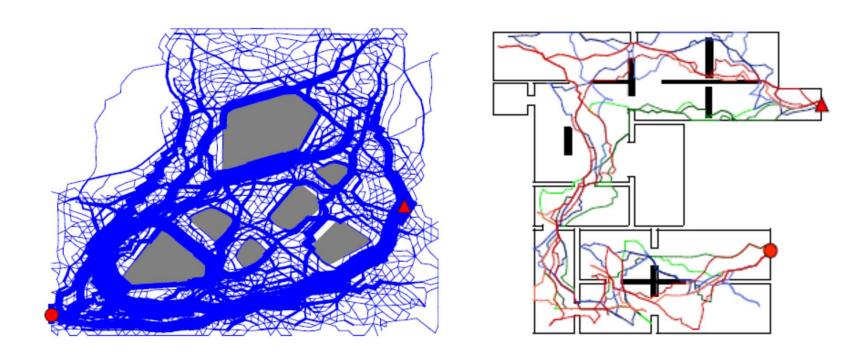
Don't Collect Too Much -Geometric Approaches for Protecting Trajectory Privacy

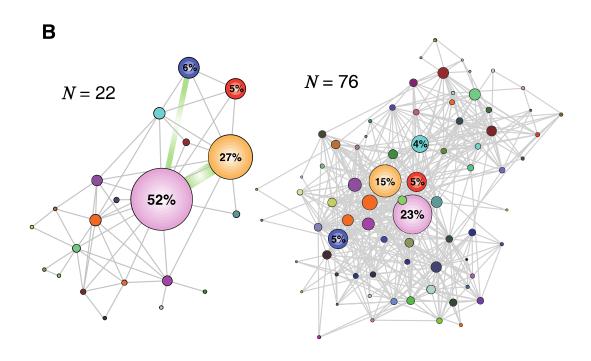
Jie Gao
Stony Brook University
April 26th, 2017
Dagstuhl Workshop on CG

Location and Trajectory Privacy

Locations/trajectories are collected.

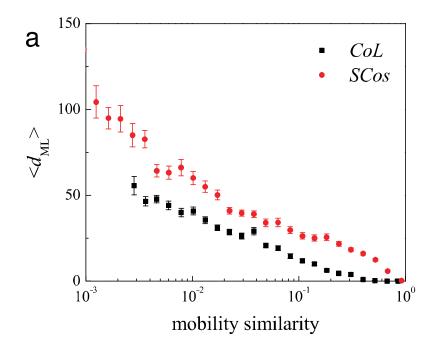


 Frequently visited locations → home/work address; predictability of location > 93%



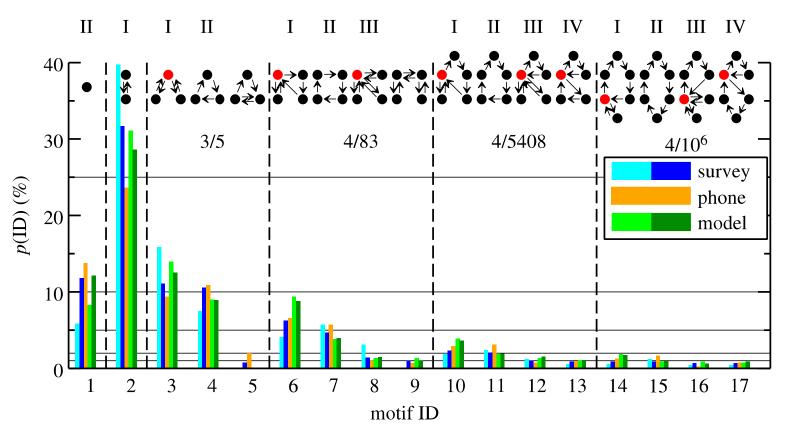
Limits of Predictability in Human Mobility, Science, 2010.

