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Multiresolution Adaptive Image Smoothing
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A hierarchical image smoothing methed is presented which does
not require user specified parameters. For every pixel the largest
cetttered window (7 X 7, 5§ X 5 or 3 X 3) containing a constant
patch is sought. The selection is made by comparing a locally
computed homogeneity measure with its robust global estimate.
If the window is declared homogeneous, the pixel is assigned the
spatial average. Around discontinuities an adaptive least squares
smoothing method is applied for 3 x 3 windows. The performance
of the algorithm is compared with several other smoothing tech-
nigues for additively corrupted images. The'smoothing of synthetic
aperture radar images is used as an example for multiplicative
noise.  © 994 Academic Press, Inc.

1. INTRODUCTION

In noisy images the effectiveness of feature extraction s
reduced since the corrupted data may significantly deviate
from the assumed model. To improve performance a noisy
image often is smoothed before being processed. An effi-
cient smoothing algorithm must satisfy three conditions,

—Should be a parallel process at the pixel level. The

value of the smoothed pixel is then computed in a small
window centered on it. Successive iterations of the same
procedure will extend the *‘region of influence’” beyond
the bounds of the processing window.
. —Should not incorporate assumptions about the distri-
bution of the corrupting noise. (On the other hand, the
additive or multiplicative nature of the noise should be
taken into account.) Since smoothing is based on a small
region, the sample statistics may not represent the real
distribution and erroneous decisions can be taken. Itera-
tions also modify the characteristics of the noise.
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—Should preserve significant discontinuities. This can
only be achieved with adaptive smoothing algorithms
which exhibit a different behavior, whenever, prior to
smoothing, a discontinuity is detected in the processing
window.

The facet model based smoothing of Haralick and Wat-
son [6] was amoung the first smoothing algorithms de-
scribed in the computer vision literature which satisfied
all the above conditions. Given a window size, the same
order polynomial surface is fitted to the data in every
window to which a pixel belongs. For example, if the
window is 3 x 3 there are nine different least squares fits.
The smoothed value of the pixel is taken from the window
yielding the smallest residual power (variance). This crite-
rion prefers windows with homogeneous regions and thus
smoothing tends to preserve the discontinuities in the
image. We will apply the algorithm with constant surfaces
and refer to it as constant-facet smoothing.

The cases of additive and multiplicative noise are distin-
guished in adaptive smoothing algerithms although most
methods can be applied for both types of perturbations.
For additive noise excellent reviews can be found in Saint-
Marc et al. [22] for the computer vision literature, and
in McLean and Jernigan {14] for the image processing
literature. Adaptive smoothing methods assume
piecewise constant image structure, Saint-Marc et al. [22]
compute the modulus of the gradient vector at every pixel
and use it to generate the Gaussian weights of a smoothing
filter in a 3 X 3 window. The variance of the Gaussian is
a free parameter of the method. The larger the gradient
(the more probable the presence of a discontinuity), the
less the pixel contributes to the smoothed value at the
center of the window. The similar anisotropic diffusion
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algorithm of Perona and Malik [18] implements the dis-
crete diffusion equation with barriers defined from adja-
cent pixel differences. These barriers stop the diffusion
(i.e., smoothing) at image discontinuitics. Recently,
Crespo and Schafer [3] proposed incorporation of a mor-
phological edge detection procedure at each iteration of
the algorithm. We will refer to the algorithm of Saint-
Marc et al. [22] as diffusion smoothing. Both the constant-
facet and diffusion smoothing are iterative methods with
no clearly defined stopping criterion.

In applications the most frequently met muitiplicative
noise case is that of speckle noise. Speckle in images
is due to the interference patterns which appear when
coherent illumination is scattered at surfaces having irreg-
ular shapes at the scale of the wavelength used. See, for
example, Goodman [5] for a description of the physical
phenomena involved in generation of speckle. Speckle
appears in images as a superposed fine granular texture
having signal-dependent values. The removal of speckle is
a very important problem and is encountered in coherent
images such as synthetic aperture radar (SAR) images,
laser images, and ultrasonic images.

When logarithmically transformed, the speckle noise
becomes additive and signal-independent [1] and various
homomorphic filters have been considered for smoothing
[11]. To process SAR data Frost et al. [4] adapted a least
mean square error filter according to the local mean and
standard deviation. Morphological techniques have also
been employed for speckle suppression. Crimmins [2] pro-
posed an iterative nonlinear algorithm using the umbra
concept, Safa and Flouzat [21] alternatively suppressed
the local minima and maxima in the noisy image with
closing and opening operations. Adaptive smoothing can
also be achieved employing other minimization criterion.
Mahesh et al. [13] used the minimum-error minimuam-
correlation criterion. Lopes ef al. [12] compares the per-
formance of several filters for SAR images.

