
dense enough with respect to the systolic feature size ofX , we show in Section
4.1 that the geodesic Delaunay triangulationDX (L ) has the same homotopy type
as X (Theorem 4.3). Furthermore, for any set of witnessesW � X that is dense
enough compared toL , we prove in Section 4.2 thatDX (L ) is sandwiched between
the geodesic witness complexCW

X (L ) and its relaxed version CW
X;� (L ) (Theorems

4.14 and 4.17). Densities of point clouds are measured according to the following
de�nition, where the scalar �eld h will be chosen to be either a constant function
or a fraction of the systolic feature size:

Definition 4.1. Given a Lipschitz planar domain X and a function h : X !
R+ [f + 1g , a setL � X is a geodesich-sampleof X if we havedX (x; L ) < h (x) for
all points x 2 X . In addition, L is h-sparse if we havedX (p; q) � minf h(p); h(q)g
for all points p 6= q 2 L.

It follows from the de�nition that any geodesic h-sampleL of X must have points in
every path-connected component ofX , because geodesic distances toL are required
to be �nite (d X (x; L ) < h (x)). We will see in Section 6.2 how to generate geodesic
"sfs-samples of Lipschitz planar domains.

6As mentioned in Section 2.1, this means that the homotopy bet ween � s � � and  s � � is constant
over @I= f 0; 1g.
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4.1 Geodesic Delaunay triangulations

Geodesic Voronoi diagrams are nothing but Voronoi diagrams in the intrinsicmetric:

Definition 4.2. Given a subsetX of R2, and a �nite subset L of X , the
geodesic Voronoi diagramof L in X , or VX (L ) for short, is a cellular decom-
position of X , where the cell of a pointp 2 L is de�ned as the locus of all the points
x 2 X such that dX (x; p) � dX (x; q) 8q 2 L . The nerve of VX (L ) is called the
geodesic Delaunay triangulationof L in X , noted DX (L ).

Given a simplex � 2 D X (L ), we call VX (� ) its dual Voronoi face. Note that, in
contrast with the Euclidean case, VX (� ) does not always have Lebesgue measure
zero when the dimension of� is non-zero, as illustrated in Figure 1 (right).

Theorem 4.3. If X is a Lipschitz domain in the plane, andL a geodesic"sfs-
sample ofX , for some " � 1

3 , then DX (L ) and X are homotopy equivalent.

The rest of Section 4.1 is devoted to the proof of Theorem 4.3. The proof relies
on the so-called Nerve theorem, stated as Theorem 4.5 below, which relies on the
concept ofgood cover:

Definition 4.4. Let U be a �nite collection of closed (resp. open) subsets ofX
whose union coversX . Then, U is a good closed (resp. open) coverof X if for
any non-empty subsetV � U the common intersection between the elements ofV is
either empty or contractible.

Theorem 4.5 from [Borsuk 1948; Wu 1962], see also [Hatcher 20 01].
The nerve of a good closed (resp. open) cover ofX is homotopy equivalent toX .

Here, we takeU to be the collection of the geodesic Voronoi cells:U = fV X (p); p 2
Lg. The nerve of this collection is precisely the geodesic Delaunay triangulation
DX (L ). Thus, proving Theorem 4.3 comes down to showing that any collection of
cells ofVX (L ) has an empty or contractible intersection, and then invoking Theorem
4.5. Our proof proceeds in three steps: �rst, we show that every single Voronoi
cell is contractible (Section 4.1.1); then, we show that any pair of Voronoi cells has
an empty or contractible intersection (Section 4.1.2); �nally, we show inductively
that any arbitrary collection of Voronoi cells has an empty or contractible common
intersection (Section 4.1.3).

Along the way, our proof uses several results of algebraic topology (including the
ones of Proposition 2.2) that require non-empty intersections of geodesic Voronoi
cells to be ANR's. This fact turns out to be true in any Lipschitz planar domai n,
and it can be shown using the local continuity of the geodesic ow, proved7 in
Sections 5.1 and 5.2, as well as some nesting properties of neighborhood retracts,
stated in Theorem III.3 of [Daverman 2007]. This minor and rather technical aspect
of our proof does not bring any particular insights into the problem. Therefore, it is
omitted for the convenience of exposition, and in the sequel non-empty intersections
of geodesic Voronoi cells are admitted to be ANR's.

7The statements and proofs from Sections 5.1 and 5.2 do not rel y on the results of this section,
therefore they can be invoked here.

ACM Journal Name, Vol. V, No. N, Month 20YY.



Geodesic Delaunay Triangulations in Bounded Planar Domains � 17

4.1.1 Voronoi cells

Lemma 4.6. Under the hypotheses of Theorem 4.3, every cell ofVX (L ) is path-
connected.

Proof. Let p 2 L , and let x 2 VX (p). Let  : I ! X be a shortest path
from p to x in X . Such a path  exists since x and p lie in the same path-
connected component ofX , dX (x; p) being �nite due to the fact that L is a geodesic
"sfs-sample ofX . We will show that  (I ) � V X (p). Assume for a contradiction
that  (s) =2 VX (p) for some s 2 I . This means that there exists a point q 2
L n f pg such that dX ( (s); q) < dX ( (s); p). By the triangle inequality, we have
dX (q; x) � dX (q;  (s))+d X ( (s); x), where dX (q;  (s)) < dX (p;  (s)) � j  j [0;s] j and
dX ( (s); x) � j  j [s;1] j. Hence, we have dX (q; x) < j j [0;s] j + j j [s;1] j = j j = d X (p; x),
which contradicts the assumption that x 2 VX (p). Therefore,  (I ) � V X (p), and x
is path-connected top in VX (p).

Lemma 4.7. Under the hypotheses of Theorem 4.3, every cell ofVX (L ) is simply
connected.

Proof. Let p 2 L . By Lemma 4.6, VX (p) is path-connected. Assume for a
contradiction that VX (p) is not simply connected. Then, sinceVX (p) � X is
a bounded subset ofR2, its complement in R2 has at least two path-connected
components, only one of which is unbounded, by the Alexander duality { seee.g.
[Hatcher 2001, Theorem 3.44]. LetH be a bounded path-connected component of
R2 n VX (p). H can be viewed as a hole inVX (p).

We claim that H is included in X . Indeed, consider a loop : S1 ! V X (p)
that winds around H { such a loop exists sinceH is bounded byVX (p). Take any
point x 2 VX (p). For all y 2 VX (p), we have dX (x; y) � dX (x; p) + d X (p; y) �
" sfs(x) + " sfs(y), which is at most 2"

1� " sfs(x) since sfs is 1-Lipschitz in the intrinsic
metric. Thus, VX (p) is included in the open geodesic ballBX (x; 2"

1� " sfs(x)), where
2"

1� " � 1 since" � 1
3 . Therefore,  : S1 ! V X (p) is null-homotopic in X , by Lemma

3.4. Let � : S1 � I ! X be a homotopy between and a constant map in X . For
any point x 2 H , we have degx  6= 0 since the loop  winds around H . If x did
not belong to �( S1 � I ), then � would be a homotopy between  and a constant
map in R2 n f xg, thus by Corollary 2.1 we would have degx  = 0, thereby raising
a contradiction. It follows that �( S1 � I ) contains all the points of H , which is
therefore included in X .

As a consequence, the hole is caused by the presence of some sites ofL n f pg,
whose geodesic Voronoi cells formH . Assume for simplicity that there is only one
such site q, the case of several sites being similar. We then haveVX (q) = H , and
@H= VX (q) \ V X (p). Consider the Euclidean ray [p; q), and call x its �rst point
of intersection with @Hbeyond q. The line segment [q; x] is included in H � X ,
therefore we have dX (x; q) = d E (x; q), which yields:

dX (x; p) � dE (x; p) = d E (x; q) + d E (q; p) = d X (x; q) + d E (q; p) > dX (x; q):

This contradicts the fact that x belongs to@Hand hence toVX (p).

Since planar sets are aspherical [Cannon et al. 2002], their homotopy groups of
dimension 2 or more are trivial. As a consequence, geodesic Voronoi cells have
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the same homotopy groups as a point, up to isomorphism. Since in addition they
are ANR's, they are homotopy equivalent to CW-complexes [James 1995, Chapter
26,x2]. Therefore, by Whitehead's theorem, they are homotopy equivalent to a
point. Hence,

Proposition 4.8. Under the hypotheses of Theorem 4.3, every cell ofVX (L ) is
contractible.

4.1.2 Intersection of pairs of Voronoi cells. We will now prove that the geodesic
Voronoi cells have pairwise empty or contractible intersections. Given two sites
p; q 2 L whose cells intersect, we �rst study the topological type of their union
VX (p) [ V X (q), from which we can deduce the topological type of their intersection
VX (p) \ V X (q).

Lemma 4.9. Under the hypotheses of Theorem 4.3, the union of any pair of
intersecting cells of VX (L ) is simply connected.

Proof. Let p; q 2 L be such that VX (p) \V X (q) 6= ; . The outline of the proof is
the same as for Lemma 4.7. First, since by Lemma 4.6VX (p) and VX (q) are path-
connected, so is their union. Assume now for a contradiction thatVX (p) [ V X (q)
is not simply connected, and consider a holeH in VX (p) [ V X (q). Let x 2 VX (p) \
VX (q). For any point y 2 VX (p), we have dX (x; y) � dX (x; p) + d X (p; y) <
" sfs(x) + " sfs(y), which is at most 2"

1� " sfs(x) since sfs is 1-Lipschitz in the intrinsic
metric. Idem for the points of VX (q). As a consequence,VX (p) [ V X (q) is included
in the open geodesic ballBX (x; 2"

1� " sfs(p)), where 2"
1� " � 1 since" � 1

3 . Therefore,
by the same argument as in the proof of Lemma 4.7,H is included in X .

It follows that the hole is caused by the presence of some sites ofL n f p; qg,
whose geodesic Voronoi cells formH . Assume for simplicity that there is only one
such site u, the case of several sites being similar. We then haveVX (u) = H , and
@H= VX (u) \ (VX (p) [ V X (q)). Consider the Euclidean line l passing through u
and perpendicular to (p; q). Let x; y be the �rst points of intersection of l with @H
in each direction, starting from u. Since anglesdxup and dpuy sum up to � � , one of
them (say dxup) is obtuse. This implies that dxuq is also obtuse. Assume without loss
of generality that dX (x; p) � dX (x; q). Since the line segment [u; x] is included in
H � X , we have dX (x; u) = d E (x; u). Hence, using Pythagoras' theorem together
with the fact that dxup is obtuse, we get:

dX (x; p)2 � dE (x; p)2 � dE (x; u)2 +d E (u; p)2 = d X (x; u)2 +d E (u; p)2 > dX (x; u)2:

Now, x belongs to@Hand hence toVX (p) [V X (q). Moreover, we assumed without
loss of generality that dX (x; p) � dX (x; q), therefore x belongs to VX (p), which
contradicts the above equation. It follows that VX (p) [ V X (q) is simply connected,
which concludes the proof of the lemma.

Using the above result, we can now show thatVX (p) \ V X (q) is contractible:

Proposition 4.10. Under the hypotheses of Theorem 4.3, the intersection of
any pair of cells of VX (L ) is either empty or contractible.

Proof. Let p; q 2 L be such that VX (p) \ V X (q) 6= ; . Proposition 2.2 (i) tells
us that every path-connected component ofVX (p) \ V X (q) is simply connected,
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since by Lemma 4.7VX (p) and VX (q) are. Moreover, Proposition 2.2 (ii) tells us
that VX (p) \ V X (q) is path-connected, since by Lemma 4.6VX (p) and VX (q) are,
and since by Lemma 4.9 their union is simply connected. It follows then from the
asphericity of planar sets and from Whitehead's theorem that VX (p) \ V X (q) is
contractible.

4.1.3 Intersection of arbitrary numbers of Voronoi cells. The following result,
combined with Theorem 4.5, concludes the proof of Theorem 4.3:

Proposition 4.11. Under the hypotheses of Theorem 4.3, for anyk sites
p1; � � � ; pk 2 L, the intersection VX (p1)\� � �\V X (pk ) is either empty or contractible.