Frequent co-location patterns → social ties



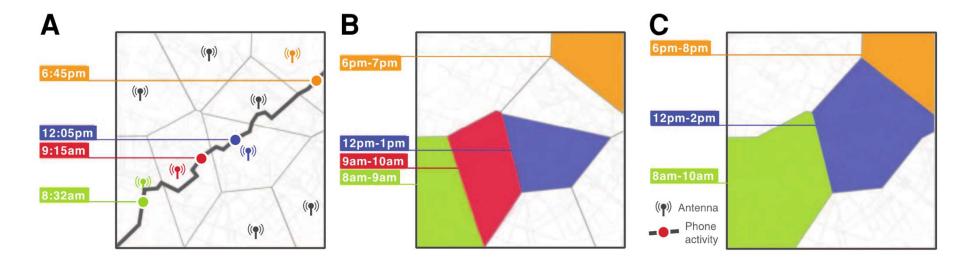
Human Mobility, Social Ties, and Link Prediction, KDD'11.

Motifs – revealing activities



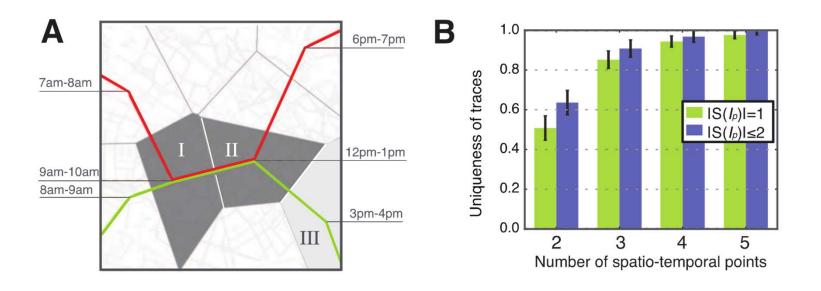
Unravelling daily human mobility motifs, 2013.

Unique signature.



Unique in the Crowd: The privacy bounds of human mobility, Nature, 2013.

 Unique signature – 4 spatial-temporal points are enough to identify 95% trajectories in 1.5 million users.



Trajectory Privacy Protection

- Utility vs Privacy:
 - Statistical patterns of group mobility: clustered motion; popular paths
 - Anomaly detection
- Privacy models
 - K-anonymity; "r-gather clustering"
 - Differential privacy.

Location/Trajectory Collection

- Location/trajectory collected by GPS and stored on the device.
 - Users voluntarily contribute such data.

- Wireless devices leave traces behind.
 - Cell towers.
 - WiFi AP.

Privacy Preserving with Sensing

- 1. Collect data;
- 2. Run anonymization;

Or, answer statistical queries with privacy added.

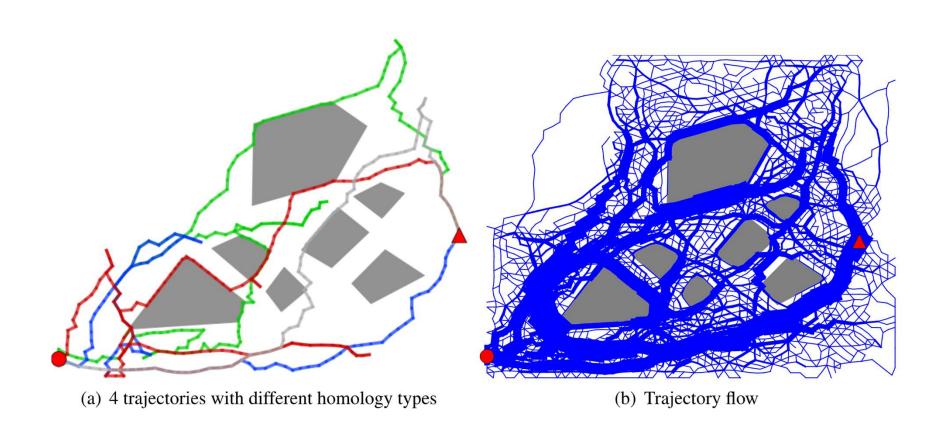
- 1. Collect little data
- 2. Derive group behaviors or statistical patterns.