Two problems are to be faced by any adaptive smooth-
ing technique. A reliable measure for the presence of a
discontinuity in the processing window must be available.
The structure of the filter then depends on this measure
to avoid smoothing over an edge. Methods which employ
user supplied parameters as decision thresholds have their
performance strongly dependent on how close the user
was able to guess the optimal value. The main novelty of
our algorithm is that alf the parameters controlling the
adaptive behavior are robustly derived from the input
image.

The second problem of an adaptive algorithm is related
to the size of the processing window. The larger a window
the better the achieved smoothing. However, in a larger
window the probability of a significant discontinuity being
present also increases, while the chances of detecting
such a discontinuity may decrease. We avoid this problem
through a hierarchical approach. The value of a smoothed
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pixel is computed from one of a few windows of increasing
sizes centered on that pixel. The selection of the window
best representing the smoothed pixel is automatically per-
formed by the algorithm after a robust analysis.

The paper is organized as follows, In Section 2 the
adaptive least squares filtering is succinctly reviewed. The
proposed multiresolution adaptive lcast squares smooth-
ing (MAS) algorithm is described in Section 3. Application
of the algorithm to images corrupted with additive noise
and comparison of the results with those obtained by
other techniques is in Section 4. The case of multiplicative
noise is treated in Section 5. In Section 6 the paradigm
behind the proposed algorithm is discussed.

2. ADAPTIVE LEAST SQUARES SMOOTHING

Similar to most smoothing algorithms it is assumed that
the image has a piecewise constant structure. This model
yields the maximum possible smoothing, and since the
algorithm is applied at every pixel the amount of intro-
duced artifacts is usually not severe. The adaptive least
squares smoothing filter first proposed by Lee [9] will
be employed for the task of preserving the local image
structure around the step discontinuitics. Kuan ef al. [7]
and Unser [24] gave similar formulations for these filters.

Let fli, j) be the value of the pixel at site (7, j) in the
uncorrupted {original) image. The noisy image g(i, j) is
then additively corrupted

gli, j) = fli, j) + n(i, j) (0

with n(i, j), a signal-dependent, zero-mean, white noise
process having the nonstationary variance o2(i, j). Since
only one instance of the random processes is available
for the pixel (i, j) we must assume local ergodicity in
the first and second-order statistics. That is, when charac-
terizing the distributions from which f(i, j) and r(i, j)
were obtained, the ensemble statistics are considered
equal with the spatial counterparts computed in a small
(2p + 1) x (2p + 1) window centered on the pixel (i, ).

The least squares estimator of the uncorrupted pixel
value f{i, j) given the noisy data g(i, j) is (see Lee [9] or
Kuan ef al. [7] for details)

R iy =10 =k, el jy + ki, jygli, j). @
The weights k(i, j) are

SHi, j)
sii, i) + oai J)

k(i j) = (3)

where g(i, j) is the spatial average computed in the win-
dow from the noisy image; sXi, j), the spatial variance
of the original image in the same window. The latter will
be defined function of known quantitics, The estimator
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(2) does not have a linear structure since the weight k(/, j)
does depend on the data in the neighborhood of the esti-
mated pixel. If the spatial variance of the original image
in the window, s}(f, j), is small relative to the noise vari-
ance o2(i, j), the weight is close to zero and the estimate
reproduces the spatial average of the window; ie., a
strong smoothing is achieved. Such situation appears
when the region in the window is almost constant and/or
the signal-to-noise ratio s7(i, j}/o2(i, j) very low. In both
cases smoothing is desirable. If s7(/, j) dominates o'2(i, j)
a discontinuity is assumed to be present in the window.
It is important to emphasize that the assumption is correct
only for step discontinuities [15]. The weight is now close
to one and the estimate reproduces the available data,
i.e., less smoothing is introduced. Thus, the adaptive be-
havior of the algorithm is tuned toward preserving step
discontinuities. The adaptive least squares algorithm is
not robust in statistical sense since the computation of
the parameters (variances) is not immune to outliers.
The spatial variance of the original data s}(f, f)can be
determined once the nature of the noise is specified. The
first case is that of stationary, additive, signal-independent
noise, with variance o2, the usual assumption in computer
vision applications. It is immediate to obtain from (1)

sHi,J) = s34, j) — a2, )

where s:,(i, J) is the spatial variance computed in the
(2p + 1) X (2p + 1) window centered on the pixel in the
noisy image.