Proof. The proof is by induction on k. Casesk = 1 and k = 2 were proved in
Sections 4.1.1 and 4.1.2 respectively. Assume now that the result is true up to some
k � 2, and considerk+1 sites p1; � � � ; pk+1 2 L such that VX (p1) \� � � \V X (pk+1 ) 6=
; .

Observe �rst that VX (p1) \ � � � \V X (pk+1 ) is the intersection of
T k

i =1 VX (pi ) with
VX (pk+1 ), which by the induction hypothesis are both simply connected. Hence,
each path-connected component of their intersectionVX (p1) \ � � � \V X (pk+1 ) is also
simply connected, by Proposition 2.2 (i).

Consider now the union
� T k

i =1 VX (pi )
�

[V X (pk+1 ), which is path-connected since

both
T k

i =1 VX (pi ) and VX (pk+1 ) are. Observe that the union can be rewritten as
follows:

 
k\

i =1

VX (pi )

!

[ V X (pk+1 ) =
k\

i =1

(VX (pi ) [ V X (pk+1 )) :

By the induction hypothesis (more precisely, according to the casek = 2), every
VX (pi ) [ V X (pk+1 ) is simply connected, hence so is

T k
i =1 (VX (pi ) [ V X (pk+1 )), by

Proposition 2.2 (i). It follows then from Proposition 2.2 (ii) that the intersection
VX (p1) \ � � � \ V X (pk+1 ) is path-connected, since both

T k
i =1 VX (pi ) and VX (pk+1 )

are, and since their union is simply connected.
Thus, VX (p1) \ � � � V X (pk+1 ) is simply connected, and it follows from the as-

phericity of planar sets and from Whitehead's theorem that VX (p1) \ � � � V X (pk+1 )
is contractible.

4.2 Geodesic witness complexes

Witness complexes in the intrinsic metric are de�ned in the same way as in the
Euclidean metric:

Definition 4.12. Given a subsetX of R2, and two subsetsW; L of X such that
L is �nite,
� given a point w 2 W and a simplex � = [ p0; � � � ; pl ] with vertices in L , w is a
witness of � if for all i = 0 ; � � � ; l , dX (w; pi ) is �nite and bounded from above by
dX (w; q) for all q 2 L n f p0; � � � ; pl g;
� the geodesic witness complexof L relative to W , or CW

X (L ) for short, is the
maximal abstract simplicial complex with vertices inL , whose faces are witnessed
by points of W .
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Observe that a point w 2 W may only witness simplices whose vertices lie in the
same path-connected component ofX as w. The fact that CW

X (L ) is an abstract
simplicial complex means that a simplex belongs to the complex only if all its faces
do. In the sequel,W is called the set of witnesses, whileL is referred to as the set
of landmarks.

As in the Euclidean case, there exists a stronger notion of witness complex, where
each witness is required to be equidistant to the vertices of the simplex� . In this
case,� is a Delaunay simplex, and therefore the strong witness complex is included
in the Delaunay triangulation. In his seminal work [de Silva 2008], de Silva shows
that the weak witness complex is also included in the Delaunay triangulation, in
the Euclidean metric. Below we give an equivalent of this result in the intrinsic
metric { see Theorem 4.14. The proof uses the same kind of machinery as in [Attali
et al. 2007], and it relies on the following fact:

Lemma 4.13. Let X be a Lipschitz domain in the plane, andL a geodesic"sfs-
sample ofX , for some " � 1. Let x be a point ofX , and p its (k+1) th nearest point
of L in the intrinsic metric. If x and p lie in the same path-connected component

of X , then dX (x; p) <
�

3+ "
1� "

� k
" sfs(x). Else, dX (x; p) = + 1 .

Proof. The proof is by induction on k. We call X x the path-connected compo-
nent of X that contains x.

- Casek = 0: by de�nition, p is a nearest neighbor ofx in L for the geodesic
distance. SinceL is a geodesic"sfs-sample ofX , we have dX (x; p) < " sfs(x) =
�

3+ "
1� "

� k
" sfs(x).

- General case: assume that the result holds up to somek � 0. Let p0; � � � ; pk+1

denote the k + 2 points of L closest tox in the intrinsic metric, ordered according
to their geodesic distances tox. If pk+1 =2 X x , then we have dX (x; pk+1 ) = + 1 ,
which proves the result for k + 1. Assume now that pk+1 2 X x . This implies
that all the pi also belong toX x , since their geodesic distances tox are bounded
by dX (x; pk+1 ) < + 1 . By the induction hypothesis, we have dX (x; p0) � � � � �

dX (x; pk ) <
�

3+ "
1� "

� k
" sfs(x). Since pk+1 lies in X x , the latter is not covered by

VX (p0) [ � � � [ V X (pk ). Therefore, there is a point p 2 L n f p0; � � � ; pk g such that
VX (p) intersects the geodesic Voronoi cell ofpi , for somei 2 f 0; � � � ; kg. Note that
p may or may not be pk+1 itself. Let y 2 VX (pi ) \ V X (p). Since L is a geodesic
"sfs-sample ofX , we have dX (y; pi ) = d X (y; p) < " sfs(y). Thus, by the triangle
inequality and the induction hypothesis, we get:

dX (x; y) � dX (x; pi ) + d X (pi ; y) <
�

3 + "
1 � "

� k

" sfs(x) + " sfs(y):

Since sfs is 1-Lipschitz in the intrinsic metric, we have sfs(y) � sfs(x) + d X (x; y),

which, by the above equation, is at most
�

1 + "
�

3+ "
1� "

� k
�

sfs(x) + " sfs(y). It

follows that sfs(y) � (1 � " ) k + " (3+ " ) k

(1 � " ) k +1 sfs(x). Now, since p =2 f p0; � � � ; pk g, we have
dX (x; pk+1 ) � dX (x; p), which by the triangle inequality is at most d X (x; pi ) +

2dX (y; pi ). By the induction hypothesis, dX (x; pi ) is bounded by
�

3+ "
1� "

� k
" sfs(x),
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while our previous computations show that 2dX (y; pi ) < 2" (1 � " ) k + " (3 � " ) k

(1 � " ) k +1 sfs(x).
In the end, we obtain:

dX (x; pk+1 ) < "

 �
3 + "
1 � "

� k

+ 2
(1 � " )k + "(3 + ")k

(1 � " )k+1

!

sfs(x) � "
�

3 + "
1 � "

� k+1

sfs(x);

thus proving the result for k + 1.

In the special case where the point cloudL is a geodesic" -sample ofX , with a
uniform bound " on its density, the upper bound on the geodesic distance betweenx
and its kth nearest point of L drops down to (1+2k)" , by the same proof. It is worth
pointing out the inuence of the sampling regularity on the upper bound, which
becomes exponential ink when the sampling is non-uniform, whereas it remains
linear in k when the sampling is uniform. While it is clear that the linear bound
in the uniform sampling case is tight, it is still unknown at this time whether the
exponential bound in the non-uniform sampling case is tight or not.

Theorem 4.14. Let X be a Lipschitz domain in the plane, andL a geodesic
"sfs-sample of X . If " � 1

4k +1 , for some integer k � 0, then the k-skeleton of
CW

X (L ) is included in DX (L ) for all W � X .

Proof. The proof is by induction on k. There will be in fact two inductions,
therefore we call this one Ik, for clarity.

- Casek = 0: every point of L is a vertex of DX (L ), whether it is witnessed by
a point of W or not.

- General case of Ik: assume that the result holds up to somek � 0. Assume
further that " � 1

4k +2 . Let � = [ p0; � � � ; pk+1 ] be a simplex of CW
X (L ), and let

w0 2 W be a witness of� . Consider without loss of generality that the pi are
ordered such that dX (w0; p0) � � � � � dX (w0; pk+1 ). Then, the closed geodesic ball
B0 = BX (w0; dX (w0; p0)) contains the pi and no other point of L . Moreover, p0

belongs to@B0. We will prove by induction that B0 can be shrunk to some closed
geodesic ballBk+1 such that all the pi lie on @Bk+1 , while Bk+1 still contains no
other point of L . The center of Bk+1 will then be equidistant to all the vertices of
� , and the latter will therefore be proved to be in DX (L ). The induction, named
Ir for clarity, states that there is a closed geodesic ballB r that contains the pi and
no other point of L , and such that p0; � � � ; pr lie on @Br .

� Caser = 0: initially, we have p0 2 @B0, and B0 contains the pi and no other
point of L .

� General case of Ir (0� r < k ): assume that we have found a closed geodesic
ball B r that satis�es the requirements. In particular, we have p0; � � � ; pr 2 @Br .
This means that the centerwr of B r belongs toV0

X (p0) \ � � � \V 0
X (pr ), where V0

X (pi )
denotes the cell ofpi (i � r ) in the geodesic Voronoi diagram ofL nf pr +1 ; � � � ; pk+1 g.
Moreover, since [p0; � � � ; pk+1 ] belongs toCW

X (L ), so does its subsimplex [p0; � � � ; pr ],
which therefore belongs also toDX (L ), by the induction hypothesis of Ik. Hence,
VX (p0) \ � � � \ V X (pr ) is not empty. Let ~wr 2 VX (p0) \ � � � \ V X (pr ). Since the
cell of any pi in VX (L n f pr +1 ; � � � ; pk+1 g) contains the cell of pi in VX (L ), ~wr also
belongs toV0

X (p0) \ � � � \ V 0
X (pr ).

We claim that V0
X (p0) \ � � � \ V 0

X (pr ) is path-connected. Indeed, for any point
x 2 X , the geodesic distance fromx to L is �nite, because L is a geodesic"sfs-
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sample of X . And since w0 witnesses [p0; � � � ; pk+1 ], all the pi lie in the same
path-connected component ofX as w0, therefore the geodesic distance between
x and L n f pr +1 ; � � � ; pk+1 g is still �nite, and by Lemma 4.13 it is bounded by
�

3+ "
1� "

� k+1
" sfs(x). This quantity is less than 4k+1 " sfs(x) � 1

4 sfs(x), since by the

induction hypothesis of Ik we have" � 1
4k +2 < 1

5 . Hence,L n f pr +1 ; � � � ; pk+1 g is a
geodesic"0sfs-sample ofX , for some"0 � 1

3 . As a consequence,V0
X (p0) \� � �\V 0

X (pr )
is path-connected, by Proposition 4.11.

Sincewr and ~wr both belong to V0
X (p0) \ � � � \ V 0

X (pr ), which is path-connected,
there exists a path : I ! V 0

X (p0) \� � �\V 0
X (pr ) such that  (0) = wr and  (1) = ~wr .

For all s 2 I ,  (s) is equidistant to p0; � � � ; pr , and closer to these points than to
any other point of L n f pr +1 ; � � � ; pk+1 g, in the intrinsic metric. Moreover, for all
j = r + 1 ; � � � ; k + 1, the map f j : s 7! dX ( (s); p0) � dX ( (s); pj ) is continuous,
and we havef j (0) = d X (wr ; p0) � dX (wr ; pj ) � 0 sinceB r contains pj and hasp0

on its boundary, whereasf j (1) = d X ( ~wr ; p0) � dX ( ~wr ; pj ) � 0 since ~wr is a witness
of [p0; � � � ; pr ]. Thus, f j (s) = 0 for at least one value s 2 I . Let sj be the smallest
such s.

Consider now ~j = argmin j = r +1 ;��� ;k +1 sj , and assume without loss of generality
that ~j = r + 1. We then have f r +1 (sr +1 ) = 0 and f j (sr +1 ) � 0 for all j =
r + 2 ; � � � ; k + 1. This means that the point wr +1 =  (sr +1 ) is equidistant to
p0; � � � ; pr +1 , and farther from these points than from pr +2 ; � � � ; pk+1 . In addition,
wr +1 is closer to p0; � � � ; pr +1 than to any other point of L n f pr +2 ; � � � ; pk+1 g,
since wr +1 2  (I ) � V 0

X (p0). It follows that the closed geodesic ball B r +1 =
BX (wr +1 ; dX (wr +1 ; p0)) contains p0; � � � ; pk+1 and no other point of L , and that
p0; � � � ; pr +1 lie on @Br +1 . This concludes the induction Ir, and hereby also the
induction Ik.

