Modeling Social Influence

How does an agent get influenced by its neighbors?

- Diseases
- Information, ideas, innovation
- Social behaviors (e.g., smoking, obesity, voting)
- Opinions (for or against a policy)
Modeling Social Influence

How does an agent get influenced by its neighbors?

- Diseases
- Information, ideas, innovation
- Social behaviors (e.g., smoking, obesity, voting)
- Opinions (for or against a policy)

Two main factors

- **Contagion models**
- Network structures
Opinion Dynamics: Continuous Model

Each agent has a real-valued opinion variable \(x(v) \in [-1, 1] \)
Opinion Dynamics: Continuous Model

Each agent has a real-valued opinion variable $x(v) \in [-1, 1]$

- -1: against; 1: supportive.
Opinion Dynamics: Continuous Model

Each agent has a real-valued opinion variable $x(v) \in [-1, 1]$
- -1: against; 1: supportive.
- At time 0 nodes have initial opinions.
Opinion Dynamics: Continuous Model

Each agent has a real-valued opinion variable \(x(v) \in [-1, 1] \)
- \(-1\): against; \(1\): supportive.
- At time 0 nodes have initial opinions.
- Edge \((i, j)\) carries a weight \(w_{ij}\).
- At time \(t\), every agent updates its opinion by (weighted) influence from neighbors.
Opinion Dynamics: Continuous Model

Each agent has a real-valued opinion variable $x(v) \in [-1, 1]$
- -1: against; 1: supportive.
- At time 0 nodes have initial opinions.
- Edge (i, j) carries a weight w_{ij}.
- At time t, every agent updates its opinion by (weighted) influence from neighbors.

Research questions:
- Does the network converge?
Opinion Dynamics: Continuous Model

Each agent has a real-valued opinion variable \(x(v) \in [-1, 1] \)
- \(-1\): against; \(1\): supportive.
- At time 0 nodes have initial opinions.
- Edge \((i, j)\) carries a weight \(w_{ij}\).
- At time \(t\), every agent updates its opinion by (weighted) influence from neighbors.

Research questions:
- Does the network converge?
- If so, what is the converged state?
Opinion Dynamics: French-DeGroot Model [1956]

Each agent i has a real-valued opinion variable $v_i \in [-1, 1]$
- -1: against; 1: supportive.
- At time 0 nodes have initial opinions.
- Edge (i, j) carries a weight $w_{ij} \geq 0$.
- At time t, every agent updates its opinion by (weighted) influence from neighbors.

$$v_i(t + 1) = \sum_j w_{ij} v_j(t).$$

Research questions:
- Does the network converge? Yes.
- If so, what is the converged state? Global consensus.
Opinion Dynamics: Friedkin-Johnsen Model [1990]

Each agent i has an opinion variable $v_i \in [-1, 1]$
- -1: against; 1: supportive.
- At time 0 nodes have initial opinions u_i.
- Edge (i, j) carries a weight $w_{ij} \geq 0$.
- At time t, every agent updates its opinion by (weighted) influence from neighbors.

$$v_i(t + 1) = (1 - \lambda_i) \sum_j w_{ij} v_j(t) + \lambda_i u_i.$$

Research questions:
- Does the network converge? Yes under favorable conditions on W.
- If so, what is the converged state? no consensus.
Opinion Dynamics and Polarization

Social influence leads to homogeneity. Yet, the real world is not homogeneous.
Opinion Dynamics and Polarization

Social influence leads to homogeneity. Yet, the real world is not homogeneous. Our direction: re-examine social influence.

- Positive social influence, $w_{ij} \geq 0$, move opinions towards each other.
Opinion Dynamics and Polarization

Social influence leads to homogeneity. Yet, the real world is not homogeneous. Our direction: re-examine social influence.

- Positive social influence, $w_{ij} \geq 0$, move opinions towards each other.
- In reality, negative or repulsive influence – boomerang effect [AG14, HJK53], backfire effect [Nyhan10].
Opinion Dynamics and Polarization

Social influence leads to homogeneity.
Yet, the real world is not homogeneous.
Our direction: re-examine social influence.

