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Abstract path was discovered througHaral algorithm with the par-
Small-world experiments in which packages reach aq_'hcipants forwarding to a friend who they belie\_/ed to b(_e more
dressees unknown to the original sender through a forwafely to know the target. Although forwarding decision-
ing chain confirm that acquaintance networks have shBtgking was not systematically recorded, geographical-prox
paths, a property that was later also discovered in mdAyty was found to be an important forwarding criterion in
other networks. They further show that people can find théme cases. Other criteria such as profession and popular-
paths by passing the package on to the acquaintance rH¥dpay have been used as well. A recent small-world study
socially proximate to the target. This has led researcioerd/fing email-chains [17] confirms this, finding that at least
conjecture that perhaps also in many other networks sofifdf of the choices were due to either geographical proxim-
proximity-based algorithm can be used to find short pattf¥,of the acquaintance to the target or occupational simila
provided that nodes are given appropriate coordinates. &Y. Thus these experiments hint that perhaps also in other
though potential applications are numerous, ranging frdigtworks, some greedy routing algorithm can successfully
decentralized search to recommendation-based trust to f@liver messages, provided that nodes are given apprepriat
ease control, this conjecture has remained largely unerificoordinates. _ _

In this paper we apply algorithmic methods to embed nodes In this paper we consider the conjecture that real-world
in some latent space and employ greedy routing to delitworks from.diverse_conte.xts, so.cial and non-social, can
packages. Using these methods we empirically investigﬁf‘eembe‘ddEd n tmw-dlmen.smnal h.|dden spasehere the_

the navigability of five real-world complex networks fronflistances between nodes in the hidden space approximate
diverse contexts and of varying topology. In each netwo'xja,elr graph distances in the network, such that some greedy

we deliver a majority of packages in fewer than six hops. Mechanism minimizing the distances to the destinaiion
the latent spacés able to find a short path for most pairs

1 Introduction of nodes. The existence of such a latent spacsoicial

In the 1960’s, Stanley Milgram and his collaborators Corr]]_etwoirks 'S sqggested by the soqol_oglcal_ prmmplehof.
. . . L mophily, that friends tend to have similar traits or adopt sim-
ducted a series of experiments in which individuals from Ne- . S :
. “Ilar behaviors [34]. A set of individuals with a large num-
braska and Kansas were asked to try and get letters delivered o T
. . er of social ties between them may indicate that they have
to unknown recipients in Boston [40]. A person forwards the - ) L .
nearby positions in the space of characteristics [5]. Ttxs s

letter to a friend who is more likely to know the target. Many.
Elal space may refer to a space of observed or unobserved

letters were discarded by uncooperative intermediariets, L . .
. ) ent characteristics that represent potential trasesien-
about20% of the letters arrived at the target, in an average C .
encies in network relations. Moreover, networks may have

under six hops. This experiment is the earliest to verify the : . L S
) ; L ? spatial component, with connectivity decreasing in geo-
small-world phenomenon’ (aka ‘six degree of separatlon?

. . .. graphical distance [13, 30]. Nevertheless, we must remark

that thereexistsa short path between almost any pair of ind " ; .
. . : hat the methods we consider do not use any social, spatial
viduals in the world. It was later discovered that many other . e .
. ) . or any other node-identifying information. Instead, theéy a
networks, in vastly different contexts ranging from powar

grids, film collaboration networks, and neural network [2 empt todiscoverthis space from network structure alone.

to email networks [17], food webs [42] and protein interac-hIS allows them to be appllcable to anonymous SOC'?' net-
. L works as well as non-social networks that must be navigated.
tion networks [22], also exhibit the small-world property.

. i . We must also emphasize that these methods are rather basic
In addition to revealing the existence of short paths In .

. and straight-forward. The methods themselves are not the
real-world acquaintance networks, the small-world experi

' main contribution here. Rather, we use them to verify the
ments showed that these networks aexigable A short Co . . . g
navigability conjecture on five different empirical netey

social and non-social, of very diverse origin and topology.
~ “Department of Computer Science, Stony Brook Universitur results show that they can all be navigated. In each net-

{xban, j gao}@s. sunysb. edu. work, a majority of packages is delivered in fewer than six
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Our contribution. We propose to first embed the network ipath is short.
a latent space and apply greedy routing with the coordinates

generated. . . . . Significance of network navigation. The task of identify-

We start with the obvious choice of Euclidean spaggy short paths appears in a wide variety of empirical set-
and use the prominent embedding algorithm of Multijgs Short paths allow for speedy package delivery in de-
Dimensional Scaling (MDS) [7]. We measure the distang@ntralized file-sharing networks [2], searching for pasy
between any two nodes as the length of the shortest pathjR&rery large metabolic networks [18], and enable reputatio
tween them in the social network. With the all pair graphased trust in exchange [11]. The fact that we are living
distances MDS produces a coordinate for every node in {R&; ‘small world’ suggests that potentially we can consult
Euclidean space with a pre-specified dimensionality. ~ ith any expert in a field of interest, or do business with