One Network Setting; Two Case Studies

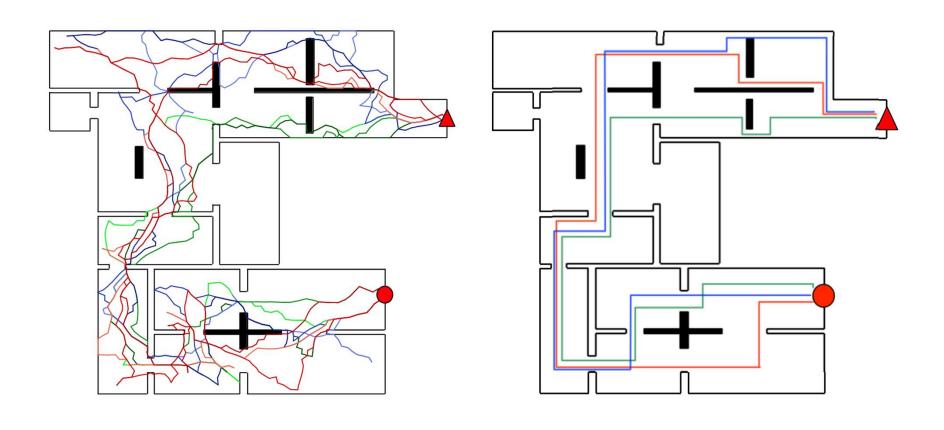
- Smart city environment: many checkpoints that record user mobility.
- What shall be collected at these checkpoints?
 - Low cost, w/ privacy protection.
- 1. Distributed trajectory clustering by homology.
- 2. Popular path mining and query.

Part I: Trajectory Clustering

Clustering by Homology



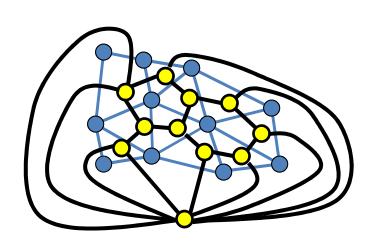
Clustering by Homology

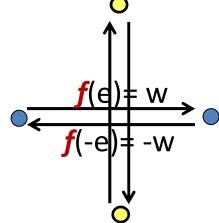


Differential 1-Form

- Planar graph G with faces.
- One-form: "directed" weights f on edges.

Dual graph G': face → vertex; vertex → face;
 edges rotated by 90°.

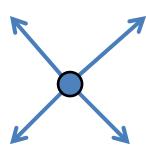




Harmonic 1-Form

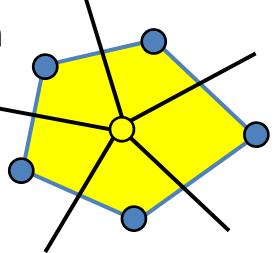
1. Divergence-free: $\sum_{\text{neighbor } v} f(u, v) = 0$

i.e., no sources, no sinks



2. Curl free: $\sum_{\text{edge e on a face}} f(e) = 0$

i.e., divergence-free in dual graph



Use Harmonic 1-form

- For a cycle **not enclosing any hole**, the integration of the harmonic 1-form is **zero**.
- Preprocessing: Compute a harmonic 1-form on the graph s.t. only cycles enclosing holes integrate to non-zero values
- Homology check: Simple integration along the trajectories.
- Distributed storage & computation.
- How to compute a harmonic 1-form?

Hodge Decomposition

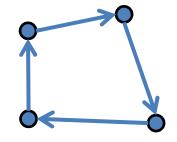
- Start w/ an arbitrary 1-form ω .
- Hodge decomposition

$$\omega = \alpha + \beta + \gamma$$

- α : gradient flow, $\alpha(u, v) = \tau(u) \tau(v)$, τ is a potential function on vertices, 0-form.
- Operation δ : Integration along a face

=
$$\tau(u_1) - \tau(u_2) + \tau(u_2) - \tau(u_3) + ...$$

+ $\tau(u_k) - \tau(u_1)$.
= 0



Hodge Decomposition

Hodge decomposition

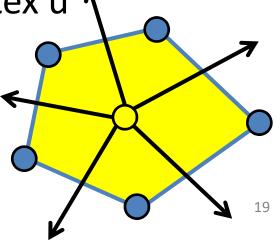
$$\omega = \alpha + \beta + \gamma$$

• β : curl flow, i.e., gradient flow in the dual graph, $\beta(u, v) = \eta(x) - \eta(y)$, x is the face to the right, y is the face to the left. η is a function on faces, 2-form.

