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Abstract

Small-world experiments in which packages reach ad-
dressees unknown to the original sender through a forward-
ing chain confirm that acquaintance networks have short
paths, a property that was later also discovered in many
other networks. They further show that people can find these
paths by passing the package on to the acquaintance most
socially proximate to the target. This has led researchers to
conjecture that perhaps also in many other networks some
proximity-based algorithm can be used to find short paths,
provided that nodes are given appropriate coordinates. Al-
though potential applications are numerous, ranging from
decentralized search to recommendation-based trust to dis-
ease control, this conjecture has remained largely unverified.
In this paper we apply algorithmic methods to embed nodes
in some latent space and employ greedy routing to deliver
packages. Using these methods we empirically investigate
the navigability of five real-world complex networks from
diverse contexts and of varying topology. In each network,
we deliver a majority of packages in fewer than six hops.

1 Introduction

In the 1960’s, Stanley Milgram and his collaborators con-
ducted a series of experiments in which individuals from Ne-
braska and Kansas were asked to try and get letters delivered
to unknown recipients in Boston [40]. A person forwards the
letter to a friend who is more likely to know the target. Many
letters were discarded by uncooperative intermediaries, but
about20% of the letters arrived at the target, in an average of
under six hops. This experiment is the earliest to verify the
‘small-world phenomenon’ (aka ‘six degree of separation’)
that thereexistsa short path between almost any pair of indi-
viduals in the world. It was later discovered that many other
networks, in vastly different contexts ranging from power
grids, film collaboration networks, and neural networks [20]
to email networks [17], food webs [42] and protein interac-
tion networks [22], also exhibit the small-world property.

In addition to revealing the existence of short paths in
real-world acquaintance networks, the small-world experi-
ments showed that these networks arenavigable: A short
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path was discovered through alocal algorithm with the par-
ticipants forwarding to a friend who they believed to be more
likely to know the target. Although forwarding decision-
making was not systematically recorded, geographical prox-
imity was found to be an important forwarding criterion in
some cases. Other criteria such as profession and popular-
ity may have been used as well. A recent small-world study
using email-chains [17] confirms this, finding that at least
half of the choices were due to either geographical proxim-
ity of the acquaintance to the target or occupational similar-
ity. Thus these experiments hint that perhaps also in other
networks, some greedy routing algorithm can successfully
deliver messages, provided that nodes are given appropriate
coordinates.

In this paper we consider the conjecture that real-world
networks from diverse contexts, social and non-social, can
be embedded in alow-dimensional hidden spacewhere the
distances between nodes in the hidden space approximate
their graph distances in the network, such that some greedy
mechanism minimizing the distances to the destinationin
the latent spaceis able to find a short path for most pairs
of nodes. The existence of such a latent space insocial
networks is suggested by the sociological principle ofho-
mophily, that friends tend to have similar traits or adopt sim-
ilar behaviors [34]. A set of individuals with a large num-
ber of social ties between them may indicate that they have
nearby positions in the space of characteristics [5]. This so-
cial space may refer to a space of observed or unobserved
latent characteristics that represent potential transitive ten-
dencies in network relations. Moreover, networks may have
a spatial component, with connectivity decreasing in geo-
graphical distance [13, 30]. Nevertheless, we must remark
that the methods we consider do not use any social, spatial
or any other node-identifying information. Instead, they at-
tempt todiscoverthis space from network structure alone.
This allows them to be applicable to anonymous social net-
works as well as non-social networks that must be navigated.
We must also emphasize that these methods are rather basic
and straight-forward. The methods themselves are not the
main contribution here. Rather, we use them to verify the
navigability conjecture on five different empirical networks,
social and non-social, of very diverse origin and topology.
Our results show that they can all be navigated. In each net-
work, a majority of packages is delivered in fewer than six
steps.



Our contribution. We propose to first embed the network in
a latent space and apply greedy routing with the coordinates
generated.

We start with the obvious choice of Euclidean space
and use the prominent embedding algorithm of Multi-
Dimensional Scaling (MDS) [7]. We measure the distance
between any two nodes as the length of the shortest path be-
tween them in the social network. With the all pair graph
distances MDS produces a coordinate for every node in the
Euclidean space with a pre-specified dimensionality.

MDS however requires the all pairs distance matrix of
the network and is computationally intensive. To make
our method feasible for very large empirical networks that
are only partially observed, we adopt landmark-based MDS
(LMDS) [16], in which a few nodes are selected as land-
marks and embedded first, and the rest of the nodes embed
themselves using distances to these landmarks. It is shown
below that landmark MDS achieves a comparable perfor-
mance (in terms of delivery rate and routing path length) to
that of MDS, but more than an order of magnitude faster. The
use of landmark MDS also implies a distributed implemen-
tation of the embedding/routing algorithm. In particular,we
can sample a small set of nodes in the social network as land-
marks, and embed them. Any individuals who would like to
route can embed themselveson the fly, by using the distances
to the landmarks. In a coauthorship or film collaboration net-
work, the obvious choices for the landmarks are the famous
scholars or actors with well-known connections to each other
and the distances to others pre-calculated (such as the Erd¨os
number or the Bacon number). The distances from all nodes
to the landmarks can be computed in time linear in network
size.