MDS however requires the all pairs distance matrix @hy individual, with recommendations through a short chain
the network and is computationally intensive. To makg friends — if only we were able to find such a short path
our method feasible for very large empirical networks thgf,ickly. Short path identification will also facilitate a m
are only partially observed, we adopt landmark-based MIBgr of social operations. The occupants ‘structural holes’
(LMDS) [16], in which a few nodes are selected as 'an%tz\;i]tioned on short paths between otherwise distant others
marks and embedded first, and the rest of the nodes emieghcial networks earn brokerage benefits [10, 41]. The task
themselves using distances to these landmarks. It is sheWRnsuring sufficient structural distance between two-indi
below that landmark MDS achieves a comparable perfQiguals appears frequently: monopoly mediation, double-
mance (in terms of delivery rate and routing path length) {&geting in advertisement, avoiding infection, and stgri
that of MDS, but more than an order of magnitude faster. Thgnfidential information that must travel far to reach an un-
use of landmark MDS also implies a distributed implemeQanted ear [41, 12].
tation of the embedding/routing algorithm. In particuleg In many of these application scenarios, a central naviga-
can sample a small set of nodes in the social network as lagigh device is often lacking, distributed flooding causes-co
marks, and embed them. Any individuals who would like igestion and excessive use of resources. In addition, thesnod
route can embed themseh@sthe fly by using the distancesmay have limited information storage capacity and process-
to the landmarks. In a coauthorship or film collaboration Nghg power. The network data may be incomplete, and node
work, the obvious choices for the landmarks are the famopgibute information may be absent altogether. For these s

scholars or actors with well-known connections to eachrothggs greedy routing is a better choice than centralizedtsho
and the distances to others pre-calculated (such as ths Efghih computations.

number or the Bacon number). The distances from all nodes
to the landmarks can be computed in time linear in netwosk Reljated Work on Small World Graphs
size.

As the Euclidean space of dimensidias a geometric 2.1 Navigation in model networks A number of studies

growth rate and small-world graphs have been observe(Jﬂ'E%/e proposed mathematical models for small world net-

have low diameters, suggesting an exponential growth ra\{%’é),rks and navigation in such networks.

. o . Watts and Strogatz [20] proposed as a ‘random rewiring
we also consider embedding into the hyperbolic space. Vr>1/%del’ in which with some probability the edges on a rin
employ R. Kleinberg's embedding method [28] to embed_a P y 9 9

. : . . . are rewired to random vertices. The rewiring probability ca
tree in hyperbolic space with the induced coordinates use .
X € tuned to generate networks in between the two extremes
for greedy routing.

. ; . of perfectly regular and perfectly random networks. It
We consider five real-world networks from diverse con-
texts and of varying topology: A peer-to-peer file sharing shown that for mQSt .Of the par-ameter space, neworks

' gmultaneously exhibit high clustering and low path length

network, a scientific collaboration network, a movie-act%\r . )
dgmonally, three diverse real-world networks are shown
coappearance network, an Internet autonomous systems net-

O o to~exhibit both properties. They show that short paths
work, and a network of individuals co-appearing in news ar; : .
: . o o often exist but not how they could be found without global
ticles from New York Times. Surprisingly, with simply out-
; . nowledge of the network.
of-the-shelf methods one is able to get reasonably high de- . . . .
. Barabasiet al. [3] considered an evolving graph in
livery rate, and even more, very small average path length.. L . .
T . ich each newcomer connects to existing vertices with
within six steps. Before we conducted these experiments o : )
) : probability proportional to their current degree (thus the
we expected that possibly some fraction of the messages €an :
R . . name preferential attachment model). The network con-
reach the destination via the greedy algorithm, as the emni- ; o
. . ructed is a scale-free graph, i.e., it has a power-lawegegr
bedding by MDS preserves the distances to some extent. \We © ~ " :
isfribution, a property of various real-world networksher
have never expected that these messages only use 4 or 5 ho . . -
. . raph also has small diameter and in addition, hub nodes that
on average! Note that successful delivery does not imply the ', . .
are highly connected to other vertices. For scale-freettgap



a degree-based greedy routing has been investigated [2, 24jcale-free degree distribution, or they require addition
The intuition is to send the message to a neighbor with higmerde-identifying information. They may fail in real-world
degree as the neighbor is more likely to be a neighbor of thetworks that violate these properties, and are impossible
destination. to apply in real-world networks that lack node-identifying