Note that, for the conclusion of Theorem 4.14 to hold, it is mandatory to makean
assumption on the density of the landmarks setL , since otherwise some boundary
e�ects could occur. As an example, take forX an annulus and for L a set of
three landmarks evenly distributed around the hole of the annulus:DX (L ) is then
reduced to the boundary of the triangle formed by the three landmarks, whereas
sinceL has only three points, the triangle is witnessed and therefore it belongs to
CW

X (L ).
Our next result (Theorem 4.17) is an analog of Theorem 3.2 of [Guibas and Oudot

2007]. It involves a relaxed version of the witness complex, de�ned as follows:

Definition 4.15. Given a subsetX of R2, two subsetsW; L of X such thatL is
�nite, and an integer � � 0, a simplex � with vertices in L is � -witnessedby w 2 W
if the vertices of � belong to the path-connected component ofX that contains w
and to the � + 1 landmarks closest tow in the intrinsic metric. The geodesic� -
witness complexof L relative to W , or CW

X;� (L ) for short, is the maximum abstract
simplicial complex made of� -witnessed simplices. Its dimension is at most� .

Theorem 4.17 assumes thatL is a "
1+ " sfs-sparse sample, which means by De�nition

4.1 that every pair of landmarksp 6= q must satisfy dX (p; q) � "
1+ " minf sfs(p); sfs(q)g.

The bound on" depends on thedoubling dimensionof (X; dX ), de�ned as the small-
est integer d such that every open (resp. closed) geodesic ball can be covered by
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a union of 2d open (resp. closed) geodesic balls of half its radius. The doubling
dimension measures the shape complexity ofX , and it can be arbitrarily large. As
an example, take forX a comb-shaped domain made of a rectangle of dimensions
1� 2, to which are gluedk branches of length 1 and width 2

2k � 1 as shown in Figure 2
(left). The geodesic distance from any point ofX to the center point p is at most 2,
so that X is covered by the closed geodesic ballBX (p;2). Consider now the closed
geodesic ballsBX (qi ; 1), 1 � i � k, where points qi are located at the tips of the k
branches ofX . Every ball BX (qi ; 1) is included in the branch of qi , therefore the
balls BX (qi ; 1) are pairwise disjoint. Thus, at least k closed geodesic balls of radius
1 can be packed inside a closed geodesic ball of radius 2, which implies that the
doubling dimension of (X; dX ) is at least log2 k, according to the following result
by Kolmogorov and Tikhomirov:

Lemma 4.16 from [Kolmogorov and Tikhomirov 1961]. Given any subset
Y of X , and any real numberr > 0, the maximum number of pairwise-disjoint open
(resp. closed) geodesic balls of radiusr that can be packed insideY is at most the
minimum number of open (resp. closed) geodesic balls of radius r that are necessary
to cover Y .

Theorem 4.17. Let X be a Lipschitz domain in the plane, of doubling dimen-
sion d. Let W be a geodesic� sfs-sample ofX , and L a geodesic"sfs-sample ofX
that is also "

1+ " sfs-sparse. If " + 2 � < 1, then, for any integer � � 2ld � 1, where

l =
l
log2

3+ " +2 � ="

1� " � 2�

m
, DX (L ) is included in CW

X;� (L ).

Proof. Let � be a simplex ofDX (L ), and let c be a point of its dual geodesic
Voronoi cell VX (� ). SinceW is a geodesic� sfs-sample ofX , there is a point w 2 W
at geodesic distance at most� sfs(c) from c. Moreover, sinceL is a geodesic"sfs-
sample of X , every vertex v of � is at geodesic distance less than" sfs(c) from
c. It follows that d X (w; v) < (� + " ) sfs(c). Now, since L is "

1+ " sfs-sparse, every
two landmarks v; v0 located in the open geodesic ballBX (w; (" + � ) sfs(c)) satisfy:
dX (v; v0) � "

1+ " sfs(v), assuming without loss of generality that sfs(v) � sfs(v0).
Since sfs is 1-Lipschitz in the intrinsic metric (Lemma 3.3), we have: sfs(v) �
sfs(c) � dX (v; c) � sfs(c) � (" + 2 � ) sfs(c) = (1 � " � 2� ) sfs(c). Thus, the landmarks
inside BX (w; (" + � ) sfs(c)) are at least " (1 � " � 2� )

1+ " sfs(c) away from one another in
the intrinsic metric. Hence, they are centers of pairwise-disjoint open geodesic balls
of same radius" (1 � " � 2� )

2(1+ " ) sfs(c), packed inside the open geodesic ball of centerc and

radius (" + � + " (1 � " � 2� )
2(1+ " ) )sfs(c) = 3" + " 2 +2 �

2(1+ " ) sfs(c). According to Lemma 4.16, there

are at most 2ld such balls, wherel =
l
log2

3" + " 2 +2 �
" (1 � " � 2� )

m
=

l
log2

3+ " +2 � ="

1� " � 2�

m
. It follows

that � is � -witnessed byw whenever� � 2ld � 1. Since this is true for every simplex
� of DX (L ), the latter is included in CW

X;� (L ) whenever � � 2ld � 1.

It follows from Theorems 4.14 and 4.17 that, wheneverL and W are dense
enough, DX (L ) is sandwiched betweenCW

X (L ) and CW
X;� (L ), provided that � is

chosen su�ciently large. The simulation results presented in Section 7 suggest
that even small values of� are su�cient in practice. Note however that, in some
cases, neitherCW

X (L ) nor CW
X;� (L ) coincides exactly with DX (L ). This fact, already

observed in [Guibas and Oudot 2007] in a Euclidean setting, motivates the use of
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Fig. 2. Left: a Lipschitz domain with doubling dimension at l east k. Right: the size of f q1 ; � � � ; qk g
is k

2 times that of f p; p0g, although both point sets are geodesic sfs-samples of the do main and

q1 ; � � � ; qk are centers of pairwise-disjoint geodesic balls of same rad ius sfs
2 .

persistent homology betweenCW
X (L ) and CW

X;� (L ) for computing the homology of
DX (L ) without building the latter complex explicitly.

5. UNIONS OF GEODESIC BALLS AND THEIR NERVES

Given a Lipschitz domain X in the plane, and two �nite subsets W � L � X , we
saw in the previous section (Theorems 4.14 and 4.17) that the following sequence
of inclusions holds provided thatW; L are dense with respect to the systolic feature
size ofX and that the relaxation parameter � is large enough:

CW
X (L ) � D X (L ) � C W

X;� (L ):

In the conference version of this paper [Gao et al. 2008] we showed how the
above sequence of inclusions can be used to infer the homology of the domain
X . Speci�cally, considering singular homology with coe�cients in an arbitrary
�eld, we showed that the inclusion CW

X (L ) ,! D X (L ) induces surjective homomor-
phisms at homology level, while the inclusionDX (L ) ,! C W

X;� (L ) induces injective
homomorphisms. Intuitively, this means that the homology classes of cycles of
DX (L ) already exist in CW

X (L ) and do not die in CW
X;� (L ). As a result, the inclu-

sion CW
X (L ) ,! C W

X;� (L ) encodes the same homological information asDX (L ), and
therefore asX itself, by Theorem 4.3. More formally, for all k 2 N, the rank of
the linear map H k (CW

X (L )) ! H k (CW
X;� (L )) induced by the inclusion between the

witness complexes is equal to thekth Betti number of DX (L ), which by Theorem
4.3 coincides with thekth Betti number of X .

In this section we want to proceed further and study the ranks of the linear
maps induced at homology level by inclusions of typeCW

X;� (L ) ,! C W
X;� 0(L ), where

0 � � � � 0 are arbitrary values of the relaxation parameter. Moreover, we want to
study other families of simplicial complexes that are also easy to build in practice.
In particular, we are interested in Rips complexesin the geodesic distance:

Definition 5.1. Given a �nite point set L � X and a real parameter � > 0,
the (Vietoris-)Rips complex R � (L ) is the abstract simplicial complex of vertex set
L whose simplices correspond to non-empty subsets ofL of diameter less than� in
the geodesic distancedX .
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Our analysis uses the approach of [Chazal and Oudot 2008], which we will now
describe briey and adapt to our context. The main idea of [Chazal and Oudot
2008] is to relate Rips and witness complexes to the so-called�Cech complexes,
de�ned below:

Definition 5.2. Given a �nite point set L � X and a real parameter � > 0,
the �Cech complexC� (L ) is the nerve of the union of open geodesic balls of same
radius � about the points ofL .

Since �Cech complexes can be potentially di�cult to compute, they are not meant
to be constructed in practice. However, they can be used as an intermediate alge-
braic construction for the analysis of the topological structures of Rips orwitness
complexes. Indeed, on the one hand, the topology of the�Cech complex is tied to
the one of its dual union of balls via the Nerve Theorem 4.5, provided that the balls
form a good cover of the union, as per De�nition 4.4. On the other hand, as proved
e.g. in [Chazal and Oudot 2008], the one-parameter family of�Cech complexes is
interleaved with the one-parameter family of Rips complexes in the following sense:

8� > 0; C�
2

(L ) � R � (L ) � C � (L ): (3)

The analysis of [Chazal and Oudot 2008] uses the above interleaving property to
derive relations between the ranks of the linear maps induced at homology level
by inclusions between Rips complexes and the ranks of linear maps induced by
inclusions between�Cech complexes. More precisely, from Eq. (3) one deduces the
following sequence of inclusions for all� � 2� :

C�= 2(L ) � R � (L ) � C � (L ) � R � (L ) � C � (L ): (4)

By simple algebraic arguments, this sequence of inclusions implies the following
inequalities between the ranks of the homomorphisms induced at homology level
by inclusions: 8� � 2� , 8k 2 N,

rank H k (C�= 2(L )) ! H k (C� (L )) � rank H k (R � (L )) ! H k (R � (L )) � dim H k (C� (L )) :
(5)

These inequalities provide upper and lower bounds on the ranks of the linear maps
induced at homology level by inclusions of typeR � (L ) ,! R � (L ). The rest of the
analysis of [Chazal and Oudot 2008] consists in working out su�cient conditions
under which the upper and lower bounds coincide with the Betti numbers ofX .
To do so, it relates the one-parameter family of �Cech complexes to its dual one-
parameter family of unions of balls. Recall indeed from De�nition 5.2 that C� (L ) is
the nerve of the union of open geodesic balls of same radius� about the points of
L . Let us call L � this union, and f L � g the associated collection of open geodesic
balls. The analysis of [Chazal and Oudot 2008] provides the following key result,
which can be viewed as a persistent variant of the Nerve Theorem 4.5:

Lemma 5.3. For any parameters � � � , if f L � g forms a good open cover ofL �

and f L � g forms a good open cover ofL � , then there exist homotopy equivalences
L � ! C � (L ) and L � ! C � (L ) that commute with the canonical inclusionsL � ,! L �

and C� (L ) ,! C � (L ) at homology level.

In other words, the inclusions L � ,! L � and C� (L ) ,! C � (L ) carry the same
homological information, that is: for all k 2 N, the linear maps H k (L � ) ! H k (L � )
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and H k (C� (L )) ! H k (C� (L )) induced by inclusions have the same rank.
Now, if we assume thatL is a geodesic" -sample of some length spaceX , then L �

coincides with X as soon as� > " , and for all � � � > " , the canonical inclusion
L � ,! L � is the identity of X , which implies that the rank of H k (L � ) ! H k (L � )
coincides with the kth Betti number of X . Combined with Lemma 5.3, this fact
implies that, for all � > 2" and � � 2� such that f L �= 2g, f L � g, f L � g form good
open covers ofL �= 2, L � , L � respectively, the rank of H k (C�= 2(L )) ! H k (C� (L ))
and the dimension ofH k (C� (L )) coincide with the kth Betti number of X . Thus,
the upper and lower bounds in Eq. (5) coincide with thekth Betti number of X ,
which implies the following:

Theorem 5.4. Let X be a length space that admits a �nite geodesic" -sample
L . Then, for all k 2 N, for all � > 2" and � � 2� such that f L �= 2g, f L � g, f L � g
form good open covers ofL �= 2, L � , L � respectively, the rank of the homomorphism
H k (R � (L )) ! H k (R � (L )) induced by inclusion coincides with thekth Betti number
of X .