The other important case is that of multiplicative noise.
Instead of the model (1} the following noise model is
assumed [7]:

g, j) = fU, j) u(i, j), (5)
where u(i, /) is a noise process independent of f{i, j). The
multiplicative noise u(i, j) has mean El«(i, j)] = | and

stationary variance o2. The expression (5) can also be
written as

g, 1) = fU, j) + [ui, j) — 11 /G, J) (6)

and comparing (6} with (1) a signal-dependent additive
noise component ¢an be defined

n(i, j) = Lu(i, j) — 1) fGQ, j). )]
Thus the multiplicative noise case is reduced to the addi-

tive, zero-mean, signal-dependent noise case. The vari-
ance of this noise process can now be computed as

o, §) = Eln(i, )] = oiflg(, P + s} j)  (8)

where the ergodicity assumption was again employed.
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Since the noise u(i, j) and the original data f{i, j)} are
independent, the variance of the noisy pixel is

s2i, j) = s3.J) + o, j) ©)
= i, /) + o(g(, )P + sKi, )]

from where

Si,(i,j) - Gﬁ[g (i:j)]z
1+ o2

sKi, j) = (10)

To conclude this section, we remark that the parameters
characterizing the noise, o2 in the additive case, and
o2 in the multiplicative case, must be known in order to
be able to use the estimator (2). In the next section we
combine a robust method for estimating these parameters
with a decision process for the selection of an optimal p,

i.e., optimal window size for every pixel.

3. MULTIRESOLUTION ADAPTIVE SMOOTHING

In our multiresolution approach a pixel is considered
to be the center of several windows of decreasing sizes.
Let p be the size parameter of the 2p + ) X 2p + 1)
window and p,, its maximum value. The ideal case is
when the window contains a homogeneous (constant in
the original image) patch. Smoothing is achieved by the
center pixel being replaced with the spatial average com-
puted in that window. The larger the window, the more
smoothing is introduced and thus the proper choice of
Paax allows smoothing of a homogeneous region without
employing iterative procedures. The value of p,,,, is lim-
ited upward by the requirement of local computation and
by the loss of sensitivity to image structure. We chose
Peoax = 3 corresponding to a 7 X 7 maximum window size,
Thus at every pixel the following centered windows can
be defined: 7 X 7,5 x §, and 3 x 3, We will refer to these
windows as different resolutions at which the image is
analyzed.

A useful smoothing algorithm must preserve the sig-
nificant discontinuities (step-edges, by the assumed image
structure) of the image. The adaptive least squares proce-
dure described in Section 2 can be employed for this task,
When larger windows are used, a fine detail in the image
may not increase s/, j} sufficiently to produce a signifi-
cant change in the weight k(i, j). Thus, when adaptive
behavior is called for, the smallest 3 x 3 window should
be used. Since the adaptive least squares algorithm tends
to retain the available data if a discontinuity is detected,
the use of a small window does not degrade the overall
performance.

Computation of the weights (3) require a reliable esti-
mate for the noise variance. To obtain this estimate the
following assumption about the global structure of the
image should be made.
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Homogeneity conjecture. At the lowest resolution

{p = pna the number of windows containing a homoge-
neous patch in the noisy image should be close to or
exceed the number of windows located over discentinu-
ities.
If the conjecture is strongly violated, the image is domi-
nated by texture and smoothing is not appropriate. Other-
wise the algorithm will perform satisfactorily as the analy-
sis of the experimental results will show. The validity of
the conjecture for smaller windows (higher resolutions)
is implicit. Assumptions about the structure of the image
are central for an adaptive smoothing algorithm, but they
usually relate to local and not to global characteristics.
Lopes et al. [12] use the term ‘‘scene heterogeneity’”
in this context, McLean and Jernigan [14] compare 14
different, mostly local, image structure measures.