Another idea to navigate in small world networks is tmformation, such as anonymous social networks and non-
make use of user identities (geographical location, profescial networks. Even if such information is available, the
sion, etc.) and the structure of the ‘social space’. Kleiedges in real-world networks do not necessarily follow the
berg [27] considered a lattice networklkf and placed ad- distribution of similarity-dependence specified in these-t
ditional edgegq with probability proportional tal/|pg|®, oretical models. These algorithms have been tested on only
where|pq| is the Euclidean distance betwegry anda is  a few real-world networks for which node-identifying infor
a parameter. Then he showed thatif= d the greedy mation was available, and without much success. For exam-
algorithm of delivering the message to the node closestpie, the hierarchical organization model [19] has been show
the destination irEuclidean distancés able to find a short to work well only on the HP email network, for which mes-
path to the destination with polylogarithmic number of hopsages were delivered in a median of four hops, but perform
If d # «, the greedy routing takes necessarily polynomipborly for the Club Nexus online social network due to in-
number of hops, i.e., the network is not navigable. Wattemplete data or less structured hierarchy [1] (even using e
et al. [19] considered a hierarchical professional organiz@nsive profile knowledge the local search has a medium of
tion of individuals and a homophilious network with tie21 steps and a mean of 53 steps). Using geographical loca-
added between two nodes closer in the hierarchy withtians has shown only a delivery rate (% to deliver a mes-
higher probability. If each node has a fixed probability afage to the target city (not the target individual') on a Live
dropping the message, they show a greedy routing algoritdournal data set [32]. Kleinberg’s small world model [27] is
sending packages to the neighbor most similar to the tased to fit the ‘web of trust’ of the email cryptography tool
get (called homophily-based routing) successfully delave Pretty Good Privacy (PGP) [38]. But the delivery rate is only
fraction of the messages before they are dropped. Kle¥2% delivery rate with meag6 steps.
berg [25] also confirmed similar results on a hierarchicélne  Compared with prior work, we do not require the net-
work. Simsek and Jensen [39] evaluated routing schemesiank to be scale-free as in [2, 24, 6]. We do not assume
networks with different homophilous level. When the hatodes stay in a given space as in [27, 6, 29]. And we do
mophily level is low, degree based routing is effective &s thot require any node identities or geographical locatians a
hubs connect different part of the network. When the nét-[27, 19, 25, 39]. Instead of requiring an embedding of the
work homophily level is high, hubs are not very useful asetwork in an observed space, our task is to discover the hid-
they connect to other individuals very similar to themsslveden space of real-world networks, which is possibly specific
They proposed to use a simple product of the homophily atedeach network. As it turns out, with this hidden space dis-
degree to estimate the neighbor who is most likely to be dbvered, greedy routing achievesich highersuccess rates
rectly connected to the target. compared with previous experiments with real-world spatia

Bogufa et al. [6] incorporated both the idea of havirgmbedding.
a social space and the power law degree distribution. They
considered nodes on a ring and assigned target degrees 2d@n Graph embedding and greedy routingEmbedding
a power law distribution. An edge is then placed betweangraph in Euclidean spaces with small metric distortion
two nodes with a probability positively dependent on thdiras been studied actively in recent years. It is known
distance and negatively dependent on their degrees. Ttiet any graph of. vertices can be embedded Rf with
investigated greedy routing with the distances on the riliqgé&= O(logn) such that the graph distance is distorted by a
a means of navigating in the network. factor of at mostl + ¢, for anye > 0, with the Euclidean

Krioukov et. al [29] considered using a hyperbolic plangistance in the embedding (please refer to the book [33] for
as the hidden social space. Nodes are uniformly distribugedarge body of work on this topic). It can be shown that
in a radiusk disk in a hyperbolic plane with edges placethe Internet Autonomous Systems network (AS-network)
in pairs with distance smaller than They show that suchcan be embedded iR” such that most of the routes can
a graph is naturally scale-free and that greedy routing wiktimate their inter-delay fairly accurately by their Hdebhn
hyperbolic distance delivers the packets with high succelistances [36, 26]. Similar efforts have also been done for
rate. transportation networks [9].

The greedy routing algorithm minimizing ‘distance’

2.2 Navigation in real-world networks Although the to the destination is used pervasively in ad hoc wireless
theoretical models and algorithms above are very inspirimgtwork routing [8, 23], which is the motivation for the
they require networks to satisfy certain properties, suchsiudy of graph embeddings that supports greedy routing



schemes. Most existing work only considered embeddinggach node will embed itself. Denoting lythe number of
low dimensional Euclidean space suchiREsor R? [31, 37]. nodes,k the number of landmark nodeg,the embedded
dimension, the procedure is as follows:

3 Embedding and Greedy Routing 1. Let P, denote the squared distance matrix of landmark

In this section we describe the algorithms we used for nodes, computd;, by adopting step1 in MDS, which
embedding a given complex network in Euclidean space shifts P, to its center.

and greedy routing with the ‘social distances’ in that space
We considered embedding in both Euclidean spaces a
hyperbolic spaces. We remark that these algorithms are ‘off

Let \; andv; denote theth largest eigenvalue and its
corresponding eigenvector @, respectively. Com-

the shelf’ techniques. However, even these simple methods pute T
produce extremely short paths with greedy routing. We wi =i [V,
discuss the implication and empirical significance of the then W = (w;,ws,...,w) is the transformation
results in a later section. matrix of triangulation.
o ] o ) 3. Letd;, i = 1,--- ,k, be the hop distance vector from
3.1 Embedding in Euclidean SpacesViulti-dimensional nodei to thek landmarks, taking its mean as
scaling (MDS) is a classical method for embedding a set of
nodes inR<. It takes am: x n distance matrixP as input, 5 - b 5 Ik
outputs am x d coordinate matrix such that the distance B Z i/ k-
between any pair of nodes approximates the corresponding =t
distance inP. MDS is done as follows: 4. Given a nodé, the embedded coordinate
— (. — (b 1
1. TransferP = (pi;)nxn 10 B = (bij )nxn S:t. £ = _§W(5i —5,),
1 1 1 1 v which is an affine transformation of the distance vector.
bis = —=(p2—= 2 _ 24 2. _ _ : :
! 2 (i n ;p” n ;p”+n2 Z; ;p”) The firstd elements ofi; gives the desired embedding
a - T result.