In [Chazal and Oudot 2008], the analysis takes place in Euclidean spaceRd, where
balls are convex and their intersections contractible (if not empty). In [Chazal
et al. 2009], the analysis is extended to the case of compact Riemannian manifolds,
with or without boundary, where geodesic balls are convex and their intersections
contractible (if not empty) up to the so-called convexity radius of the manifold.
Thus, the assumption of having good covers in Theorem 5.4 holds as long as� is
smaller than the convexity radius. In the present context, the domain X is not
a Riemannian manifold since its boundary can be non-smooth. Yet, the above
properties of geodesic balls still hold provided that the radii are not more than a
fraction of the systolic feature size ofX :

Lemma 5.5. If X is a Lipschitz planar domain, then any �nite collection of open
geodesic balls of radii at most13 sfs(X ) forms a good open cover of its union inX .

Combined with Theorem 5.4, this result implies that, if L is a geodesic" -sample
of a Lipschitz planar domain X , for some " < 1

12 sfs(X ), then, for any choice of
parameters � 2 (2"; 1

6 sfs(X )] and � 2 [2�; 1
3 sfs(X )], the Betti numbers of X can

be obtained as the ranks of the homomorphisms induced at homology level by the
inclusion R � (L ) ,! R � (L ).

Lemma 5.5 is the main new result of this section. Its proof turns out to be rather
elaborate, and in fact it draws some interesting connections between the systolic
feature size and the distance to the cut locus on the one hand (see Lemma 5.6
in Section 5.1), as well as between Lipschitz planar domains and a class of length
spaces calledAlexandrov spaceson the other hand (see Theorem 5.10 in Section
5.2). The proof is detailed in Sections 5.1 and 5.2, while Section 5.3 adapts the
above analysis to the case of witness complexes.

5.1 Systolic feature size and cut locus

A noticeable feature of the systolic feature size is its close relationship with the
so-called cut-locus. For any given path : I ! X , we call support of  the set
 (I ). If  is a shortest path betweenx =  (0) and y =  (1), then  (I ) is called a
shortest path supportbetweenx and y. Note that di�erent paths may have identical
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supports. In particular, a shortest path support may be shared by shortest paths
as well as non-shortest paths (think of the latter as moving back and forth along
the support). Given a point x 2 X , the cut-locus of x in X , or CLX (x) for short, is
the locus of the points ofX having at least two di�erent shortest paths supports to
x in X . In other words, a point y 2 X belongs to CLX (x) i� there exist two paths
;  0 : I ! X such that  (0) =  0(0) = x,  (1) =  0(1) = y, j j = j 0j = d X (x; y),
and  (I ) 6=  0(I ). The geodesic distance fromx to its cut-locus is denoted by
dX (x; CLX (x)).

Lemma 5.6. If X is a Lipschitz domain in the plane, then8x 2 X , sfs(x) =
dX (x; CLX (x)) .

Proof. We �rst show that sfs( x) � dX (x; CLX (x)). This is clearly true if the
path-connected componentX i of X that contains x is simply connected, since in
such a case we have sfs(x) = + 1 . Assume now that X i is not simply connected,
and let  : (S1; 1) ! (X; 1) be a non null-homotopic loop through x in X , of
length 2sfs(x) < + 1 . Such a loop exists, by Lemma 3.2. Moreover, according to
[Burago et al. 2001, Proposition 2.5.9], we can assume without lossof generality
that  is parameterized with constant speed, that is: 8s 2 I , j [0;s] j = sj j. We
then have j [0;1=2 ] j = j [1=2 ;1] j = 1

2 j j = sfs(x). Call respectively  0 and  00the paths
 [0;1=2 ] and  [1=2 ;1] . These are two paths betweenx and y =  (1=2) in X , hence
their lengths are at least dX (x; y). We claim that j 0j = j 00j = d X (x; y). Indeed,
let � be a shortest path from x to y in X . Since  is not null-homotopic in X ,
 0 and � 00 are not homotopic relative to @I in X , and therefore  0 � �� or � 00� ��
(say  0 � �� ) is not null-homotopic in X . It follows that j 0 � �� j � 2sfs(x). Now, if
j� j < j 00j, then we have j 0 � �� j = j 0j + j� j < j 0j + j 00j = j j = 2sfs(x), which
raises a contradiction with the previous sentence. Therefore,j 0j = j 00j = j� j =
dX (x; y). Finally, we claim that the supports of  0 and  00are distinct. Assume for a
contradiction that  0(I ) =  00(I ). Then, for all s0 2 [0; 1=2], there exists s002 [1=2; 1]
such that  (s0) =  (s00). This implies that d X (x;  (s0)) = d X (x;  (s00)). But since
 0 and � 00are shortest paths fromx to y in X , we have dX (x;  (s0)) = j [0;s0] j and
dX (x;  (s00)) = j [s00;1] j. It follows that s0 = 1 � s00, because is parameterized with
constant speed. This means that 0 = � 00, which implies that  =  0 �  00 is null-
homotopic in X , which contradicts our assumption. Thus, we have 0(I ) 6=  00(I ),
as well asj 0j = j 00j = d X (x; y), which means that y belongs to CLX (x). Therefore,
sfs(x) = j 0j = j 00j = d X (x; y) � dX (x; CLX (x)).

Let us now show that sfs(x) � dX (x; CLX (x)). Assume for a contradiction that
there is a point y 2 CLX (x) such that dX (x; y) < sfs(x). Point y has at least two
shortest paths ;  0 from x whose supports di�er. Assume without loss of generality
that ;  0 are parameterized with constant speed. Then, for all 0� s < s 0 � 1,
we have  (s) 6=  (s0), since otherwise the path  [0;s] �  [s0;1] would connect x to y
and be strictly shorter than  , hereby contradicting the fact that the latter is a
shortest path from x to y. Thus,  is an injection from I to X . Given any points
u; v 2  (I ), with  � 1(u) �  � 1(v), we call  uv the path  [ � 1 (u ) ; � 1 (v)] . By the
same argument, 0 is also an injection from I to X , and we use the same notation
for subpaths.

Since the supports of and  0 di�er, we have  (I ) n 0(I ) 6= ; or  0(I ) n (I ) 6= ; {
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say  (I )n 0(I ) 6= ; . Let  uv be a maximal subarc of satisfying  uv (]0; 1[)\  0(I ) =
; . Here, u and v are the two endpoints of  uv , and by maximality we have u 6= v
and u; v 2  (I ) \  0(I ). Since  uv and  0

uv are injective, and since their images in
X have common endpoints but disjoint relative interiors, the path  0

uv � � vu is a
simple loop, and therefore it divides the plane into two connected components, one
of which (called C) is bounded, by the Jordan curve theorem. Moreover, we have
@C= (  0

uv � � vu )( I ), and the degree of the loop with respect to any point ofC is
non-zero. Now, since;  0 are shortest paths fromx to y, with d X (x; y) < sfs(x),
the image of the loop 0

uv � � vu lies in the open geodesic ballBX (x; sfs(x)). Hence,
by Lemma 3.4, the loop is null-homotopic in X , and since its degree with respect
to the points of C is non-zero, any homotopy with a constant map in X passes
through the points of C, which therefore belong toX . Thus, between pointsu and
v,  and  0 sandwich a regionC that is included in X . We will show that there
exist shortcuts to ;  0 in C, hereby contradicting the fact that  and  0 are shortest
paths from x to y in X .

Consider the line segment [u; v], and choose a positively-oriented orthonormal
frame such that point u is at the origin, line (u; v) is vertical, and point v lies above
u. Let � uv denote the path s 7! (1 � s)u + sv.

- If [u; v] is included in C, then the paths  xu � � uv �  vy and  0
xu � � uv �  0

vy
connect x to y in X . And since  uv (I ) and  0

uv (I ) di�er, one of them at least (say
 uv (I )) di�ers from [ u; v], which implies that j uv j > dE (u; v) = j� uv j and hence
that j j > j xu � � uv �  vy j, which contradicts the fact that  is a shortest path from
x to y in X .

- If now [u; v] is not included in C, then there is a point p 2 [u; v] that does not
belong to C. On the horizontal line passing throughp, C lies on the right or on the
left of (u; v), say on the right. Let c be a rightmost point of C. We have c =2 f u; vg
becausec lies on the right of line (u; v). Note that c 2 @C, and assume without
loss of generality that c 2  uv (I ), which implies that c =2  0

uv (I ) since c =2 f u; vg.
Let � be the connected component of uv (I ) n (u; v) that contains c. Since uv is a
simple arc, � is a subarc of uv , starting and ending on (u; v), and passing through
c. Let l be the vertical line passing throughc. Note that C does not intersect the
right half-plane bounded by l. Nevertheless, other components of@Cn (u; v) may
touch l, including some subarcs of 0

uv . However, by paring C in�nitesimally in
their vicinity, one can easily ensure that � is the only arc of @Cthat touches l.
Hence, from now on, we assume without loss of generality thatl \ C � � . This
implies that  0

uv (I ) does not touch l, since� �  uv (]0; 1[), which does not intersect
 0

uv (I ). Therefore, the rightmost vertical line l0 touching  0
uv (I ) lies on the left of

l . Let � > 0 denote the Euclidean distance betweenl and l0.

Consider the open Euclidean ballBE (c; � ). Since c 2 C, there exists a point c00

lying in C \ BE (c; � ). Since C is open in R2, we have c00 =2 @C. Let l00 be the
vertical line passing through c00. Note that l00 is located on the right of l0. Let u00

and v00be the �rst points of intersection of l00with @Cabove and belowc00. We have
[u00; v00] � C. Moreover, u006= v00becausec00 =2 @C. In addition, u00and v00belong
to  uv (I ), since they lie on l00and hence on the right of l0. Finally, [ u00; v00] di�ers
from  u00v00(I ) because [u00; v00] passes throughc00 =2 @C. As a result, the path � u00v00,
de�ned by s 7! (1 � s)u00+ sv00, is included in C � X , it connects points u00; v00
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of  uv (I ), and it is shorter than  u00v00. It follows that the path  xu 00 � � u00v00 �  v00y

connectsx to y in X , and is strictly shorter than  , which contradicts the fact that
 is a shortest path from x to y in X . This shows that every point y inside the
open geodesic ballBX (x; sfs(x)) has only one shortest path support tox. It follows
that sfs(x) � dX (x; CLX (x)), which concludes the proof of Lemma 5.6.

The fact that the geodesic distance of a pointx 2 X to its cut-locus is equal
to half the length of the shortest non null-homotopic loop through x was already
known in the case of planar domains with polygonal boundaries [Mitchell 1991].
Lemma 5.6 above extends this result to the case of planar domains with Lipschitz
boundaries.

5.2 Lipschitz planar domains are Alexandrov spaces

The background material used in this section comes from Chapters 4 and 9 of
[Burago et al. 2001], to which we refer the reader for further details.

We call geodesic triangleany collection of three distinct points a; b; c 2 X con-
nected by three shortest paths supports� ab; � bc; � ca in X . Note that the three
vertices alone may not de�ne a geodesic triangle uniquely since there may be sev-
eral di�erent shortest paths supports connecting a same pair of vertices.

Definition 5.7. Given a geodesic triangle of verticesa; b; c2 X , a comparison
triangle is a triangle (�a; �b;�c) in the Euclidean plane such thatdE (�a; �b) = d X (a; b),
dE (�b;�c) = d X (b; c), and dE (�c; �a) = d X (c; a).

Although three distinct points in X may not de�ne a unique geodesic triangle,
they always de�ne a unique comparison triangle up to an isometry of the Euclidean
plane.