Operation d: ∑ β on edges of vertex u ↑

= $\sum \beta$ dual edges on face u*

= 0



Hodge Decomposition

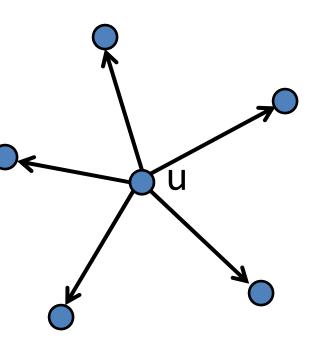
Hodge decomposition

$$\omega = \alpha + \beta + \gamma$$

- γ: harmonic 1-form.
- Integration along a face = 0 (curl-free)
- Integration on edges of a vertex = 0 (divergence-free)

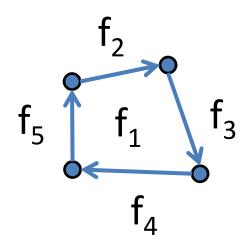
Gossip-style Implementation

- Goal: find **0-form τ** and 2-form η.
- d: Integration of the edges of a vertex
- $d\omega = d\alpha + d\beta + d\gamma$
- $\sum w(e) = \sum_{(u,v)} \tau(u) \tau(v)$
- $\tau(u) = [\sum w(e) + \sum_{(u,v)} \tau(v)]/d(u)$
- Initialize all $\tau(u) = 0$
- Run gossip with neighbors.



Gossip-style Implementation

- Goal: find 0-form τ and 2-form η.
- δ: Integration along a face f
- $\delta \omega = \delta \alpha + \delta \beta + \delta \gamma = \delta d\tau$
- $\sum_{e \text{ on face } f} w(e) = \sum_{i} \eta(f) \eta(f_i)$
- $\eta(f) = [\sum_{e \text{ on } f} w(e) + \sum_{i} \eta(f_{i})]/d(f)$



- Initialize all η(f) =0
- Run gossip with neighbors.

Homology Basis

- Harmonic 1-forms form a linear space of dim k, for k holes, or 2g for a closed surface with genus g.
- Linear dependency can be checked locally.

 Homology signature of a trajectory: k-vector integration along k harmonic 1-forms. Part II: Traffic Pattern Query

Differential Privacy

- **D** is the input dataset and **D'** differs from **D** by only one element **x**.
- A randomized mechanism M is ε-differentially private if for any S (set of output)

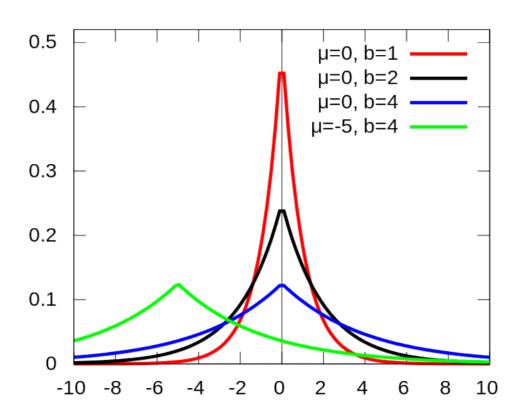
 $Pr[M(D) \text{ in } S] \leq e^{\epsilon} Pr[M(D') \text{ in } S]$

Counting Query

- Given a database of medical records.
- Q1: How many patients have disease y?
- Q2: How many patients, whose name are not x, have disease y?
- Add Laplace noise Lap(1/ε) →
 Pr[Q1=z]/Pr[Q2=z] ≤ e^ε.