This step shifts the matrix to the center by subtracting

the mean. LMDS only requiresO(kn) space and its running time

is O(dkn + k*), wherek is the number of landmarks, is
2. Perform eigen-decomposition @hs.t. the dimensionality to be embedded to. Sinkte: k < n,
LMDS requires much less space and time than MDS. In our
applicationsk andd are both chosen to be small constants.
in which matrix A is a diagonal matrix with the eigen-Thus LMDS has a_Ilnear running time. .
values ordered from largest to smallest and makfix Another benefit qf LMDS is that it does not require the
contains the corresponding eigenvectors. Set knowledge of the entire n_etwork. Note that we only need to
know the shortest path distances from the landmarks to all
X =VAY2, other nodes in the network. This can be achieved by using
breadth-first search from the landmarks with a running time
Then X gives the coordinate of the nodes inn of O(kn).
dimensional Euclidean space. MDS requires the knowledge of the entire network and
thus is less desirable for a distributed system, compared
with LMDS. To use landmark MDS, each landmark can
flood the network so every node knows the distance to
the landmarks. One of the landmark nodes performs the
MDS has a running time aP(n?3) and require$)(n?) classic MDS method on the pairwise distance matiix. .
space, once the distance matiikis given. In our case, on all landmarks and broadcasts the landmark coordinates
the distance matrix will include the all pairs shortest patb the entire network. Non-landmark nodes then perform
distances. distance-based triangulation on their own to derive their
For large data sets, MDS is too slow. V. de Silva andcdbordinates. Since we typically use a constant number of
Tenenbaum proposed a landmark based multi-dimensidaadmarksk can be considered as a constant, so MDS on the
scaling method (LMDS) [16]. LMDS selects a small subsktndmark nodes takes a constant amount of time and space.
of nodes as landmarks, and performs MDS to embed thédernatively, we may also use the distributed MDS [15] to
landmarks. The other nodes will measure their distancestonpute the coordinates of the landmark nodes in the first
the landmarks. By performing distance-based trianguiatistep.

B=VvAVT,

3. To reduce the embedded dimension do take the
largestd eigenvalues fromd and their corresponding
eigenvectors i to form ann x d coordinate matrix.



3.2 Embedding in Hyperbolic SpacesA hyperbolic is evaluated by measuring the success rate of greedy routing
plane is a 2D Riemannian manifold with negative curvatur@nd the average routing path length.
A popular model is the Poincaré disk model, in which points

are in a unit disk, and the straight lines are segments of gifreedy Routing with Degree Information. A small world

cles contained in the disk orthogonal to the boundary of thgtwork typically has a power law degree distribution [4],
disk, or else diameters of the disk. df v are two vectors yith many low-degree nodes and a few high degree ‘hubs’.
with Euclidean norm less than 1, we define an isometric iR high degree nodes have more neighbors, routing to high
variant by degree nodes has a higher chance of encountering a node
with the destination as immediate neighbor. This is the idea

2
o(u,v) =2 ||u2_ il 5 used in the degree-based greedy routing by Adamic et al. [2].
(1 = [ll%)(@ = fv]]?) However, one drawback of pure degree-based routing is that
where|| - || denotes the usual Euclidean norm. Then tfaéssages arriving at hub nodes have no direction to ‘come
distance function ig(u, v) = arccosh(1 + &(u, v)). down’ to low degree destinations.

R. Kleinberg [28] proposed a method to embed a graph We propose a hybrid scheme by using greedy routing
in hyperbolic plane. First we compute a spanning tFeef Based on both distance and degree. Apart from the reason
the graph. The tre@ is then embedded in hyperbolic planéat high degree nodes are ‘more connected’ to other nodes,
so that each vertex is given a coordinate. Note that althodfY @lso tend to be embedded nearer to the ‘core’ of the
one can route on the tree edges only, the non-tree edged'gfork than low degree nodes, as will be shown later with

also used by greedy routing to produce (hopefully) shor@r experiments. We set a degree threstioldThe nodes
paths. with degree higher thai’ are thehubsof the network. The

If the maximum degree of the treE is d, there will rest of the nodes are at tiperipheryof the network. When
be at mostd branches from the root. We take a reguldP€ message is at a periphery nadee send the message to
polygonP such that each side corresponds to a branch. TdReneighboring node with highest degrees iloes not have
any side ofP, we introduce a hyperbolic isometrywhich @ neighbor with higher degree or it is already a hub, we go
maps endpoints of this side toand—1 while mapping the back to greedy routing with the embedded distances.
midpoint of its corresponding arc on the boundary circle to )
—i. Defineu = 7(0) as the point of root on the Poincaré Experimental Results
disk, then the virtual coordinate of root node r can Ha this paper we tested our method on a number of complex
computed ag. ! (u). p, is @ Mobius transformation definechetworks, including five large-scale real-world networks.