As the Euclidean space of dimensiond has a geometric
growth rate and small-world graphs have been observed to
have low diameters, suggesting an exponential growth rate,
we also consider embedding into the hyperbolic space. We
employ R. Kleinberg’s embedding method [28] to embed a
tree in hyperbolic space with the induced coordinates used
for greedy routing.

We consider five real-world networks from diverse con-
texts and of varying topology: A peer-to-peer file sharing
network, a scientific collaboration network, a movie-actor
coappearance network, an Internet autonomous systems net-
work, and a network of individuals co-appearing in news ar-
ticles from New York Times. Surprisingly, with simply out-
of-the-shelf methods one is able to get reasonably high de-
livery rate, and even more, very small average path length,
within six steps. Before we conducted these experiments,
we expected that possibly some fraction of the messages can
reach the destination via the greedy algorithm, as the em-
bedding by MDS preserves the distances to some extent. We
have never expected that these messages only use 4 or 5 hops
on average! Note that successful delivery does not imply the

path is short.

Significance of network navigation. The task of identify-
ing short paths appears in a wide variety of empirical set-
tings. Short paths allow for speedy package delivery in de-
centralized file-sharing networks [2], searching for pathways
in very large metabolic networks [18], and enable reputation-
based trust in exchange [11]. The fact that we are living
in a ‘small world’ suggests that potentially we can consult
with any expert in a field of interest, or do business with
any individual, with recommendations through a short chain
of friends — if only we were able to find such a short path
quickly. Short path identification will also facilitate a num-
ber of social operations. The occupants ‘structural holes’,
positioned on short paths between otherwise distant others
in social networks earn brokerage benefits [10, 41]. The task
of ensuring sufficient structural distance between two indi-
viduals appears frequently: monopoly mediation, double-
targeting in advertisement, avoiding infection, and sharing
confidential information that must travel far to reach an un-
wanted ear [41, 12].

In many of these application scenarios, a central naviga-
tion device is often lacking, distributed flooding causes con-
gestion and excessive use of resources. In addition, the nodes
may have limited information storage capacity and process-
ing power. The network data may be incomplete, and node
attribute information may be absent altogether. For these set-
tings greedy routing is a better choice than centralized short
path computations.

2 Related Work on Small World Graphs

2.1 Navigation in model networks A number of studies
have proposed mathematical models for small world net-
works and navigation in such networks.

Watts and Strogatz [20] proposed as a ‘random rewiring
model’ in which with some probability the edges on a ring
are rewired to random vertices. The rewiring probability can
be tuned to generate networks in between the two extremes
of perfectly regular and perfectly random networks. It
is shown that for most of the parameter space, networks
simultaneously exhibit high clustering and low path length.
Additionally, three diverse real-world networks are shown
to exhibit both properties. They show that short paths
often exist but not how they could be found without global
knowledge of the network.

Barabasiet al. [3] considered an evolving graph in
which each newcomer connects to existing vertices with
probability proportional to their current degree (thus the
name preferential attachment model). The network con-
structed is a scale-free graph, i.e., it has a power-law degree
distribution, a property of various real-world networks. The
graph also has small diameter and in addition, hub nodes that
are highly connected to other vertices. For scale-free graphs,



a degree-based greedy routing has been investigated [2, 24].
The intuition is to send the message to a neighbor with higher
degree as the neighbor is more likely to be a neighbor of the
destination.

Another idea to navigate in small world networks is to
make use of user identities (geographical location, profes-
sion, etc.) and the structure of the ‘social space’. Klein-
berg [27] considered a lattice network inR

d and placed ad-
ditional edgespq with probability proportional to1/|pq|α,
where|pq| is the Euclidean distance betweenp, q andα is
a parameter. Then he showed that ifα = d the greedy
algorithm of delivering the message to the node closest to
the destination inEuclidean distanceis able to find a short
path to the destination with polylogarithmic number of hops.
If d 6= α, the greedy routing takes necessarily polynomial
number of hops, i.e., the network is not navigable. Watts
et al. [19] considered a hierarchical professional organiza-
tion of individuals and a homophilious network with ties
added between two nodes closer in the hierarchy with a
higher probability. If each node has a fixed probability of
dropping the message, they show a greedy routing algorithm
sending packages to the neighbor most similar to the tar-
get (called homophily-based routing) successfully deliver a
fraction of the messages before they are dropped. Klein-
berg [25] also confirmed similar results on a hierarchical net-
work. Şimşek and Jensen [39] evaluated routing schemes on
networks with different homophilous level. When the ho-
mophily level is low, degree based routing is effective as the
hubs connect different part of the network. When the net-
work homophily level is high, hubs are not very useful as
they connect to other individuals very similar to themselves.
They proposed to use a simple product of the homophily and
degree to estimate the neighbor who is most likely to be di-
rectly connected to the target.

