Section 8.2: Integration by Parts - Worksheet

#31. Evaluate the following integrals. **Note:** some of these problems use integration techniques from earlier sections.

(a)
$$\int 5xe^{8x+1}dx$$

(b) $\int \arctan(7x)dx$
(c) $\int x^3\cos(5x)dx$
(d) $\int x^3\cos(5x^4)dx$
(e) $\int_1^e (\ln(x))^2 dx$
(f) $\int x^2\sin^{-1}(x)dx$
(g) $\int_0^{\pi/12} x\sec(4x)\tan(4x)dx$
(h) $\int \frac{\ln(x)}{x^5}dx$
(h) $\int \frac{\ln(x)}{x^5}dx$
(h) $\int \frac{\ln(x)}{x^5}dx$
(j) $\int_3^6 \frac{dx}{\sqrt{12x-x^2}}$
(k) $\int e^{-2x}\sin(3x)dx$
(l) $\int_{-2}^{-1}x\sec^{-1}(x)dx$
(m) $\int x\sec^{-1}(x)dx$
(m) $\int xe^{-1}(x)dx$
(m) $\int xe$

- **#32.** Calculate the volume of the solid obtained by revolving the given region about the given axis using (i) the method of disks/washers and (ii) the method of cylindrical shells.
 - (a) The region between the graph of $y = \sqrt{\tan^{-1}(x)}$ and the x-axis for $0 \le x \le 1$ revolved about the x-axis.
 - (b) The region bounded by the y-axis, the graph of $y = \sin(x)$ and the line y = 1 revolved about the y-axis.
 - (c) The region between the graph of $y = \ln(x)$ and the x-axis for $1 \le x \le e$ revolved about the line x = -2.

#33. Express
$$\int \sin^7(2x) dx$$
 in terms of $\int \sin^5(2x) dx$.
#34. Express $\int \sec^9(4x) dx$ in terms of $\int \sec^7(4x) dx$.

#35. Find reduction formulas for the following integrals.

(a)
$$\int \cos^n(3x) dx$$
 (b) $\int (\ln(x))^n dx$ (c) $\int \sec^n(5x) dx$