below. Consider two hyperbolic isometries We also tested on three artificially graphs generated from
models. The details of these data sets are shown in Table 1.
a:zr— —z, The astrophysics collaboration network (ASTRO) [35]

b 1 _ 2ni/d is the network of coauthorship between scientists posting

12— T(p(17(2))) pl2) =€ % preprints on the Astrophysics E-Print Archive between Jan-

the Mobius transformation is computed framandb. For uaryl, 1995 and Decembes1, 1999.

each pair of parent and child nodggw), w), if the virtual The Internet AS network (AS) [14] is a snapshot of au-

coordinates ofp(w) is known asf(p(w)), points on the tonomous systems generated by The Cooperative Associa-

Poincaré disk fop(w) andw areu andw, respectively, then tion for Internet Data Analysis (CAIDA). This snapshot is

f(w) = pyt(v). This process can be made to work in taken on Marchl1, 2009. We do not specify the type of

distributed manner and it takéXn) time to find coordinates links, say, as customer-provider links or peer-peer lirks.

for all nodes. For the scheme described above the lengtiA&f is an undirected graph with only connectivity informa-

the coordinates can be exponentialirin the worst case. tion.

There are techniques to reduce the length of the coordinates The Gnutella network (Gnu) is a data set used by

to beO(polylogn). Adamic in [2]. Gnutella was a popular P2P application, the
data set is a small world network with hubs as the high degree

3.3 Greedy Routing in Latent SpacesAfter the construc- nodes.

tion of the coordinate system, greedy routing will be used The actor network (ACT) [3] is a data set extracted from

to navigate from source to destination, by sending the masdb, each line between two nodes means those two actors

sage to a neighbor closer to the destination. The distancedfaborated in one movie.

evaluated by the Euclidean distance or hyperbolic distance The NYT news network (NYT) puts an edge between

depending on the embedding. When a node does not hauedaviduals that appear together in at least two artictes(g)

neighbor closer to the destination than itself, greedyingut juxtapositions) in the New York Times newspaper fro9s1

gets stuck and fails to deliver the message. The performatec2007.



Data set name Num(node) | Num(edge)| Avg degree| Num(landmark)
Astrophysics Coauthor Network (ASTRQ) 14,845 119,652 16.1202 100
Internet AS Network (AS) 31,277 70,527 4.5098 100
Gnutella Network (Gnu) 574 835 29178 30
Actor Network (Actor) 171,427 6,984,461 81.4861 | 100, 300 and 50(Q
NYT Network (NYT) 209,158 666,956 6.378 100 and 500

Table 1:Empirical Data Sets

The preferential attachment model (Pre) [3] assumesha coordinates of landmark nodes by LMDS are consistent
dynamic network with nodes coming in one by one. Whewith those in MDS [16], LMDS with all nodes as landmarks
a new node joins the network, it is connected to existimgexactly MDS. The testing graph is generated by means of
nodes with probability proportional to their current degjrethe preferential attachment model, Boguna-Krioukov-fglaf
The preferential attachment model introduces the ‘ricls gebodel and Erdos-Renyi models with000 nodes and, 000
richer’ hypothesis in the formation of complex networks aretiges. The embedded dimensiof.isGiven a pair of nodes
has been a popular model in explaining natural systems.ulandv, denote the distance generated by MDS and LMDS
this experiment, we taket, 845 nodes, each additional nodesd., , andd;, ,,, respectively. Théndividual distortionof
has outdegreg. LMDS relative to MDS isp,, , = |du,v — d,, ,|/du. The

The Boguna-Krioukov-Claffy model (BKC) [6] is aaverage distortioris p’ = Z'M pﬁw/nQ. The average dis-
recently proposed model assuming a hidden metric spaceantion drops as the number of landmarks decreases. Fig-
which the nodes reside. In particular, the hidden spaceuig 1 also shows that by selecting only a small number of
assumed to be a ring with the nodes uniformly placed on th@dmarks, high success rates for greedy routing can never-
ring. Each pain andv has a distanckiv| on the ring. Each theless be achieved.
nodew is assigned a target degrkg, drawn from a power
law distribution. Each edgeu, v) is added with probability 4.2  Greedy routing results on Euclidean spacéle eval-
proportional to uated two strategies for routing: greedy routing, and greed
routing with degree information. We also evaluated two dif-
ferent strategies for selecting landmarks, random selecti
_ . _..and selection of high degree nodes. The left four plots of
wherea is a model parameter. Intuitively the probability;y \re 5 shows the success rate for different embedded di-
that two nodes have an edge is inversely dependent on thell o naity. The Internet autonomous system network has
d|st_ance in the hidden space, and positively dependeqttﬁg highest success rate, which reaches n&afly with an
thelr targetdegrees. In g_eneral nodes near to each oty Nmbedded dimensionality 66. The preferential attachment
hidden space are more likely to be connected. If they are Qph achieves up f6% success with hubs selected as land-
nodes, they are a's‘? likely to be conn_ected even thought Arks, while the astrophysics collaboration network has a
are far away in the hidden space. In this experiment, we drgW. .o rate of more thaa% with random landmark selec-
the degree from power law distribution Prdb— i} ~ 1/i%, jon The average path length of the AS network and pref-
which is the degree distribution in the preferential attaeht ... tial attachment graph stays arounéind ASTRO net-
model.c is set to b@‘_ ) _ work stays around. This result shows that greedy routes