Boguñá et al. [6] incorporated both the idea of having
a social space and the power law degree distribution. They
considered nodes on a ring and assigned target degrees from
a power law distribution. An edge is then placed between
two nodes with a probability positively dependent on their
distance and negatively dependent on their degrees. They
investigated greedy routing with the distances on the ring as
a means of navigating in the network.

Krioukov et. al [29] considered using a hyperbolic plane
as the hidden social space. Nodes are uniformly distributed
in a radiusR disk in a hyperbolic plane with edges placed
in pairs with distance smaller thanr. They show that such
a graph is naturally scale-free and that greedy routing with
hyperbolic distance delivers the packets with high success
rate.

2.2 Navigation in real-world networks Although the
theoretical models and algorithms above are very inspiring,
they require networks to satisfy certain properties, such as

a scale-free degree distribution, or they require additional
node-identifying information. They may fail in real-world
networks that violate these properties, and are impossible
to apply in real-world networks that lack node-identifying
information, such as anonymous social networks and non-
social networks. Even if such information is available, the
edges in real-world networks do not necessarily follow the
distribution of similarity-dependence specified in these the-
oretical models. These algorithms have been tested on only
a few real-world networks for which node-identifying infor-
mation was available, and without much success. For exam-
ple, the hierarchical organization model [19] has been shown
to work well only on the HP email network, for which mes-
sages were delivered in a median of four hops, but perform
poorly for the Club Nexus online social network due to in-
complete data or less structured hierarchy [1] (even using ex-
tensive profile knowledge the local search has a medium of
21 steps and a mean of 53 steps). Using geographical loca-
tions has shown only a delivery rate of13% to deliver a mes-
sage to the target city (not the target individual!) on a Live-
Journal data set [32]. Kleinberg’s small world model [27] is
used to fit the ‘web of trust’ of the email cryptography tool
Pretty Good Privacy (PGP) [38]. But the delivery rate is only
32% delivery rate with mean26 steps.

Compared with prior work, we do not require the net-
work to be scale-free as in [2, 24, 6]. We do not assume
nodes stay in a given space as in [27, 6, 29]. And we do
not require any node identities or geographical locations as
in [27, 19, 25, 39]. Instead of requiring an embedding of the
network in an observed space, our task is to discover the hid-
den space of real-world networks, which is possibly specific
to each network. As it turns out, with this hidden space dis-
covered, greedy routing achievesmuch highersuccess rates
compared with previous experiments with real-world spatial
embedding.

2.3 Graph embedding and greedy routingEmbedding
a graph in Euclidean spaces with small metric distortion
has been studied actively in recent years. It is known
that any graph ofn vertices can be embedded inRd with
d = O(log n) such that the graph distance is distorted by a
factor of at most1 + ε, for anyε > 0, with the Euclidean
distance in the embedding (please refer to the book [33] for
a large body of work on this topic). It can be shown that
the Internet Autonomous Systems network (AS-network)
can be embedded inR7 such that most of the routes can
estimate their inter-delay fairly accurately by their Euclidean
distances [36, 26]. Similar efforts have also been done for
transportation networks [9].

The greedy routing algorithm minimizing ‘distance’
to the destination is used pervasively in ad hoc wireless
network routing [8, 23], which is the motivation for the
study of graph embeddings that supports greedy routing



schemes. Most existing work only considered embedding in
low dimensional Euclidean space such asR

2 or R
3 [31, 37].

3 Embedding and Greedy Routing

In this section we describe the algorithms we used for
embedding a given complex network in Euclidean space
and greedy routing with the ‘social distances’ in that space.
We considered embedding in both Euclidean spaces and
hyperbolic spaces. We remark that these algorithms are ‘off
the shelf’ techniques. However, even these simple methods
produce extremely short paths with greedy routing. We
discuss the implication and empirical significance of the
results in a later section.

3.1 Embedding in Euclidean SpacesMulti-dimensional
scaling (MDS) is a classical method for embedding a set of
nodes inR

d. It takes ann × n distance matrixP as input,
outputs ann × d coordinate matrix such that theℓ2 distance
between any pair of nodes approximates the corresponding
distance inP . MDS is done as follows:

1. TransferP = (pij)n×n to B = (bij)n×n s.t.
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This step shifts the matrix to the center by subtracting
the mean.