De�nitions 5.8 and 5.9 below consider theshapesof small enough geodesic tri-
angles as a criterion for a length space to have bounded curvature. This criterion
is inspired from results in Riemannian geometry, where manifolds of negative cur-
vature tend to have skinny triangles, whereas manifolds of positive curvature have
rather fat triangles. Here, the skinniness of a geodesic triangle is measured with
respect to a comparison triangle in the Euclidean plane.

Definition 5.8 Angle condition. A geodesic triangle(a; b; c; �ab; � bc; � ca ) sat-
is�es the angle condition if the angles formed by� ab; � bc; � ca at the vertices a; b; c
are well-de�ned and at most the corresponding angles in a comparison triangle.

In the above de�nition, by angle between two paths �; � : I ! X emanating from a
same point p = � (0) = � (0) is meant the limit quantity lim s;t ! 0

e\ (� (s); p; � (t)), if
it exists, where e\ (� (s); p; � (t)) denotes the inner angle8 at the vertex corresponding
to p in a comparison triangle of (p; � (s); � (t)). This limit may not always exist in
general. Below we prove that, in the special case of Lipschitz planar domains, small
enough geodesic triangles have concave edges (Claim 5.10.3) whose tangents at the
vertices of the triangles are well-de�ned, which implies that angles between edges
are also well-de�ned.

8This angle is de�ned uniquely because the comparison triang le is de�ned uniquely up to an
isometry of the Euclidean plane.
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Definition 5.9. A length spaceX is an Alexandrov space with non-positive
curvature if around each point of X there is a neighborhood such that every geodesic
triangle within this neighborhood satis�es the angle condition of De�nition 5.8.

Alexandrov spaces of non-positive curvature are sometimes calledCAT(0)-spaces
in the literature, where CAT stands for Cartan-Alexandrov-Toponogov, and where
(0) indicates the upper bound on the curvature. Note also that curvature bounds
are usually derived from distance conditions, not angle conditions. As proved in
[Burago et al. 2001, Theorem. 4.3.5], distance and angle conditions are in fact
equivalent.

The main result of this section is that Lipschitz planar domains are CAT(0)-
spaces:

Theorem 5.10. Every Lipschitz domainX in the plane, endowed with the length
structure inherited from (R2; dE ), is an Alexandrov space of non-positive curvature.
More precisely, for any open geodesic ballB � X of radius at most 1

3 sfs(X ), and
for any distinct points a; b; c2 B , the geodesic triangle formed bya; b; c and their
(unique) shortest paths supports satis�es the angle condition of De�nition 5.8.

The proof of the theorem uses four intermediate results, stated as Claims 5.10.1
through 5.10.4 and proved on the y.

Proof of Theorem 5.10. Observe �rst that, since the diameter of B is less than
sfs(X ), the shortest paths supports betweena; b; care de�ned uniquely, by Lemma
5.6. For more clarity, we call � ab, � bc, and � ca these paths supports | dashed in
Figure 3 (left).

Claim 5.10.1. The paths supports� ab, � bc and � ca are simple planar curves that
pairwise intersect along connected subarcs incident to their common endpoints.

Proof. Since� ab, � bc and � ca are shortest paths supports, they have to be simple,
since otherwise they could be shortened. Consider now� ab and � bc. These paths
supports intersect at their common endpoint b. Assume that they have another
point b0 of intersection. Then, the arc of � ab that connects b to b0 is a shortest path
support between the two points in X . Idem for the arc of � bc that connects b to b0.
Therefore, these two arcs coincide, by Lemma 5.6. It follows that� ab and � bc must
intersect along a common subarc incident to their common endpointb. The same
is true for � bc and � ca on the one hand, and for� ca and � ab on the other hand.

Let � bb0 be the common subarc of� ab and � bc, � cc0 the common subarc of� bc and
� ca , and � aa 0 the common subarc of� ca and � ab. The shortest paths supports� a0b0,
� b0c0 and � c0a0 are then uniquely de�ned as subarcs of� ab, � bc and � ca respectively.
Note that if a0 = b0 or a0 = c0 or b0 = c0, then it must be the case that a0 = b0 = c0,
by Claim 5.10.1.

Claim 5.10.2. If a0 = b0 = c0, then the curve � = � a0b0 [ � b0c0 [ � c0a0 is reduced
to a point. Else, � is a simple closed curve whose complement inR2 has two path-
connected components, one of which (called
 ) is bounded and contained inX .

Proof. Since � a0b0; � b0c0; � c0a0 are shortest paths supports, they are reduced to
a same point if a0 = b0 = c0. Else, we havea0 6= b0, b0 6= c0 and a0 6= c0, and the
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Fig. 3. Left: a geodesic triangle ( a; b; c) in a Lipschitz planar domain (light grey). Shortest paths
supports are dashed. The non-singular part of the triangle, of vertices a0; b0; c0 and interior 
, is
shown in dark grey. Right: bold segments show the possible lo cations of �b0 and �c0 on rays [a; �b)
and [a; �c).

de�nition of a0; b0; c0 derived from Claim 5.10.1 ensures that� is a simple closed
curve. Then, the Jordan curve theorem guarantees that� divides R2 into two
distinct connected components, one of which (called 
) is bounded. Let a0b0 : I !
X be a shortest path betweena0 and b0,  b0c0 : I ! X a shortest path betweenb0 and
c0, and  c0a0 : I ! X a shortest path betweenc0 and a0. Let now  =  a0b0 � b0c0 � c0a0.
We have  (I ) = � . Furthermore,

j j = d X (a0; b0) + d X (b0; c0) + d X (c0; a0) � dX (a; b) + d X (b; c) + d X (c; a) < 2sfs(X );

which implies that  is null-homotopic in X , by de�nition of sfs( X ). Let � : S1� I !
X be a homotopy between and a constant map in X . For any point x 2 
, we
have degx  = � 1 since the loop winds once around 
. If x did not belong to
�( S1 � I ), then � would be a homotopy between  and a constant map inR2 n f xg,
thus by Corollary 2.1 we would have degx  = 0, thereby raising a contradiction.
It follows that �( S1 � I ) contains all the points of 
, which is therefore included in
X .

It follows from Claim 5.10.2 that the geodesic triangle formed by� a0b0, � b0c and
� c0a0 is either reduced to a point, or an embedded triangle in the plane, whose
interior 
 is included in X . From now on, we denote the triangle by (a0; b0; c0) for
simplicity.

Claim 5.10.3. The triangle (a0; b0; c0) has concave edges.

Proof. Consider an edge of the triangle, say for instance� a0;b0. For any pair of
points x; y on this edge, consider the Euclidean segment [x; y]. We will show that
[x; y] \ 
 = ; . Assume for a contradiction that this is not the case, and let (x0; y0)
be a connected component of [x; y] \ 
. This component is an open subsegment
of [x; y], and its endpoints lie on � a0b0. Call � a0x 0 the subarc of � a0b0 that connects
a0 to x0 and � y0b0 the subarc of � a0b0 that connects y0 to b0. Replacing � a0b0 by
� a0x 0 [ (x0; y0) [ � y0b yields a path support betweena0 and b0 that is strictly shorter
than � a0b0, yet still included in X (since 
 � X ). This contradicts the fact that
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� a0b0 is a shortest path support betweena0 and b0 in X .

The fact that the edges of (a0; b0; c0) are concave implies that their tangents at
the three vertices are well-de�ned whena0; b0; c0 are distinct, as shown in Figure 3
(right).

We can now prove that the inner angles of the geodesic triangle (a; b; c) are well-
de�ned, taking for instance the case of vertexa: if a 6= a0, then � ab and � ca coincide
in the vicinity of a (as in Figure 3 (left) for instance), and therefore the inner angle
â is zero; if a = a0 = b0 = c0, then a lies on the shortest path support � bc, and
therefore â = � , since a; b; c are assumed to be distinct; else,a = a0 and a0; b0; c0

are distinct, and â coincides with the angle formed by the two rays emanating from
a and tangent to � ab and � ca respectively9. In every case, the inner angle ^a is
well-de�ned. The same is true for b̂ and ĉ.

Claim 5.10.4. The anglesâ; b̂;ĉ are not larger than the corresponding angles in
a comparison triangle.

Proof. Take for instance vertex a. If a 6= a0, then we haveâ = 0, which cannot
be more than the value of the corresponding angle in a comparison triangle. If
a = a0 = b0 = c0, then we have â = � . But since a belongs to the shortest path
support � bc, we have dX (b; c) = d X (b; a)+d X (a; c), which implies that a comparison
triangle must be at, with an inner angle at a equal to � . Consider �nally the case
where a = a0 and a0; b0; c0 are distinct. Let [a; �b) and [a; �c) be the rays emanating
from a and tangent to � ab and � ca respectively. On [a; �b), the point �b is placed such
that its Euclidean distance to a is equal to dX (a; b). Similarly, we place point �c on
[a; �c) such that dE (a; �c) = d X (a; c). Assume that the following inequality holds:

dE (�b;�c) � dX (b; c): (6)

Then, any comparison triangle of (a; b; c) must have an inner angle ata that is at
least the angleâ between [a; �b) and [a; �c), which proves the claim.

Let us now prove Eq. (6). Since the triangle (a; b0; c0) is embedded in the plane
with concave edges,b0 and c0 must lie outside the wedge formed by rays [a; �b) and
[a; �c), and the edge� b0c0 (as well as the Euclidean segment [b0; c0]) must intersect
the wedge. Let b00be the unique intersection point between [b0; c0] and [a; �b), and
c00 the unique intersection point between [b0; c0] and [a; �c). We place a point �b0

on [a; �b) such that dE (a; �b0) = d X (a; b0). We also let �b0
1; �b0

2 2 [a; �b) be such that
dE (�b0

1; a) = d E (b0; a) and dE (�b0
2; b00) = d E (b0; b00). Since the edge� a;b0 is concave,

it coincides with the graph of some convex real-valued function in an appropriate
orthogonal frame of abcissa line (a; b0). Observe that the Euclidean line segments
[a; b00] and [b00; b0], once concatenated, also form a concave triangle edge, therefore
[a; b00] [ [b00; b0] coincides with the graph of some convex function in the same frame
as above. And since [a; b00] [ [b00; b0] lies below � a;b0 in that frame, its length must

9This is an easy consequence of the concavity of the edges of (a; b0; c0). Indeed, when two points
p 2 � ab0 and q 2 � c0a converge to a, the ratios dX ( p;a )

dE ( p;a ) and dX ( q;a )
dE ( q;a ) converge to 1. Furthermore,

for p; q close enough to a, the Euclidean line segment [ p; q] is included in ( a0; b0; c0) and therefore
in X , which implies that dX ( p;q )

dE ( p;q ) = 1. Thus, as p; q converge to a, the angle of a comparison

triangle tends to dpaq, which converges to the angle between the tangents to � ab and � ca .
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be greater. As a result, we have:

dE (a; b0) � dX (a; b0) � dE (a; b00) + d E (b00; b0):

This implies that point �b0 lies in-between�b0
1 and �b0

2 along the ray [a; �b). Similarly,
placing �c0 on [a; �c) such that dE (a; �c0) = d X (a; c0), and letting �c0

1; �c0
2 2 [a; �c) be

such that dE (�c0
1; a) = d E (c0; a) and dE (�c0

2; c00) = d E (c0; c00), we have that �c0 lies in-
between �c0

1 and �c0
2 along [a; �c). Assuming without loss of generality that dX (a; b0) �

dX (a; c0), we then have

dE (�b0; �c0) � dE (�b0
2; �c0

1): (7)

In addition, since [b0; c0] crosses the wedge bounded by [a; �b) = [ a; b00) and [a; �c) =
[a; �c0

1), point �c0
1 lies inside the wedge bounded by [a; b00) and [a; c0). Now, inside

this wedge, the arc of circle@BE (a; dE (a; c0)) is included in the closed Euclidean
ball BE (b00; dE (b00; c0)). It follows that d E (b00; �c0

1) � dE (b00; c0), and by the triangle
inequality,

dE (�b0
2; �c0

1) � dE (�b0
2; b00)+d E (b00; �c0

1) = d E (b0; b00)+d E (b00; �c0
1) � dE (b0; b00)+d E (b00; c0);

which is equal to dE (b0; c0). It follows that d E (�b0
2; �c0

1) � dX (b0; c0). Combined with
Eq. (7), this inequality yields d E (�b0; �c0) � dX (b0; c0). Now, recall that d X (b; b0) =
dX (a; b) � dX (a; b0) sinceb0 lies on the shortest path support � ab. Idem, dX (c; c0) =
dX (a; c) � dX (a; c0) since c0 lies on the shortest path support � ca . Therefore, we
have dE (�b;�b0) = d X (b; b0) and dE (�c; �c0) = d X (c; c0). Combining these relations with
the triangle inequality, we obtain:

dE (�b;�c) � dE (�b;�b0) + d E (�b0; �c0) + d E (�c0; �c) � dX (b; b0) + d X (b0; c0) + d X (c0; c);

which is equal to dX (b; c) since b0; c0 lie on the shortest path support � bc betweenb
and c. This proves Eq. (6), and thus also the claim.