The Erdos-Renyl m(_)del (ER) [2,1] is the ur_1|form "aN3re short. The results also show that a random graph does
dom graph model, in which each pair of nodes is connecigg ,3ye good navigability. The graph generated by the re-
umformly randomly. I_t has a small diameter. We mcludg::en ly proposed BKC model, though claimed to be navigable
this graph as a ba_sellne,_ asa random graph has no SPg! ], does not work better than the preferential attachimen
structure to help with na_mgatlon. model or the real networks. Among the model networks, ran-

For all the theoretlc_al model networks, we vary th80m graph are the most ‘unstructured’ one. It does not have
average degree to examine the performance dependency Qfler jaw degree distribution or high clustering coeffitie
the number of edges. Our experiments show that random graphs are indeed less

bedding b d | h navigable than all the other networks.
4.1 Embedding by MDS and LMDS We evaluate the Figure 2 also shows that for some networks selecting

performance of em_bedding with MDS and landmark MD_‘?‘lighest degree nodes as landmarks performs better, while
LMDS is computationally more efficient than MDS, yet for other networks random selection works better. Detailed

gives similar embedding results even whes small. Fig- 54y sis shows that ASTRO network contains multiple clus-
ure 1 shows the comparison between MDS and LMDS. Since

(1 + [uv|/(kuko)) ™",
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Figure 1: Performance comparison of LMDS and MDS. BKC,Pre and ER stéoidBoguna-Krioukov-Claffy model, Preferential
Attachment model and Erdos-Renyi model, respectively.

ters, while most of the highest degree nodes belong to odl3 Greedy routing results on hyperbolic spaceAs
one cluster. Therefore, selecting highest degree nodes amown in [28], greedy routing on hyperbolic space is proved
not capture the true network structure, which leads to lowterhave guaranteed success. Therefore the length of aver-
success rate than random selection. Figure 3 (i) also shags path length is the crucial performance factor to evaluat
that random selection works better in the actor network. In hyperbolic embedding, different choices of spanning tre
In the right two plots of Figure 2, we set the high degresnd the root of the spanning tree will lead to different rogti
threshold such that0% of the nodes are hubs respectivelypathes between source and destination.
Contrary to the intuition that greedy routing with degree We first use the shortest path spanning tree (SPT) rooted
information improves the performance, we do not see muatithe node with highest degree as the tree in the hyperbolic
improvement. This shows that degree information is nenbedding. This tree is computed by flooding from the root.
important in our method, but rather that the distances in timethe first phase, an arbitrary node will flood all the other
discovered space truly help with greedy routing. nodes to compute the highest degree node in the network.
Success rate is possibly influenced by landmark numiBeées are broken arbitrarily. In the second phase, The node
and embedded dimensionality. While Figure 2 shows that thvéth maximum degree will perform flooding to get a breadth-
success rate grows with dimension, we take a larger netwér&t tree.
to see how those two factors influence the success rate. In the second method, we use random walk to generate a
The actor network is a large network with more thaspanning tree (RWT). In particular, we take an arbitraryenod
170,000 nodes. Figure 3 (i) shows an apparent growth afas the starting node, and uniformly randomly select one of
success rate as the embedded dimensionality grows. Ldtslneighborsv. If v has not been visited, edde, v) is a
mark number does not seem to play an important role, siricee edge. We move toand perform the same strategy until
using100, 300, and500 landmarks gives similar curves. Reall nodes are visited. The running time of this distributed
mark that the number of dimensions must be smaller tharmcess depends on the cover time of the random walk on
the number of landmarks. Similar results are obtained five particular graph.and ranges fraiin logn) to O(n?).
NYT network, which contains similar number of nodes witRWT is a spanning tree uniformly randomly selected from
actor network, but with much fewer edges. It suggests thhe set of all possible spanning trees.
network density does not play an essential role in our greedy Table 2 shows the average distortion, average path
routing. Despite that actor network and NYT network atength and shortest path length for hyperbolic routing @ th
much larger than our other data sets, the average path gengthpirical networks. It shows that there is a huge difference
are below or around for all experiments. between different spanning trees. The spanning tree sélect
Since the empirical networks have different averagy shortest path tree rooted on highest degree node achieves
degrees, it is essential to justify whether average degreenuch smaller path distortion. We conjecture that the reason
an important factor in our embedding and greedy routingight be that SPT usually divides nodes into more balanced
Figure 3 (ii) shows the impact of average degree, it takesanches than the trees obtained from random walk.
three model networks preferential attachment model, BKC
model and Erdos-Renyi Model. Combining with Figure 3 Discussion
we show how success rate and average path length chapggst work has demonstrated that under certain special con-
while the average degree changes frafto 8 and 4. itions, networks can be navigated in a decentralized fash-
The result turns out that average degree does not showglyith algorithmic methods. How navigable real-world
essential impact on our embedding and routing. networks that may violate these special conditions are, has
remained largely unknown. We have shown here that five
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Figure 3:(i) Impact of landmark number and dimension. ACT500H is AGI @etwork with500 highest degree nodes as landmarks.
(i) Impact of average degree. BKC8 means a BKC network wigrage degree to ke