2. Perform eigen-decomposition onB s.t.

B = V AV T ,

in which matrixA is a diagonal matrix with the eigen-
values ordered from largest to smallest and matrixV
contains the corresponding eigenvectors. Set

X = V A1/2.

Then X gives the coordinate of then nodes inn
dimensional Euclidean space.

3. To reduce the embedded dimension tod, take the
largestd eigenvalues fromA and their corresponding
eigenvectors inV to form ann × d coordinate matrix.

MDS has a running time ofO(n3) and requiresO(n2)
space, once the distance matrixP is given. In our case,
the distance matrix will include the all pairs shortest path
distances.

For large data sets, MDS is too slow. V. de Silva and J.
Tenenbaum proposed a landmark based multi-dimensional
scaling method (LMDS) [16]. LMDS selects a small subset
of nodes as landmarks, and performs MDS to embed these
landmarks. The other nodes will measure their distances to
the landmarks. By performing distance-based triangulation,

each node will embed itself. Denoting byn the number of
nodes,k the number of landmark nodes,d the embedded
dimension, the procedure is as follows:

1. LetPk denote the squared distance matrix of landmark
nodes, computeBk by adopting step1 in MDS, which
shiftsPk to its center.

2. Let λi and ~vi denote theith largest eigenvalue and its
corresponding eigenvector ofBk, respectively. Com-
pute

wi = ~vi
T /

√

λi,

then W = (w1, w2, . . . , wk) is the transformation
matrix of triangulation.

3. Let δi, i = 1, · · · , k, be the hop distance vector from
nodei to thek landmarks, taking its mean as

δµ =

k
∑

i=1

δi/k.

4. Given a nodei, the embedded coordinate

~xi = −
1

2
W (δi − δµ),

which is an affine transformation of the distance vector.
The firstd elements of~xi gives the desired embedding
result.

LMDS only requiresO(kn) space and its running time
is O(dkn + k3), wherek is the number of landmarks,d is
the dimensionality to be embedded to. Sinced < k ≪ n,
LMDS requires much less space and time than MDS. In our
applicationsk andd are both chosen to be small constants.
Thus LMDS has a linear running time.

Another benefit of LMDS is that it does not require the
knowledge of the entire network. Note that we only need to
know the shortest path distances from the landmarks to all
other nodes in the network. This can be achieved by using
breadth-first search from the landmarks with a running time
of O(kn).

MDS requires the knowledge of the entire network and
thus is less desirable for a distributed system, compared
with LMDS. To use landmark MDS, each landmark can
flood the network so every node knows the distance to
the landmarks. One of the landmark nodes performs the
classic MDS method on the pairwise distance matrixMk×k

on all landmarks and broadcasts the landmark coordinates
to the entire network. Non-landmark nodes then perform
distance-based triangulation on their own to derive their
coordinates. Since we typically use a constant number of
landmarks.k can be considered as a constant, so MDS on the
landmark nodes takes a constant amount of time and space.
Alternatively, we may also use the distributed MDS [15] to
compute the coordinates of the landmark nodes in the first
step.



3.2 Embedding in Hyperbolic SpacesA hyperbolic
plane is a 2D Riemannian manifold with negative curvature.
A popular model is the Poincaré disk model, in which points
are in a unit disk, and the straight lines are segments of cir-
cles contained in the disk orthogonal to the boundary of the
disk, or else diameters of the disk. Ifu, v are two vectors
with Euclidean norm less than 1, we define an isometric in-
variant by

δ(u, v) = 2
||u − v||2

(1 − ||u||2)(1 − ||v||2)
,

where || · || denotes the usual Euclidean norm. Then the
distance function isd(u, v) = arccosh(1 + δ(u, v)).

R. Kleinberg [28] proposed a method to embed a graph
in hyperbolic plane. First we compute a spanning treeT of
the graph. The treeT is then embedded in hyperbolic plane
so that each vertex is given a coordinate. Note that although
one can route on the tree edges only, the non-tree edges are
also used by greedy routing to produce (hopefully) shorter
paths.

If the maximum degree of the treeT is d, there will
be at mostd branches from the root. We take a regular
polygonP such that each side corresponds to a branch. Take
any side ofP , we introduce a hyperbolic isometryτ which
maps endpoints of this side to1 and−1 while mapping the
midpoint of its corresponding arc on the boundary circle to
−i. Defineu = τ(0) as the point of root on the Poincaré
disk, then the virtual coordinate of root node r can be
computed asµ−1

r (u). µr is a Möbius transformation defined
below. Consider two hyperbolic isometries

a : z 7−→ −z,

b : z 7−→ τ(ρ(τ−1(z))) , ρ(z) = e2πi/dz,

the Möbius transformation is computed froma andb. For
each pair of parent and child nodes(p(w), w), if the virtual
coordinates ofp(w) is known asf(p(w)), points on the
Poincaré disk forp(w) andw areu andv, respectively, then
f(w) = µ−1

w (v). This process can be made to work in a
distributed manner and it takesO(n) time to find coordinates
for all nodes. For the scheme described above the length of
the coordinates can be exponential inn in the worst case.
There are techniques to reduce the length of the coordinates
to beO(polylog n).