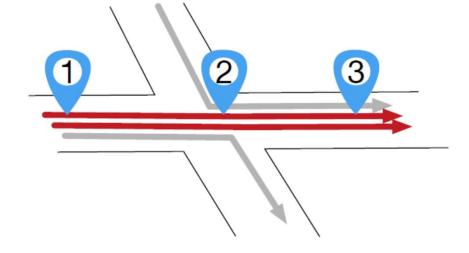
Laplace Noise

$$Lap(x|b) = \frac{1}{2b} \exp\left(-\frac{|x|}{b}\right)$$



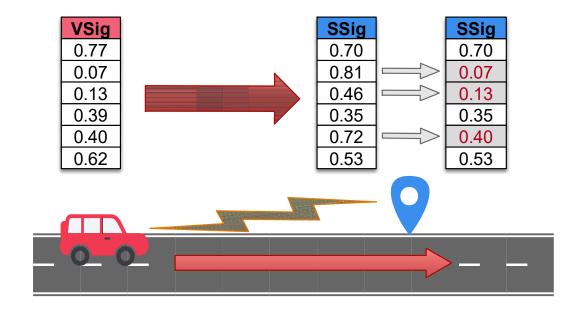
Popular Paths

- A path travelled by φ-fraction of all vehicles that.
- A subpath of a popular path is still popular;
- A node stays on at most 1/φ maximally popular paths.



MinHash Signature

 Each node stores the MinHash of vehicles it has met so far.



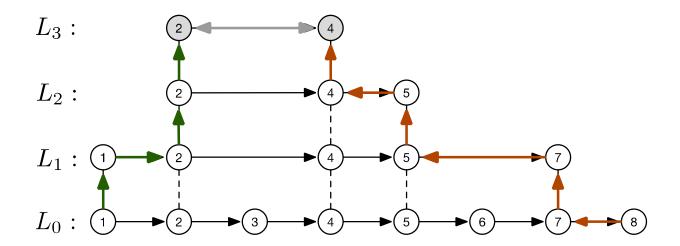
MinHash Signature

- Differentially private for dense traffic.
- # common MinHash entries along a path estimates path popularity.

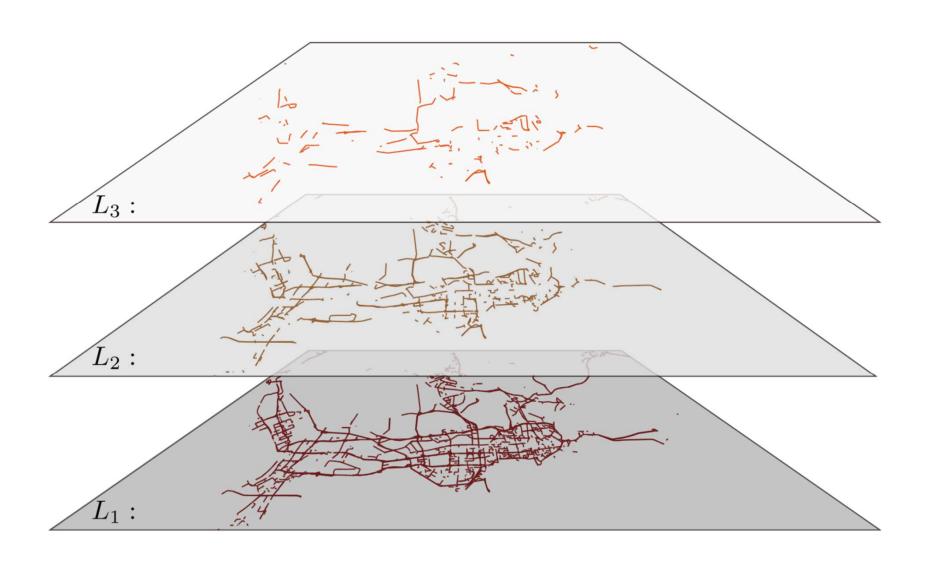


MinHash Hierarchy

- Recursively subsample checkpoint.
- Edge (u, v): if there is at least one consistent path from u to v



Traffic Pattern in a City



Traffic Pattern Queries

- By careful search in the hierarchy of m nodes.
 - Popular paths for (s, t) O(log m)
 - Popularity for a path P. O(log m)
 - All popular paths from s. O(log²m)

Summary

- Sensing with privacy consideration.
- Reduced communication cost.

Questions & Comments?

- http://www.cs.stonybrook.edu/~jgao
- Xiaotian Yin, Chien Chun Ni, Jiaxin Ding, Jie Gao, Xianfeng David Gu, Decentralized Path Homotopy Detection Using Hodge Decomposition in Sensor Networks, SigSpatial'15.
- Jiaxin Ding, Chien Chun Ni, Mengyu Zhou, Jie Gao,
 MinHash Hierarchy for Privacy Preserving Trajectory
 Sensing and Query, IPSN'17.