Data set name SPT RWT
Avg SPL | Avg RL | Avg distortion | Avg SPL | Avg RL | Avg distortion

ASTRO 4.579 5.837 1.459 4.579 23.080 5.770
AS 3.847 4.265 1.422 3.847 9.712 3.237
Gnutella 4812 5.533 1.383 4.812 9.202 2.301
NYT 5.270 5.971 1.994 5.271 21.846 4.368
Actor 4.185 5.617 1.404 4.182 27.990 6.997
Pre 3.318 4.001 1.334 3.318 18.012 6.004
BKC 3.252 3.927 1.309 3.252 20.425 6.808

ER 4.863 7.978 1.995 4.863 36.270 9.067

Table 2:Greedy routing with embedding in hyperbolic space. Foreddations, please refer to Table 1 and Figure 1. SPL and Ridsta
for shortest path length and routing path length, respelgtiv



actual empirical networks, social and non-social, of vary djuickly to below40%, while average path length is still
verse origin and topology, can all be embedded in some hidgher thanL00.

den space such that effective navigation becomes possible. Sandberg [38] tried to fit a particular small world model
Using rather elementary methods, we deliver a majority oy J. Kleinberg [27] to a real data set, the web of trust, so as
packages in under six hops in every network. Even more stardiscover the users’ locations on a grid using Markov Chain
prisingly, navigation results are generally better, notsgp Monte Carlo method. The method has only demonstrated

than in simulated model networks. limited success witl32% delivery rate and mea26 steps.
Our experimental results yielded a number of interestiRart of the reason could be that it is not clear whether J.
findings. Kleinberg's model truly reflects the structure of the redbda

. . set
Qree_dy routing performance. The performance of naviga There is a tradeoff between the dimensionality of the
tion in real-world networks using a hidden space improves . . ;
. . .~ émbedding and the success rate of greedy routing using that
substantially on previous results. Past small-world exper .
. . . embedding. On one hand, the success rates grows as the
ments in which human participants forwarded messages;in . Lo .
. . dimensionality is increased, but the growing speed slows
social networks had much lower delivery rates due to up-

. . . , : own. Thus increasing the embedding dimensionality has
cooperative participants. Milgram’s experiment used node

) o . o iminishing return. Depending on the network structure
identifying information about the destination such as name ;

. . nd the size of network, some networks, for example AS
gender, occupation, etc. 64 out of 296 letters arrived at the

S . nd BKC, have a tipping point on the growth of success
destination (around0% success rate), with an average Paflte. On the other hand, the size of the coordinates for

length of around.5. Dodds et. al [17] conducted the samg ch node grows linearly as the embedding dimensionality.

. , . ) - . . €
Milgram’s experiment with emails instead of snail mails a“Pie embedded dimension should also be strictly smaller than

extended the geographical range to the whole world. Tr}% number of landmarks, hence one may have to use more

show that _o_nly1.5% messages arrived at the _destmatlon, ?zf’ndmarks with a higher dimensionality.
many participants dropped from the game. Liben-Nowell et.

al [32] conducted a greedy routing simulation on a Livgea| networks are more navigable than models.n this
Journal data set, thus eliminating user participationeissupaper we did not try to pinpoint the exact properties that
They used geographical information as the greedy routighke certain networks navigable, like many small-world
criterion (a message is delivered to a friend closer to the tg,gdels that have been proposed were intended to capture.
get geographically) and considered delivery successtheif Rather, we show that even with off the shelf techniques
message arrived at the city where the destination individyae is able to get very reasonable performancerezi-
resides (not the actual precise location of the individagl t\yorld networks, something we never expected before we
get). Their simulations show E8% success rate. We comyap these experiments. An interesting additional disgover
pare our results with Liben-Nowell's results, as also thel that the performance of real-world networks turns out
investigation involves real data sets and users are assuggefe better, not worse, than equivalent model networks
cooperative. Liben-Nowell's results use only geographiGgith the same network size and average degree. That is,
location as the greedy routing criterion, which may only-pafeg| networks are more navigable than existing models!
tially capture the attributes attributed to navigabillye use pesides results shown in the paper, we also tested the
the coordinates extracted from the embedding. Our reSléJ'.tSKleinberg’s model [27]. With around4,000 nodes
confirm that using a proper embedding into latent spaggsy average degre®, it gives low success rate(around
greatly helps with navigation in the network. It remains 39%) and average path length is arounel This is not
interesting future work to see whether the embedded SPge®d compared to greedy routing using Kleinberg’s grid
corregponds to a set of real-world attributes or combimatigyordinates, which guarantees delivery and gives similar
of attributes. average path length. In a sense, this suggests that there is
Adamic [2] proposed degree routing and performe@me structural feature to real-world complex networks tha
greedy routing simulations on the same Gnutella data $g{s not yet been captured by any single theoretical model. It
The degree routing strategy selects the highest degree ng@gso possible that hybrid models that combine the differe
among the neighbors which have not been explored, if gllyigation-facilitating characteristics of various shvabrld

neighbors have been visited, routing process enters a degfiels would do better. How to build such hybrid models is
end and fails. Results on comparison between degrﬁﬁ'interesting line of future work.

based routing strategy and our method is shown in table 3.