3.3 Greedy Routing in Latent SpacesAfter the construc-
tion of the coordinate system, greedy routing will be used
to navigate from source to destination, by sending the mes-
sage to a neighbor closer to the destination. The distance is
evaluated by the Euclidean distance or hyperbolic distance,
depending on the embedding. When a node does not have a
neighbor closer to the destination than itself, greedy routing
gets stuck and fails to deliver the message. The performance

is evaluated by measuring the success rate of greedy routing
and the average routing path length.

Greedy Routing with Degree Information. A small world
network typically has a power law degree distribution [4],
with many low-degree nodes and a few high degree ‘hubs’.
As high degree nodes have more neighbors, routing to high
degree nodes has a higher chance of encountering a node
with the destination as immediate neighbor. This is the idea
used in the degree-based greedy routing by Adamic et al. [2].
However, one drawback of pure degree-based routing is that
messages arriving at hub nodes have no direction to ‘come
down’ to low degree destinations.

We propose a hybrid scheme by using greedy routing
based on both distance and degree. Apart from the reason
that high degree nodes are ‘more connected’ to other nodes,
they also tend to be embedded nearer to the ‘core’ of the
network than low degree nodes, as will be shown later with
our experiments. We set a degree thresholdT . The nodes
with degree higher thanT are thehubsof the network. The
rest of the nodes are at theperipheryof the network. When
the message is at a periphery nodes, we send the message to
its neighboring node with highest degree. Ifs does not have
a neighbor with higher degree or it is already a hub, we go
back to greedy routing with the embedded distances.

4 Experimental Results

In this paper we tested our method on a number of complex
networks, including five large-scale real-world networks.
We also tested on three artificially graphs generated from
models. The details of these data sets are shown in Table 1.

The astrophysics collaboration network (ASTRO) [35]
is the network of coauthorship between scientists posting
preprints on the Astrophysics E-Print Archive between Jan-
uary1, 1995 and December31, 1999.

The Internet AS network (AS) [14] is a snapshot of au-
tonomous systems generated by The Cooperative Associa-
tion for Internet Data Analysis (CAIDA). This snapshot is
taken on March11, 2009. We do not specify the type of
links, say, as customer-provider links or peer-peer links.So
AS is an undirected graph with only connectivity informa-
tion.

The Gnutella network (Gnu) is a data set used by
Adamic in [2]. Gnutella was a popular P2P application, the
data set is a small world network with hubs as the high degree
nodes.

The actor network (ACT) [3] is a data set extracted from
imdb, each line between two nodes means those two actors
collaborated in one movie.

The NYT news network (NYT) puts an edge between
individuals that appear together in at least two articles(strong
juxtapositions) in the New York Times newspaper from1981
to 2007.



Data set name Num(node) Num(edge) Avg degree Num(landmark)
Astrophysics Coauthor Network (ASTRO) 14,845 119,652 16.1202 100

Internet AS Network (AS) 31,277 70,527 4.5098 100
Gnutella Network (Gnu) 574 835 2.9178 30
Actor Network (Actor) 171,427 6,984,461 81.4861 100, 300 and 500
NYT Network (NYT) 209,158 666,956 6.378 100 and 500

Table 1:Empirical Data Sets

The preferential attachment model (Pre) [3] assumes a
dynamic network with nodes coming in one by one. When
a new node joins the network, it is connected to existing
nodes with probability proportional to their current degree.
The preferential attachment model introduces the ‘rich gets
richer’ hypothesis in the formation of complex networks and
has been a popular model in explaining natural systems. In
this experiment, we take14, 845 nodes, each additional node
has outdegree8.

The Boguna-Krioukov-Claffy model (BKC) [6] is a
recently proposed model assuming a hidden metric space on
which the nodes reside. In particular, the hidden space is
assumed to be a ring with the nodes uniformly placed on the
ring. Each pairu andv has a distance|uv| on the ring. Each
nodeu is assigned a target degreeku, drawn from a power
law distribution. Each edge(u, v) is added with probability
proportional to

(1 + |uv|/(kukv))
−α,

whereα is a model parameter. Intuitively the probability
that two nodes have an edge is inversely dependent on their
distance in the hidden space, and positively dependent on
their target degrees. In general nodes near to each other in the
hidden space are more likely to be connected. If they are hub
nodes, they are also likely to be connected even though they
are far away in the hidden space. In this experiment, we draw
the degree from power law distribution Prob{k = i} ∼ 1/i3,
which is the degree distribution in the preferential attachment
model.α is set to be2.