Claim 5.10.4 concludes the proof of Theorem 5.10.

Open geodesic balls ofX in which the angle condition of De�nition 5.8 is satis�ed
by all geodesic triangles are often callednormal balls in the literature. They enjoy
many interesting properties, among which the most important ones to us arethe
fact that normal balls are convex (i.e. any two points in a normal ball B have
a unique shortest path support, which is also included inB ), and the fact that
for any point p 2 X the map q 7!  pq, where  pq is a shortest path from p to q
parametrized with constant speed, is uniquely de�ned and continuous within any
normal ball that contains p. As a result, intersections of normal balls are either
empty, or convex and contractible | see Propositions 9.1.16 and 9.1.17 aswell as
Remark 9.1.18 of [Burago et al. 2001]. Combined with Theorem 5.10, this fact
proves Lemma 5.5.

5.3 The case of witness complexes

The one-parameter families of�Cech and witness complexes can be interleaved in a
same way as in Eq. (3), modulo some additional conditions on the landmarks and
witnesses densities:
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Lemma 5.11. Let X be a Lipschitz domain in the plane, of doubling dimension
d. Let W be a geodesic� -sample ofX , and L an "-sparse geodesic" -sample ofX .
For any parameter � > 0, we haveC� (L ) � C W

X;� (L ) as soon as� � 2ld , where
l = dlog2

2� + " +2 �
" e. Conversely, for any parameter� , we haveCW

X;� (L ) � C � (L ) for
all values � � (2� + 3) " .

Proof. Let � > 0 be a parameter, and� = [ p0; � � � ; pk ] a simplex of C� (L ).
The open geodesic ballsBX (pi ; � ) have a non-empty common intersection. Letc
be a point in the intersection, and let w 2 W be a point of W closest to c in the
intrinsic metric. We then have dX (w; c) � � , which implies that dX (w; pi ) < � + �
for all i = 0 ; � � � ; k. Now, since L is " -sparse, the points ofL that lie within
geodesic distance� + � of w are centers of pairwise-disjoint open geodesic balls of
same radius "

2 , packed inside the open ballBX (w; � + � + "
2 ). Since the doubling

dimension of X is d, the maximum possible number of such balls is at most 2ld ,
where l = dlog2

2� + " +2 �
" e. This implies that the vertices of � are among the 2ld

points of L nearest to w in the intrinsic metric. As a result, w is a � -witness of �
as soon as� � 2ld . Since this is true for any simplex � 2 C� (L ), we conclude that
C� (L ) � C W

X;� (L ) for all � � 2ld .
Let now � 2 N be a parameter, and� a simplex of CW

X;� (L ). Consider any � -
witness w of � . The vertices of � are among the� + 1 points of L closest to w in
the geodesic distance, and they all lie in the same path-connected component ofX
as w. Therefore, their geodesic distances tow are less than (2� + 3) " , according to
Lemma 4.13 and its subsequent comment. Thus, for all� � (2� + 3) " , w belongs
to the open geodesic balls of same radius� centered at the vertices of� , whose
common intersection is therefore non-empty. It follows that CW

X;� (L ) � C � (L ).

Letting l(� ) = dlog2
2� + " +2 �

" eand � (� ) = 2 l ( � )d, we deduce from Lemma 5.11 the
following inclusions, which correspond to the ones of Eq. (3) for witness complexes:
8� > 0,

C� (L ) � C W
X;� ( � ) (L ) � C (2 � ( � )+3) " (L ):

The above inclusions induce a sequence similar to the one of Eq. (4):8� � (2� (� )+
3)" ,

C� (L ) � C W
X;� ( � ) (L ) � C � (L ) � C W

X;� ( � ) (L ) � C (2 � ( � )+3) " (L ):

This sequence provides upper and lower bounds on the ranks of the homomorphisms
induced at homology level by the inclusionCW

X;� ( � ) (L ) ,! C W
X;� ( � ) (L ), as in Eq. (5):

8� � (2� (� ) + 3) " , 8k 2 N,

rank H k (C� (L )) ! H k (C(2 � ( � )+3) " (L )) � rank H k (CW
X;� ( � ) (L )) ! H k (CW

X;� ( � ) (L )) � dim H k (C� (L )) :

Equality between the upper and lower bounds is guaranteed by Lemma 5.5, using
the same analysis as in the introduction of Section 5 and assuming that� > " and
(2� (� ) + 3) " � 1

3 sfs(X ). We thus obtain:

Theorem 5.12. Let X be a Lipschitz planar domain,W a geodesic� -sample of
X , and L a �nite geodesic " -sample ofX . Then, for any choice of parameters� and
� � (2� (� ) + 3) " such that � > " and (2� (� ) + 3) " � 1

3 sfs(X ), the Betti numbers
of X can be obtained as the ranks of the homomorphisms induced at homology level
by the inclusion CW

X;� ( � ) (L ) ,! C W
X;� ( � ) (L ), provided that �; " are small enough.
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6. ALGORITHMS

In this section, we describe high-level procedures for estimating sfs, for generat-
ing geodesic"sfs-samples, and for computing the homology of a Lipschitz planar
domain. Our algorithms rely essentially on two oracles, whose implementations de-
pend on the application considered. Section 7 will be devoted to the implementation
of such oracles on a sensor network.

6.1 Computing the systolic feature size

Lemma 5.6 suggests a simple procedure for computing the systolic feature size:
given a Lipschitz domain X in the plane, and a point x 2 X , grow a geodesic
ball B about x at constant speed, starting with a radius of zero, and ending when
B covers the path-connected componentX x of X containing x. Meanwhile, focus
on the wavefront @Bas the radius of B increases { this wavefront evolves as the
iso-level sets of the geodesic distance tox:

{ if at some stage the wavefront self-intersects, meaning that there is a point
y 2 @Bwith at least two di�erent shortest paths supports to x, then interrupt
the growing process and return the current value of the radius ofB ;

{ else, stop onceB coversX x and return + 1 .
By detecting the �rst self-intersection event in the growing process, the procedure
�nds a point of CL X (x) closest to x in the intrinsic metric, and therefore it returns
dX (x; CLX (x)), which by Lemma 5.6 is equal to sfs(x). The procedure relies on
two oracles: the �rst one detects whether B covers X x entirely; the second one
detects whether the wavefront self-intersects at a given valuer of the radius of B ,
or rather, between two given valuesr 1 < r 2 of the radius of B .

6.2 Generating geodesic"sfs-samples

Given a Lipschitz domain X in the plane, and a real number " > 0, we can use
the procedure of Section 6.1 to generate geodesic"sfs-samples ofX . Our algorithm
relies on a greedy packing strategy that builds a point setL iteratively by inserting
at each iteration a point of X that is far away from the current point set L in the
intrinsic metric.

In the initialization phase, the algorithm selects an arbitrary point p 2 X and
setsL = f pg. It also assigns top the open geodesic ballBp of center p and radius

"
1+ " sfs(p), where sfs(p) is estimated using the procedure of Section 6.1. If sfs(p) =
+ 1 , then Bp coincides with the path-connected component ofX containing p.
The main loop of the algorithm proceeds in a similar fashion. At each iteration,
an arbitrary point q 2 X n

S
p2 L Bp is selected and inserted inL . Point q is then

assigned the open geodesic ballBq of center q and radius "
1+ " sfs(q). The process

stops whenX n
S

p2 L Bp = ; .
The algorithm uses a variant of an oracle of Section 6.1, which can tell whether

a given union of geodesic balls coversX , and return a point outside the union in
the negative. Upon termination, every point x 2 X lies in some open ballBp, and
we have dX (x; L ) � dX (x; p) < "

1+ " sfs(p), which is at most " sfs(x) since sfs is 1-
Lipschitz in the intrinsic metric (Lemma 3.3). Moreover, d X (x; p) is �nite because
Bp is included in the path-connected component ofX containing p. Therefore,
upon termination, L is a geodesic"sfs-sample ofX . Let us show that the algorithm
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indeed terminates:

Lemma 6.1. For all " > 0, the algorithm terminates.

Proof. Our approach is to bound the pairwise Euclidean distances between
the points of L from below by some positive value, and then to apply a packing
argument. Let h = min f 1; sfs(X )g. Note that we do not use sfs(X ) directly, since
the latter might be in�nite. In contrast, 0 < h < + 1 .

Consider any two points p; q inserted in L by the algorithm, and assume without
loss of generality that q was inserted after p. If sfs(p) = + 1 , then the ball Bp

coincides with X p, the path-connected component ofX that contains p. Therefore,
q does not belong toX p, and we have dX (p; q) = + 1 > h"

1+ " . If sfs(p) < + 1 , then
dX (p; q) is at least the radius ofBp, which is equal to "

1+ " sfs(p) � "
1+ " sfs(X ) � h"

1+ " .
In any case, we have dX (p; q) � h"

1+ " for all points p; q 2 L . We will now bound this
quantity from below by another quantity depending on dE (p; q), which will then
enable us to use a packing argument.

Consider the set K of all pairs of points x; y of X such that dX (x; y) � h"
1+ " .

K is a closed subset ofX � X , which is compact sinceX is, henceK itself is
also compact. It follows that the map10 g(x; y) = dE (x;y )

dX (x;y ) reaches its minimum m
over K . This minimum is positive since 8(x; y) 2 K , we have dX (x; y) > 0, which
implies that x 6= y and hence that dE (x; y) > 0.

From the previous paragraphs, we deduce that, for all pointsp; q 2 L , dE (p; q) is
at least m dX (p; q) � mh"

1+ " . Hence, the points ofL are centers of pairwise-disjoint

open Euclidean balls of same radius mh"
2(1+ " ) > 0, packed insideX � BE

�
0; mh"

2(1+ " )

�
,

where� stands for the Minkowski sum. SinceX is compact, so isX � BE

�
0; mh"

2(1+ " )

�
,

which therefore contains only �nitely many disjoint open Euclidean balls of same
positive radius. It follows that L is �nite. And since the algorithm inserts one point
in L per iteration, the process terminates.

We will now show that the size of the output of the algorithm lies within a
constant factor of the optimal, the constant depending on the doubling dimension
of (X; dX ).

Lemma 6.2. For any " 2]0; 1[, the output landmarks set is "
1+ " sfs-sparse, and

its size is within 2ld times the size of any geodesic"sfs-sample of X , where l =l
log2

3+3 " +2 " 2

1� "

m
and whered is the doubling dimension of(X; dX ).