Although degree routing gives very good success rate Dime choice of latent space and embeddingWe experi-
dense model networks, average path length is too highntented with both Euclidean spaces and hyperbolic spaces as
be considered as practical. Besides that, as average detiredidden spaces. Embedding in both spaces achieves high
of Pre, BKC and ER reduces below 4, success rate drepscess rate and more importantly, very low greedy routing



ASTRO AS Actor NYT Gnutella Pre BKC ER
Success Rate | 29.7%% | 35.7%% | 74.9% | 26.8% | 51.8% 99.7% | 98.4% | 98.9%
Avg Path Length| 55.30 10.96 | 572.54| 341.55 14.02 206.97 | 338.00| 631.58

Table 3:Degree-based routing

path length. This raises the question whether the topolbgy §1] L. Adamic and E. Adar. How to search a social network.
the hidden space matters after all, and whether there is some Social Networks27:187-203, 2005.
structure of real-world networks that transcends the hiddd2] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A.
spaces. Huberman. Search in power-law networkBhysics Review
E., 64:046135, 2001.
What is the optimal hidden space? — results on the BKC [3] A. Barabasi and R. Albert. Emergence of scaling in random
model. The BKC model [6] assumes a hidden space for networks.Science286:509-512, 1999.
the nodes in a social network but does not mention how t@] M. Barthelemy and L. Amaral. Small-world networks: Evi-
discoverthis space. The model assumes a ring structure dence for a crossover picture. 82(15), 1999.
as the hidden space and greedy routing is based on t[‘% E. S Bogardus. Social d-istance i.n the CiB{OC(?edingS and
distance on the ring. With this method, routing on the Egggcatuons of the American Sociological Sociezf:40-46,
BKC graph with 14, 845 nodes andi 18,325 edges has a [6] M. Boguna, D. Krioukov, and K. C. Claffy. Navigability of
success rate of abo@b% with average path length to be o
. L complex networksNature Physics5:74-80, January 2009.
8.07. As Figure 2 S_hOWS' our method will give around a[?] I. Borg and P. GroenenModern Multidimensional Scaling:
47% success rate with the average path length ta.56. theory and applicationsSpringer-Verlag, 2nd edition, 2005.
Thus, paradoxically, although the BKC model constructegs] p. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Rogtin
the network with an assumed hidden space, the assumed with guaranteed delivery in ad hoc wireless networiire-
hidden space is apparently not the optimal one. It remains less Networks7(6):609-616, 2001.
as interesting future work how to characterize the ‘hiddeff] U. Brandes, F. Schulz, D. Wagner, and T. Willhalm. Gehera
space’ from the network structure and how to find the ing node coordinates for shortest-path computations irstra
optimal hidden space, if there is one. portation networks. Journal of Experimental Algorithmics
9(1), 2004.
[10] R.S. Burt.Structural Holes: The Social Structure of Compe-
) ) ) ) ) ) tition. Cambridge University Press, 1992.
Our experiment is the first to systematically investigat th 1] v, Buskens.Social Networks and TrusKluwer, 2002.
conjecture made in earlier small world navigation studigs?] V. Buskens and A. van de Rijt. Dynamics of networks if
that many real-world complex networks are navigable. That everyone strives for structural holesAmerican Journal of
is, it is possible to discover a hidden metric space purely Sociology 114:371-407, 2008.
from the network connectivity information alone that peisni[13] C. T. Butts. Predictability of large-scale spatialiyeedded
greedy routing on the coordinates in the hidden space to dis- Nnetworks. InDynamic Social Network Modeling and Analy-
cover extremely short paths for a majority of node pairs. We _ SIS Pages 313-323, 2003. o
confirm the conjecture, delivering packages in a majority Blf4] CAIDA, The caida as relat|onsh|ps .data,090311.
. . . http://www.caida.org/data/active/as-relationshig€09.
cases in each of our empirical networks. The five netwo(r]h%]

id t handpicked i dica J. A. Costa, N. Patwari, and A. O. H. lll. Distributed
we consider were not handpicked, representing radicdny di weighted-multidimensional scaling for node localization

ferent contexts and showing diverse topologies. In adulitio  gansor networks. ACM Transactions on Sensor Netwarks
to confirming the navigability hypothesis, they show the-suc  2(1):39-64, 2006.

cess of relatively straight-forward embedding and naidgat [16] V. de Silva and J. Tenenbaum. Sparse multidimensional
methods. Likely, the true navigability of these networks is  scaling using landmark points. Technical report, Stanford
even better. University, 2004.

. [17] P. Dodds, M. Roby, and D. Watts. An experimental study of
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