The Erdos-Renyi model (ER) [21] is the uniform ran-
dom graph model, in which each pair of nodes is connected
uniformly randomly. It has a small diameter. We include
this graph as a baseline, as a random graph has no special
structure to help with navigation.

For all the theoretical model networks, we vary the
average degree to examine the performance dependency on
the number of edges.

4.1 Embedding by MDS and LMDS We evaluate the
performance of embedding with MDS and landmark MDS.
LMDS is computationally more efficient than MDS, yet it
gives similar embedding results even whenk is small. Fig-
ure 1 shows the comparison between MDS and LMDS. Since

the coordinates of landmark nodes by LMDS are consistent
with those in MDS [16], LMDS with all nodes as landmarks
is exactly MDS. The testing graph is generated by means of
the preferential attachment model, Boguna-Krioukov-Claffy
model and Erdos-Renyi models with2, 000 nodes and8, 000
edges. The embedded dimension is6. Given a pair of nodes
u andv, denote the distance generated by MDS and LMDS
asdu,v andd′u,v, respectively. Theindividual distortionof
LMDS relative to MDS isρ′u,v = |du,v − d′u,v|/du,v. The
average distortionis ρ′ =

∑

u,v ρ′u,v/n2. The average dis-
tortion drops as the number of landmarks decreases. Fig-
ure 1 also shows that by selecting only a small number of
landmarks, high success rates for greedy routing can never-
theless be achieved.

4.2 Greedy routing results on Euclidean spaceWe eval-
uated two strategies for routing: greedy routing, and greedy
routing with degree information. We also evaluated two dif-
ferent strategies for selecting landmarks, random selection
and selection of high degree nodes. The left four plots of
Figure 2 shows the success rate for different embedded di-
mensionality. The Internet autonomous system network has
the highest success rate, which reaches nearly80% with an
embedded dimensionality of50. The preferential attachment
graph achieves up to56% success with hubs selected as land-
marks, while the astrophysics collaboration network has a
success rate of more than60% with random landmark selec-
tion. The average path length of the AS network and pref-
erential attachment graph stays around4, and ASTRO net-
work stays around5. This result shows that greedy routes
are short. The results also show that a random graph does
not have good navigability. The graph generated by the re-
cently proposed BKC model, though claimed to be navigable
in [6], does not work better than the preferential attachment
model or the real networks. Among the model networks, ran-
dom graph are the most ‘unstructured’ one. It does not have
power-law degree distribution or high clustering coefficient.
Our experiments show that random graphs are indeed less
navigable than all the other networks.

Figure 2 also shows that for some networks selecting
highest degree nodes as landmarks performs better, while
for other networks random selection works better. Detailed
analysis shows that ASTRO network contains multiple clus-
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Figure 1: Performance comparison of LMDS and MDS. BKC,Pre and ER stands for Boguna-Krioukov-Claffy model, Preferential
Attachment model and Erdos-Renyi model, respectively.

ters, while most of the highest degree nodes belong to only
one cluster. Therefore, selecting highest degree nodes can-
not capture the true network structure, which leads to lower
success rate than random selection. Figure 3 (i) also shows
that random selection works better in the actor network.

In the right two plots of Figure 2, we set the high degree
threshold such that20% of the nodes are hubs respectively.
Contrary to the intuition that greedy routing with degree
information improves the performance, we do not see much
improvement. This shows that degree information is not
important in our method, but rather that the distances in the
discovered space truly help with greedy routing.

Success rate is possibly influenced by landmark number
and embedded dimensionality. While Figure 2 shows that the
success rate grows with dimension, we take a larger network
to see how those two factors influence the success rate.

The actor network is a large network with more than
170, 000 nodes. Figure 3 (i) shows an apparent growth of
success rate as the embedded dimensionality grows. Land-
mark number does not seem to play an important role, since
using100, 300, and500 landmarks gives similar curves. Re-
mark that the number of dimensions must be smaller than
the number of landmarks. Similar results are obtained for
NYT network, which contains similar number of nodes with
actor network, but with much fewer edges. It suggests that
network density does not play an essential role in our greedy
routing. Despite that actor network and NYT network are
much larger than our other data sets, the average path lengths
are below or around5 for all experiments.

Since the empirical networks have different average
degrees, it is essential to justify whether average degree is
an important factor in our embedding and greedy routing.
Figure 3 (ii) shows the impact of average degree, it takes
three model networks preferential attachment model, BKC
model and Erdos-Renyi Model. Combining with Figure 2,
we show how success rate and average path length changes
while the average degree changes from16 to 8 and 4.
The result turns out that average degree does not show an
essential impact on our embedding and routing.