The inuence of the doubling dimension d of X is illustrated in Figure 2 (right),
where the domain consists of two copies of the domain of Figure 2 (left), glued
together along the tips of their branches. The systolic feature size at any point of
X is at least half the perimeter of a hole, which is equal to 2 + 2

2k � 1 . Consider
the sets P = f p; p0g and Q = f q1; � � � ; qk g. For any point x 2 X , the geodesic
distance from x to P is at most 2, as in the case of Figure 2 (left). As for the
geodesic distance fromx to Q, it is at most 2 + 2

2k � 1 . Both distances are bounded
from above by sfs(x), so that P and Q are geodesic sfs-samples ofX . Now, for any

10 This map is well-de�ned since d X (x; y ) � h"
1+ " > 0 for all ( x; y ) 2 K .
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qi 2 Q, the geodesic distance fromqi to any other qj is greater than half the length
of the shortest loop through qi that winds around a hole. Therefore, the geodesic
distance from qi to Q n f qi g is greater than sfs(qi ). It follows that Q is sfs-sparse.
However, the size ofQ is k

2 times the size ofP, where k is of the order of 2d, as
observed before Theorem 4.17.

Proof of Lemma 6.2. Let L be the output landmarks set. Given any two points
p 6= q 2 L, assume without loss of generality that p was inserted in L before q.
Then, q does not belong to the open geodesic ball of centerp and radius "

1+ " sfs(p).
Hence, dX (p; p) � "

1+ " sfs(p), which is at least "
1+ " minf sfs(p); sfs(q)g. Therefore,

L is "
1+ " sfs-sparse.

Let now L 0 � X be any geodesic"sfs-sample ofX . Consider the function � :
L ! L 0 that maps each point of L to its nearest neighbor in L 0 in the intrinsic
metric, breaking ties arbitrarily. We then have jL j =

P
q2 L 0 j� � 1(f qg)j. Therefore,

to bound the size ofL , it is enough to bound the size of each set� � 1(f qg).
Let q 2 L 0, and let p1; � � � ; pk be the points of � � 1(f qg). All the points pi belong

to the path-connected componentX q of X that contains q, since L 0 is a geodesic
"sfs-sample ofX . If sfs(q) = + 1 , then X q is simply connected, and therefore the
algorithm picks only one point from X q. It follows that j� � 1(q)j = 1. Assume from
now on that sfs(q) < + 1 , which means that X q is not simply connected and hence
that the sfs(pi ) are �nite.

Since L 0 is a geodesic"sfs-sample ofL , for all i = 1 ; � � � ; k we have dX (pi ; q) <
" sfs(pi ), which is at most "

1� " sfs(q) since sfs is 1-Lipschitz in the intrinsic metric
(Lemma 3.3). Hence, the pi belong to the open geodesic ball of centerq and
radius "

1� " sfs(q). Moreover, assuming without loss of generality that p1; � � � ; pk

were inserted in L in this order, we have that, for all 1 � i < j � k, pj does
not belong to the open geodesic ball of centerpi and radius "

1+ " sfs(pi ). Hence,
dX (pi ; pj ) � "

1+ " sfs(pi ), which is at least "
(1+ " )2 sfs(q) since dX (pi ; q) � " sfs(pi )

and since sfs is 1-Lipschitz in the intrinsic metric. Therefore, thepi are centers of
pairwise-disjoint open geodesic balls of radius "

2(1+ " )2 sfs(q), packed inside the open

geodesic ball of centerq and radius
�

1
1� " + 1

2(1+ " )2

�
" sfs(q) = 3+3 " +2 " 2

2(1 � " )(1+ " )2 " sfs(q).

It follows from the previous paragraph that the size of� � 1(f qg) is bounded by the
maximum number of open geodesic balls of radius "

2(1+ " )2 sfs(q) that can be packed

inside an open geodesic ball of radius 3+3 " +2 " 2

2(1 � " )(1+ " )2 " sfs(q). By Lemma 4.16, this
number is at most the minimum number n of geodesic balls of radius "

2(1+ " )2 sfs(q)

that are necessary to cover a geodesic ball of radius 3+3 " +2 " 2

2(1 � " )(1+ " )2 " sfs(q). The

ratio between the two radii is 3+3 " +2 " 2

1� " , therefore n is at most
�
2d

� l
= 2 ld , where

l =
l
log2

3+3 " +2 " 2

1� "

m
and d is the doubling dimension of (X; dX ). Thus, for all point

q of L 0, the size of� � 1(q) is at most 2ld , which implies that jL j � 2ld jL 0j.

Note that the algorithm introduced in this section can also be used to generate
(uniform) "-sparse geodesic" -samples ofX , for any input " > 0. It su�ces indeed
to remove the estimation of sfs from the algorithm, which is no longer needed, and
to consider open geodesic balls of radius" instead of radius "

1+ " sfs. The arguments
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of the proofs of Lemmas 6.1 and 6.2 still hold in this context, and the technical
details are slightly simpler.

6.3 Computing the homology of Lipschitz domains in the plane

Given a �nite sampling L of some Lipschitz planar domain X , a variant of the
procedure of Section 6.1 can be used to buildDX (L ): grow geodesic balls around
the points of L at same speed, and report the intersections between the fronts. The
homology ofDX (L ) gives then the homology ofX , provided that L is dense enough,
by Theorem 4.3. However, in many practical situations,X is only known through
a �nite sampling W , which makes it hard to detect the intersections between more
than two fronts. In this type of discrete setting, it is relevant to replace the con-
struction of DX (L ) by the ones of CW

X;� (L ) or R � (L ), for some subsetL � W of
landmarks, since these constructions only require to compare geodesic distances at
the points of L or W . The Betti numbers of DX (L ) (and hence the one ofX ) can
then be obtained as the ranks of the homomorphisms induced at homology level by
the inclusionsCW

X;� (L ) ,! C W
X;� 0(L ) or R � (L ) ,! R � 0(L ), for well-chosen parameters

�; � 0 or �; � 0, thanks to the results of Section 5.
More precisely, if we choose for instance to use witness complexes, then we can

select two integer parameters� � � 0 and build CW
X;� (L ) and CW

X;� 0(L ) by means of
comparisons between the geodesic distances from the points ofW to the points of L .
Then, using simplicial homology with coe�cients in a �eld, which in practice will
be Z=2 { omitted in our notations, we have that for all k 2 N the inclusion map i :
CW

X;� (L ) ,! C W
X;� 0(L ) induces a homomorphismi �

k : H �
k (CW

X;� (L )) ! H �
k (CW

X;� 0(L )).
By applying the persistence algorithm [Zomorodian and Carlsson 2005] tothe �ltra-
tion CW

X;� (L ) ,! C W
X;� 0(L ), we can compute the rank ofi �

k . Now, thanks to Theorem
5.12, for any given choice of parameters� 0 > � 0 > 0, the rank of i �

k coincides with
the kth Betti number of X provided that W; L are dense enough (i.e. that �; " are
small enough). Thus, the homology of the domain can be inferred using witness
complexes, under su�cient sampling density.

7. APPLICATION TO SENSOR NETWORKS

We have implemented the algorithms of Section 6 in the context of sensor networks,
where the nodes do not have geographic locations, and where the intrinsic metric
is approximated by the shortest path length in the connectivity graph G = ( W; E),
which is assumed to comply with thegeodesicunit disk graph model. This means
that each node has a geodesic communication range of� , so that two nodesw; w0 2
W are connected in the graph i� dX (w; w0) � � . All edges have a unit weight, and
we denote by dG the associated graph distance { also called hop-count distance.
This geodesic unit disk graph model is the analog of the standard Euclidean unit
disk graph model in the intrinsic metric.

Lemma 7.1. Assume that W is a geodesic� -sample of X , with � < �
2 . Then,

for all nodes w; w0 2 W , we have:

dX (w; w0)
�

� dG (w; w0) �
dX (w; w0)

�

�
1 +

4�
�

+
�

dX (w; w0)

�

Proof. Let w; w0 2 W be two nodes of the graph. We �rst give an upper
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bound on dG . Consider a shortest path � from w to w0 inside X . We have j� j =
dX (w; w0). Let 0 = t0 � t1 � � � � � tm � 1 � tm = 1 be distributed along I
in such a way that dX (� (t i ); � (t i +1 )) = � � 2� for all i = 0 ; � � � ; m � 2, while

dX (� (tm � 1); � (tm )) � � � 2� . Clearly, we have m =
l

dX (w;w 0)
� � 2�

m
. For all i , let

wi be a point of W closest to � (t i ) in the intrinsic metric. Since W is a geodesic
� -sample of X , we have w0 = � (t0) = w, wm = � (tm ) = w0, and dX (wi ; � (t i )) �
� for any other i . It follows from the triangle inequality that: d X (wi ; wi +1 ) �
dX (wi ; � (t i )) + d X (� (t i ); � (t i +1 )) + d X (� (t i +1 ); wi +1 ) � � . Therefore, [wi ; wi +1 ] is
an edge of the communication graphG, and thus to � corresponds a path in G.
Both � and  connect w to w0 and are made ofm pieces stitched together. Hence,
dG (w; w0) � m =

l
dX (w;w 0)

� � 2�

m
, which is bounded from above by:

�
dX (w; w0)

�

�
1 +

4�
�

��
�

dX (w; w0)
�

�
1 +

4�
�

�
+1 =

dX (w; w0)
�

�
1 +

4�
�

+
�

dX (w; w0)

�
:

Let us now give a lower bound on dG . Let  be any path from w to w0 in the
communication graph G. For any consecutive nodeswi ; wi +1 along the path, we
have dX (wi ; wi +1 ) � � since [wi ; wi +1 ] is an edge ofG. Therefore, by the triangle

inequality,  must have at least
l

dX (w;w 0)
�

m
edges. Since this is true for any path

from w to w0 in G, dG (w; w0) �
l

dX (w;w 0)
�

m
� dX (w;w 0)

� .

Assume now that L is a "
1+ " sfs-sparse geodesic"sfs-sample11 of X . Suppose that

� << � << " << 1. Given a witnessw 2 W , every landmark p 2 L that is not its
closest landmark satis�es: dX (w; p) = 
( " ) >> � , which implies that dG (w; p) is
an accurate approximation to dX (w;p )

� , by Lemma 7.1. If now p is the landmark
closest tow, then we may as well have dX (w; p) << � , but in this case we also have
dX (w; p) << dX (w; q) for all q 2 L n f pg, which implies that dG (w; p) < dG (w; q).
As a result, dG may change the order of the distances between the landmarks andw,
but interverted distances must have similar values. In this respect, we can say that
dX is a faithful approximation to d X , as it is known that the persistent homology of
the family of � -witness complexes is stable under such small perturbations [Chazal
et al. 2009].

Systolic feature size computation.Given a nodex, we estimate the geodesic dis-
tance of x to its cut-locus, which by Lemma 5.6 is equal to sfs(x). Wang et al.
[Wang et al. 2006] proposed a distributed algorithm for detecting the cut-locus,
which works as follows: the nodex sends a ood message with initial hop count
1; each node receiving the message forwards it after incrementing the hop count.
Thus, every node learns its minimum hop count to the nodex. Then, each pair
of neighbors check whether their least common ancestor (LCA) is at hop-count
distance at leastd. If so, then they also check whether their two shortest paths to
the LCA contain nodes at least d away from each other (by looking at the d

2 -ring
neighborhoods of the nodes of the paths). Every pair satisfying these conditions is
called a cut pair. As proved in [Wang et al. 2006], every hole of perimeter greater

11 One may as well assume that L is an " -sparse geodesic" -sample of X , in a uniform version of
the setting.
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than d yields a cut pair. Then, every cut node checks its neighbors, and if it has
the minimum hop count, then it reports back to x with the hop count value. Thus,
x gets a report from one node on each connected component of the cut-locus, and
learns the systolic feature size as the minimum hop value.

Landmarks selection and witness complex computation.The landmarks selection
procedure implements the incremental algorithm of Section 6.2 in a distributed
manner. A node has two states,covered and uncovered. A covered node lies inside
the geodesic ball of some landmark. Initially, all the nodes are uncovered. They
wait for di�erent random periods of time, after which they promote themselves
to the status of landmark. Each new landmark oods the network, computes its
systolic feature size, and informs all the nodes within its geodesic ball to becovered.
Thus, every node eventually becomes covered or a landmark itself.