- Positive social influence, $w_{ij} \geq 0$, move opinions towards each other.
- In reality, negative or repulsive influence – boomerang effect [AG14, HJK53], backfire effect [Nyhan10].

What if we have negative weights?
Structure Balance in Signed Networks [Heider46]

Positive ties: friendship; negative ties: hostility.

Only triangles with even negative ties are stable.
Structure Balance in Signed Networks [Heider46]

Positive ties: friendship; negative ties: hostility.

Only triangles with even negative ties are stable.

Global property: A stable network consists of two groups, where edges within the group are positive, and edges across the group are negative.
Poitive ties: friendship; negative ties: hostility.

Only triangles with even negative ties are stable.
Global property: A **stable network** consists of two groups, where edges within the group are positive, and edges across the group are negative.
Model on network dynamics when a graph is not balanced?
Our Results: Co-Evolution Model [WLG22]

- Opinion dynamics: DeGroot model + negative ties

$s V(t+1) = V(t) + W(t)$
$s W(t+1) = W(t) + V(t)$

Matrix Riccati Equation:
$s W' = WW^T + C$
$s C = V(0)V(0)^T - W(0)W(0)^T$
Our Results: Co-Evolution Model [WLG22]

- Opinion dynamics: DeGroot model + negative ties
- Tie dynamics: tie strength ↑ if two nodes agree with each other. (Schelling’s model of residential segregation [Schelling 71])
Our Results: Co-Evolution Model [WLG22]

- Opinion dynamics: DeGroot model + negative ties
- Tie dynamics: tie strength \uparrow if two nodes agree with each other. (Schelling’s model of residential segregation [Schelling 71])

$$
\begin{align*}
V(t+1) &= V(t) + W(t)V(t) \\
W(t+1) &= W(t) + V(t)V(t)^T.
\end{align*}
$$

(1) Matrix Riccati Equation: $W'(t) = WW^T + C$, $C = V(0)V(0)^T - W(0)W(0)^T$.

Main result:
- The network converges to structural balance, unless $|V(t)| \rightarrow 0$.
- Community membership can be solved from the initial states.
Our Results: Co-Evolution Model [WLG22]

- Opinion dynamics: DeGroot model + negative ties
- Tie dynamics: tie strength \uparrow if two nodes agree with each other. (Schelling’s model of residential segregation [Schelling 71])

\[
\begin{align*}
V(t+1) &= V(t) + W(t)V(t) \\
W(t+1) &= W(t) + V(t)V(t)^T.
\end{align*}
\]

(1) Matrix Riccati Equation:

\[
W' = WW^T + C, \quad C = V(0)V(0)^T - W(0)W(0)^T
\]
Our Results: Co-Evolution Model [WLG22]

- Opinion dynamics: DeGroot model + negative ties
- Tie dynamics: tie strength \uparrow if two nodes agree with each other.
 (Schelling’s model of residential segregation [Schelling 71])

\[
\begin{align*}
V(t+1) &= V(t) + W(t)V(t) \\
W(t+1) &= W(t) + V(t)V(t)^T.
\end{align*}
\]

(1)

Matrix Riccati Equation:

\[
W' = WW^T + C, \quad C = V(0)V(0)^T - W(0)W(0)^T
\]

Main result:

- The network converges to structural balance, unless $|V(t)| \to 0$.
- Community membership can be solved from the initial states.
Co-Evolution Dynamics

Random initial weights.

Iteration=0

Iteration=15

Iteration=30
Co-Evolution Dynamics: Karate Club

- Only two nodes: #10 and #33 have initial (opposite) opinions.
- All edges start with small positive weights.
Co-Evolution Dynamics: Political Blog Network

- 20% nodes carry ground truth opinions.
- All edges start with small positive weights.

Avg 97.21% prediction accuracy.
Summary and Acknowledgement

- Modeling: social media platforms.
- Algorithmic perspective: promote truth learning, reduce polarization
Acknowledgement

- Joint work with Professor Feng Luo (Math) and Dr. Haotian Wang
- Support by ATD (DMS-1737812, DMS-2220271).