Section 8.2: Integration by Parts - Worksheet

\#31. Evaluate the following integrals. Note: some of these problems use integration techniques from earlier sections.
(a) $\int 5 x e^{8 x+1} d x$
(f) $\int x^{2} \sin ^{-1}(x) d x$
(k) $\int e^{-2 x} \sin (3 x) d x$
(b) $\int \arctan (7 x) d x$
(g) $\int_{0}^{\pi / 12} x \sec (4 x) \tan (4 x) d x$
(1) $\int_{-2}^{-1} x \sec ^{-1}(x) d x$
(c) $\int x^{3} \cos (5 x) d x$
(h) $\int \frac{\ln (x)}{x^{5}} d x$
(m) $\int x \sec ^{2}(5 x) d x$
(d) $\int x^{3} \cos \left(5 x^{4}\right) d x$
(i) $\int x^{3} e^{-x^{2}} d x$
(n) $\int \sin (\sqrt{3 x+5}) d x$
(e) $\int_{1}^{e}(\ln (x))^{2} d x$
(j) $\int_{3}^{6} \frac{d x}{\sqrt{12 x-x^{2}}}$
(o) $\int \frac{x}{\sqrt{5 x+1}} d x$
\#32. Calculate the volume of the solid obtained by revolving the given region about the given axis using (i) the method of disks/washers and (ii) the method of cylindrical shells.
(a) The region between the graph of $y=\sqrt{\tan ^{-1}(x)}$ and the x-axis for $0 \leqslant x \leqslant 1$ revolved about the x-axis.
(b) The region bounded by the y-axis, the graph of $y=\sin (x)$ and the line $y=1$ revolved about the y-axis.
(c) The region between the graph of $y=\ln (x)$ and the x-axis for $1 \leqslant x \leqslant e$ revolved about the line $x=-2$.
\#33. Express $\int \sin ^{7}(2 x) d x$ in terms of $\int \sin ^{5}(2 x) d x$.
\#34. Express $\int \sec ^{9}(4 x) d x$ in terms of $\int \sec ^{7}(4 x) d x$.
\#35. Find reduction formulas for the following integrals.
(a) $\int \cos ^{n}(3 x) d x$
(b) $\int(\ln (x))^{n} d x$
(c) $\int \sec ^{n}(5 x) d x$