4.3 Greedy routing results on hyperbolic spaceAs
shown in [28], greedy routing on hyperbolic space is proved
to have guaranteed success. Therefore the length of aver-
age path length is the crucial performance factor to evaluate.
In hyperbolic embedding, different choices of spanning tree
and the root of the spanning tree will lead to different routing
pathes between source and destination.

We first use the shortest path spanning tree (SPT) rooted
as the node with highest degree as the tree in the hyperbolic
embedding. This tree is computed by flooding from the root.
In the first phase, an arbitrary node will flood all the other
nodes to compute the highest degree node in the network.
Ties are broken arbitrarily. In the second phase, The node
with maximum degree will perform flooding to get a breadth-
first tree.

In the second method, we use random walk to generate a
spanning tree (RWT). In particular, we take an arbitrary node
u as the starting node, and uniformly randomly select one of
its neighborsv. If v has not been visited, edge(u, v) is a
tree edge. We move tov and perform the same strategy until
all nodes are visited. The running time of this distributed
process depends on the cover time of the random walk on
the particular graph.and ranges fromO(n log n) to O(n3).
RWT is a spanning tree uniformly randomly selected from
the set of all possible spanning trees.

Table 2 shows the average distortion, average path
length and shortest path length for hyperbolic routing on the
empirical networks. It shows that there is a huge difference
between different spanning trees. The spanning tree selected
by shortest path tree rooted on highest degree node achieves
much smaller path distortion. We conjecture that the reason
might be that SPT usually divides nodes into more balanced
branches than the trees obtained from random walk.

5 Discussion

Prior work has demonstrated that under certain special con-
ditions, networks can be navigated in a decentralized fash-
ion with algorithmic methods. How navigable real-world
networks that may violate these special conditions are, has
remained largely unknown. We have shown here that five
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Figure 2:Simple greedy routing. Random Selection W/20%: landmark nodes are random selected,20% highest degree nodes are hub
nodes. Node number and average degree of ER, Pre and BKC are the same as ASTRO network. For abbreviations, please refer to Table 1
and Figure 1.
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Figure 3: (i) Impact of landmark number and dimension. ACT500H is ACTOR network with500 highest degree nodes as landmarks.
(ii) Impact of average degree. BKC8 means a BKC network with average degree to be8.

Data set name SPT RWT
Avg SPL Avg RL Avg distortion Avg SPL Avg RL Avg distortion

ASTRO 4.579 5.837 1.459 4.579 23.080 5.770
AS 3.847 4.265 1.422 3.847 9.712 3.237

Gnutella 4.812 5.533 1.383 4.812 9.202 2.301
NYT 5.270 5.971 1.994 5.271 21.846 4.368
Actor 4.185 5.617 1.404 4.182 27.990 6.997

Pre 3.318 4.001 1.334 3.318 18.012 6.004
BKC 3.252 3.927 1.309 3.252 20.425 6.808
ER 4.863 7.978 1.995 4.863 36.270 9.067

Table 2:Greedy routing with embedding in hyperbolic space. For abbreviations, please refer to Table 1 and Figure 1. SPL and RL stands
for shortest path length and routing path length, respectively.



actual empirical networks, social and non-social, of very di-
verse origin and topology, can all be embedded in some hid-
den space such that effective navigation becomes possible.
Using rather elementary methods, we deliver a majority of
packages in under six hops in every network. Even more sur-
prisingly, navigation results are generally better, not worse,
than in simulated model networks.

Our experimental results yielded a number of interesting
findings.

Greedy routing performance. The performance of naviga-
tion in real-world networks using a hidden space improves
substantially on previous results. Past small-world experi-
ments in which human participants forwarded messages in
social networks had much lower delivery rates due to un-
cooperative participants. Milgram’s experiment used node
identifying information about the destination such as name,
gender, occupation, etc. 64 out of 296 letters arrived at the
destination (around20% success rate), with an average path
length of around5.5. Dodds et. al [17] conducted the same
Milgram’s experiment with emails instead of snail mails and
extended the geographical range to the whole world. They
show that only1.5% messages arrived at the destination, as
many participants dropped from the game. Liben-Nowell et.
al [32] conducted a greedy routing simulation on a Live-
Journal data set, thus eliminating user participation issues.
They used geographical information as the greedy routing
criterion (a message is delivered to a friend closer to the tar-
get geographically) and considered delivery successful ifthe
message arrived at the city where the destination individual
resides (not the actual precise location of the individual tar-
get). Their simulations show a13% success rate. We com-
pare our results with Liben-Nowell’s results, as also their
investigation involves real data sets and users are assumed
cooperative. Liben-Nowell’s results use only geographical
location as the greedy routing criterion, which may only par-
tially capture the attributes attributed to navigability.We use
the coordinates extracted from the embedding. Our results
confirm that using a proper embedding into latent spaces
greatly helps with navigation in the network. It remains as
interesting future work to see whether the embedded space
corresponds to a set of real-world attributes or combination
of attributes.