The geodesic witness complex is computed in a similar way as in [Fang et al. 2005].
The selected landmarks ood the network, and every node records its minimum hop
counts to them. With this information, it determines which simplices it witnesses.
A round of information aggregation collects all the simplices and constructs the
witness complex in a centralized manner. In a planar setting, where only the Betti
numbers � 0 and � 1 are non-zero, we only need to build the 2-skeleton of the witness
complex. Therefore, each node may store only its three nearest landmarks, and it
may avoid forwarding messages from other landmarks. This reduces the message
complexity drastically.

As for � -witness complexes, they are computed with the exact same procedure,
except that each node stores its geodesic distances to its� + 1 nearest landmarks.

Simulation results and discussion.Figures 4 through 8 present our simulation
results. We considern sensor nodes randomly distributed in a Lipschitz planar
domain. Two nodes within unit Euclidean distance of each other are connected,
so that the resulting communication network is a unit disk graph. The average
node degree in this graph is denoted byd. The intrinsic metric is approximated
by the graph distance in the connectivity network, where each edge can be either
unweighted (hop-count distance) or weighted by its Euclidean length (weighted
graph distance). Our aim is to evaluate the dependency of the landmarks selection
and homology computation on various parameters. For the homology computation
we use the pair of complexesCW

X (L ) and CW
X;� (L ), where L is the landmarks set and

� is an integer parameter that ranges typically between 2 and 11. The inclusion
CW

X (L ) � C W
X;� (L ) holds because we restrict our construction to the 2-skeleta of

the complexes. Figure 4 shows a typical example, with" = 0 :5 (a) and " = 0 :25
(b). In both cases, only the genuine 3 holes persist and are therefore identi�ed as
non-trivial 1-cycles in the geodesic Delaunay triangulation.

� Nodes density. We vary the number of nodes from 217 to 355. The aver-
age degree remains the same. The result is shown in Figure 5. Again, the
persistent homology between the witness complexCW

X (L ) and the � -witness
complex CW

X;� (L ) gives the homology of the domain. Thus, only the intrinsic
geometry of the domain matters, not the scale of the network, as long as the
latter remains dense enough.
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� Landmarks density. Figure 6 shows our results on the same setup as above,
with " = 0 :85 (a) and " = 0 :15 (b). In the �rst case, only two holes are
captured, because of the low landmarks density. In the second case, three
non-genuine holes are not destroyed in the� -witness complex, because the
value of the relaxation parameter� is too small given the relatively low nodes
density. Increasing� from 2 to 4 produces the correct answer (c). But setting
� to too high a value (� = 11, " = 0 :25) destroys some of the genuine holes
(d). Throughout our experiments, the algorithm produced correct results
with small values of � (� � 4), provided that the nodes and landmarks sets
were reasonably dense. This demonstrates the practicality of our approach,
despite the large theoretical bounds stated in Theorems 4.14 and 4.17.

� Weighted graph distance vs. hop-count distance.Since the hop-count distance
is a poor approximation to the geodesic distance, the range of values of" that
work �ne with it is reduced. In Figure 7 for instance, the scheme works well
with " = 0 :5, but not with " = 0 :25, in contrast with the results of Figure 4.

� Packing strategy. Figure 8 shows some of our sampling results. It appears
that di�erent packing strategies can produce samples of very di�erent sizes,
as predicted by Lemma 6.1. Maximizing the ratio dX (q;L )

sfs(q) at each iteration
seems to be a very e�ective strategy in practice, but it is also time-consuming,
and it tends to choose landmarks near the boundaries of the domain, which
can be a quality or a defect, depending on the application considered.

8. CONCLUSION

We have introduced a new quantity, called the systolic feature size, and showed that
it is well-suited for the sampling and analysis of Lipschitz domains in the plane.
In particular, given a domain X and a landmarks setL that is su�ciently densely
sampled from X , the bound on the density depending on the systolic feature size
of X , we have proved that the geodesic Delaunay triangulation ofL is homotopy
equivalent to X . The systolic feature size depends essentially on the global topology
of X , and it is rather insensitive to the local geometry. As a result, it enables to
have very sparse sets of landmarks, which makes it a convenient theoretical tool
for geometric data analysis. In this context, we have devised generic procedures
for estimating the systolic feature size and for generating geodesic"sfs-samples of
Lipschitz planar domains.

With more practical applications in mind, we have focused on the geodesic wit-
ness complex and its relaxed version, proving that these two complexes sandwich
the geodesic Delaunay triangulation under some conditions. As an application, we
have shown that it is possible to estimate the homology of a Lipschitz planar do-
main X from a �nite set of landmarks L without actually building DX (L ) explicitly,
by constructing CW

X (L ) and CW
X;� (L ) and computing their persistent homology. To

give theoretical guarantees to this approach, we proved in the conference version
of the paper that the persistent homology betweenCW

X (L ) and CW
X;� (L ) coincides

with the homology of DX (L ), yet under some fairly stringent sampling conditions.
Our practical experiments in the context of sensor networks suggest that milder
conditions should be su�cient. Taking a di�erent approach in the present paper,
we have uncovered some su�cient conditions that depend solely on the systolic
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feature size.

This work can be improved in several ways:
{ One may look at bounded domains in higher-dimensional Euclidean spaces,

with applications in robotics and geometric data analysis. Note that our
approach relies on cycles bounding holes being non-contractible. In higher
dimensions, voids cannot stop cycles from contracting to a point, so our frame-
work does not apply as it is, and higher-dimensional homotopy groups need
to be considered.

{ Another possible improvement would be to generate homology bases whose
elements isolate the various holes ofX . There exists some work along this
line, but for a slightly di�erent context [Freedman and Chen 2007].

{ Finally, in order to make the approach fully practical, it would be necessary
to devise distributed variants of the procedures that build the simplicial com-
plexes and compute the persistent homology. Whether such variants exist is
still an open question at this time.
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(a) n = 217, d � 7:66, " = 0 :5, � = 2, weighted graph distance.

(b) n = 217, d � 7:66, " = 0 :25, � = 2, weighted graph distance.

Fig. 4. From left to right: witness complex, relaxed witness complex, per sistence barcode
of the �ltration.
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(a) n = 353, d � 7:66, " = 0 :5, � = 2, weighted graph distance.

(b) n = 353, d � 7:66, " = 0 :25, � = 2, weighted graph distance.

Fig. 5. Same setting as above, with a higher nodes density.
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(a) n = 353, d � 7:66, " = 0 :85, � = 2, weighted graph distance.

(b) n = 353, d � 7:66, " = 0 :15, � = 2, weighted graph distance.

(c) n = 353, d � 7:66, " = 0 :15, � = 4, weighted graph distance.

(d) n = 353, d � 7:66, " = 0 :25, weighted graph distance. Left: witness complex; Middle:
� = 2; Right: � = 11.

Fig. 6. E�ect of varying parameter � , versus landmarks density.

Chazal, F. and Oudot, S. Y. 2008. Towards persistence-based reconstruction in Euclid ean
spaces. In Proc. 24th ACM Sympos. Comput. Geom. 232{241.

Cheng, S.-W. , Dey, T. K. , and Ramos, E. A. 2005. Manifold reconstruction from point samples.
In Proc. 16th Sympos. Discrete Algorithms . 1018{1027.

Daverman, R. J. 2007. Decompositions of Manifolds . American Mathematical Society, Provi-
dence, RI.

de Silva, V. 2008. A weak characterisation of the Delaunay triangulatio n. Geometriae Dedi-
cata 135, 1 (August), 39{64.

de Silva, V. and Carlsson, G. 2004. Topological estimation using witness complexes. In Proc.
Sympos. Point-Based Graphics . 157{166.

ACM Journal Name, Vol. V, No. N, Month 20YY.



Geodesic Delaunay Triangulations in Bounded Planar Domains � 45

(a) n = 217, d � 7:66, " = 0 :5, � = 2, hop-count distance.

(b) n = 217, d � 7:66, " = 0 :25, � = 2, hop-count distance.

Fig. 7. Same setting as above, with the weighted graph distance replaced by the hop-count
distance.

(a) " = 1
3 , random landmarks selection outside

S
p2 L B p .

(b) " = 1
3 , insertion of node q that maximizes dX ( q;L )

sfs( q) outside
S

p2 L B p .

Fig. 8. Landmarks sets obtained by two di�erent packing strategies, and thei r geodesic
witness complexes.
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A. APPENDIX { PROOF OF PROPOSITION 2.2

We use singular homology with real coe�cients, so that our homology groups are
vector spaces over the �eldR { omitted in our notations. Please refer to [Hatcher
2001, Chapter 2] for an introduction to homology theory.

Proof of (i). The proof is by induction on k. The case k = 1 is trivially
true. Assume now that the result is true up to somek � 1, and considerk + 1
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planar sets X 1; � � � ; X k+1 satisfying the hypotheses of Proposition 2.2 (i). Notice
that each path-connected component ofX 1 \ � � � \ X k+1 is the intersection of some
path-connected componentY of

T k
i =1 X i with Z = X k+1 , which by the induction

hypothesis are simply connected. Intuitively, the presence of a hole in the intersec-
tion Y \ Z would automatically imply the presence of a hole inY or in Z . Thus,
the path-connected components ofY \ Z must be simply connected, sinceY and
Z are.

Formally, since Y , Z and Y \ Z are ANR's, the triad ( Y [ Z; Y; Z ) is excisive
and the Mayer-Vietoris long exact sequence holds:

� � � ! H2(Y [ Z )
@2! H1(Y \ Z )

�
! H1(Y ) � H1(Z ) ! � � �

Since Y and Z are simply connected, we haveH1(Y ) = H1(Z ) = 0, therefore
ker � = H1(Y \ Z ). By exactness, ker� is also equal to im @2, which is trivial
since we haveH2(Y [ Z ) = 0, Y and Z being subsets ofR2. As a result, we have
H1(Y \ Z ) = 0. Since H1(Y \ Z ) is the direct sum of the H1(C), for C ranging
over all the path-connected components ofY \ Z , we have H1(C) = 0 for each
path-connected componentC of Y \ Z . This implies that the fundamental group of
C is trivial: indeed, sinceC is a path-connected planar set, its fundamental group is
either free or uncountable, and therefore it is trivial if and only if its abelianization
(which is preciselyH1(C)) is. As a conclusion,C is simply connected, which proves
the result for k + 1 and thereby concludes the induction.

To prove (ii), we need an easy intermediate result:

Lemma A.1. If X; Y are path-connected planar sets such thatX \ Y 6= ; , then
X [ Y is path-connected.

Proof. Let p 2 X \ Y , and let q be any other point of X [ Y . If q 2 X , then
there exists a path betweenp and q in X , which is path-connected. Otherwise,q lies
in Y , and there exists a path betweenp and q in Y , which is also path-connected.
Therefore, every point ofX [ Y is path-connected top in X [ Y , which is therefore
path-connected.

We can now prove (ii):

Proof of (ii). Assume that X \ Y is not empty. Intuitively, the topological
type of X [ Y partially determines the topological type of X \ Y , in the sense
that X [ Y would have a hole if everX \ Y were not path-connected, sinceX; Y
themselves are path-connected. Formally, sinceX , Y and X \ Y are ANR's, the
triad ( X [ Y; X; Y ) is excisive and the Mayer-Vietoris long exact sequence holds:

� � � ! H1(X [ Y )
@1! H0(X \ Y )

�
! H0(X ) � H0(Y )

 
! H0(X [ Y )

@0! 0:

Since X \ Y 6= ; , Lemma A.1 tells us that X [ Y is path-connected, therefore
dim H0(X [ Y ) = 1. This implies that dim ker @0 = 1, and hence that rank  =
dim ker @0 = 1, by exactness. By the homomorphism theorem, we have dim ker =
dim(H0(X ) � H0(Y )) � rank  , which is equal to 1 sinceX and Y are path-
connected. Hence, by exactness, rank� = dim ker  = 1. Moreover, since by
assumption X [ Y is simply connected, we have dimH1(X [ Y ) = 0, which implies
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that rank @1 = 0. By exactness, we have dim ker� = rank @1 = 0. Hence, by the
homomorphism theorem, dimH0(X \ Y ) = dim ker � + rank � = 1, which means
that X \ Y is path-connected.
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