Adamic [2] proposed degree routing and performed
greedy routing simulations on the same Gnutella data set.
The degree routing strategy selects the highest degree node
among the neighbors which have not been explored, if all
neighbors have been visited, routing process enters a dead
end and fails. Results on comparison between degree-
based routing strategy and our method is shown in table 3.
Although degree routing gives very good success rate on
dense model networks, average path length is too high to
be considered as practical. Besides that, as average degree
of Pre, BKC and ER reduces below 4, success rate drops

quickly to below 40%, while average path length is still
higher than100.

Sandberg [38] tried to fit a particular small world model
by J. Kleinberg [27] to a real data set, the web of trust, so as
to discover the users’ locations on a grid using Markov Chain
Monte Carlo method. The method has only demonstrated
limited success with32% delivery rate and mean26 steps.
Part of the reason could be that it is not clear whether J.
Kleinberg’s model truly reflects the structure of the real data
set.

There is a tradeoff between the dimensionality of the
embedding and the success rate of greedy routing using that
embedding. On one hand, the success rates grows as the
dimensionality is increased, but the growing speed slows
down. Thus increasing the embedding dimensionality has
diminishing return. Depending on the network structure
and the size of network, some networks, for example AS
and BKC, have a tipping point on the growth of success
rate. On the other hand, the size of the coordinates for
each node grows linearly as the embedding dimensionality.
The embedded dimension should also be strictly smaller than
the number of landmarks, hence one may have to use more
landmarks with a higher dimensionality.

Real networks are more navigable than models.In this
paper we did not try to pinpoint the exact properties that
make certain networks navigable, like many small-world
models that have been proposed were intended to capture.
Rather, we show that even with off the shelf techniques
one is able to get very reasonable performance onreal-
world networks, something we never expected before we
ran these experiments. An interesting additional discovery
is that the performance of real-world networks turns out
to be better, not worse, than equivalent model networks
with the same network size and average degree. That is,
real networks are more navigable than existing models!
Besides results shown in the paper, we also tested the
J. Kleinberg’s model [27]. With around14, 000 nodes
and average degree8, it gives low success rate(around
20%) and average path length is around20. This is not
good compared to greedy routing using Kleinberg’s grid
coordinates, which guarantees delivery and gives similar
average path length. In a sense, this suggests that there is
some structural feature to real-world complex networks that
has not yet been captured by any single theoretical model. It
is also possible that hybrid models that combine the different
navigation-facilitating characteristics of various small-world
models would do better. How to build such hybrid models is
an interesting line of future work.

The choice of latent space and embedding.We experi-
mented with both Euclidean spaces and hyperbolic spaces as
the hidden spaces. Embedding in both spaces achieves high
success rate and more importantly, very low greedy routing



ASTRO AS Actor NYT Gnutella Pre BKC ER
Success Rate 29.7% 35.7% 74.9% 26.8% 51.8% 99.7% 98.4% 98.9%

Avg Path Length 55.30 10.96 572.54 341.55 14.02 206.97 338.00 631.58

Table 3:Degree-based routing

path length. This raises the question whether the topology of
the hidden space matters after all, and whether there is some
structure of real-world networks that transcends the hidden
spaces.

What is the optimal hidden space? – results on the BKC
model. The BKC model [6] assumes a hidden space for
the nodes in a social network but does not mention how to
discover this space. The model assumes a ring structure
as the hidden space and greedy routing is based on the
distance on the ring. With this method, routing on the
BKC graph with14, 845 nodes and118, 325 edges has a
success rate of about25% with average path length to be
8.07. As Figure 2 shows, our method will give around a
47% success rate with the average path length to be3.36.
Thus, paradoxically, although the BKC model constructed
the network with an assumed hidden space, the assumed
hidden space is apparently not the optimal one. It remains
as interesting future work how to characterize the ‘hidden
space’ from the network structure and how to find the
optimal hidden space, if there is one.

6 Conclusion and future work

Our experiment is the first to systematically investigate the
conjecture made in earlier small world navigation studies
that many real-world complex networks are navigable. That
is, it is possible to discover a hidden metric space purely
from the network connectivity information alone that permits
greedy routing on the coordinates in the hidden space to dis-
cover extremely short paths for a majority of node pairs. We
confirm the conjecture, delivering packages in a majority of
cases in each of our empirical networks. The five networks
we consider were not handpicked, representing radically dif-
ferent contexts and showing diverse topologies. In addition
to confirming the navigability hypothesis, they show the suc-
cess of relatively straight-forward embedding and navigation
methods. Likely, the true navigability of these networks is
even better.
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