In every window centered on the pixel (i, j), a scalar
homogeneity measure y2(i, /), will be defined. If no discon-
tinuity is contained in the window, y%(i, j) should depend
only on the characteristics of the noise corrupting the
image. The presence of a significant discontinuity should
increase its value. For the piecewise constant image struc-
ture model, spatial variances are reliable homogeneity
measures [15]. A constant patch in the original image has
si, ) = 0 and thus (4) for additive noise v, j) =
s4(i, j}. In homogeneous windows under stationary addi-
tive noise the spatial variance computed in the noisy image
is an unbiased estimate of o2, Similarly, from (10) we can
define for multiplicative noise

21.
l)
Y & )

_ 11
(=G )T (1)

which for homogeneous regions is an unbiased estimate
of o2,

It is not known a priori which window is homogeneous.
The obtained y%(i, j) values are ordered in a sequence
which represents the distribution of the homogeneity mea-
sure for the given image and the employed resolution of
@2p + 1) x 2p + 1) windows. From the homogeneity
conjecture we can conclude that the distribution must
have a strong mode. Indeed, about half of the values in
the sequence must be distributed around I'2, the expected
value for homogeneous windows. Most of the remaining
v(i, j) values are spread along the upper tail of the se-
quence. A simple mode detection procedure can estimate
I'2. The mode estimator is a robust estimator, tolerating
up to half of the data being outliers, i.e., not belonging
to the distribution of the majority [20, Chap. 4]. The mode
of a random variable corresponds to the maximum of
its probability density function. Therefore in the ordered
sequence many samples should cluster around the mode
which is detected from the interval with the most samples
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in the sequence. The mode detection algorithm is available
in packages (e.g., [19, p. 462]).

The mode T'? provides the robust global estimate for
the stationary noise variance a3 or o2. Being based on
the largest possible number of loca) variance estimates,
I'? must be close to the true value of the variance. At
every resolution p = 1, 2, 3 a separate distribution of
y2(i, j) is obtained. The global estimates T'; can then be
used to choose the optimal window size from which
the smoothed pixel value is determined. Whenever the
homogeneity measure computed in a window is less or
equal to the stationary noise variance estimate; i.e.,
vi(i, j) = I';, the window should contain in the original
image a constant patch with a very high probability.

At every pixel and every resolution the binary variables
¢,(i, j) can now be defined:

I if'yf;(i,j) =T}

. 12
0 ify2i,j)> T2 (2

(i, J) = {

Note that the values of ¢,(i, j} can be computed indepen-
dently. The optimal resolution for a pixel is selected as
the largest p = p,,,, for which c,{(i, j) = 1, and the pixel
1s substituted with the spatial average computed in that
window. Pixels not having any ¢,(i, j)) = | are assumed
to be adjacent to a step discontinuity and the smoothed
value is estimated in the 3 X 3 window with the adaptive
least squares procedure. The proposed multiresolution
adaptive smoothing (MAS) algorithm can be summarized
as follows:
Forp=1,.. . Py =3
1. At every pixel compute ina 2p + 1) X 2p + 1)
window:
—the spatial average of the noisy image §p(i, 7
—the spatial variance of the noisy image sf,'p(i, i
—the homogeneity measure v3(i, j).
2. Estimate the mode of the homogeneity measure se-
quence ['2,
3. Compute the values c,(i, j).
The value of the pixel in the smoothed image is

FGd) = g, ) ifp = max[c,(i,Jj) = 1} =1
[1 -k glip)+k(,)Dg)

ifc,(i, ) =0forp=1,.,

] pmax'

4. EXPERIMENTAL RESULTS: ADDITIVE NOISE CASE

The mode of the y2(i, j} sequence is the robust global
estimate of the stationary noise variance, 6% ,, based on
2p + 1) x 2p + 1) windows. The weight k(i, /) used in
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the adaptive smoothing procedure becomes, after combin-
ing (3) and {4),

_ i) - 1%

(13
yi(i, J) (13)

k(i j)

Note that y3(i, j) must be larger than I'} in order the
adaptive smoothing to be employed.

The performance of the multiresolution adaptive
smoothing algorithm was compared with the constant-
facet smoothing [6] and the diffusion smoothing methods
[22] discussed in Section 1. These methods require param-
eters provided by the user. In both constant-facet and
diffusion smoothing the number of iterations must be
specified if oversmoothing is to be avoided. The quality
of diffusion smoothing also depends on the value of the
diffusion constant. When comparing the different tech-
niques, all the parameters were tuned to obtain visually
optimal outputs. No parameters are required for the MAS
algorithm.

In Fig. la the house image is shown. One iteration of
constant-facet smoothing (Fig. 1b) and diffusion smooth-
ing (Fig. 1¢) were applied with 3 X 3 windows. These
methods achieve satisfactory smoothing of large homoge-
neous regions. However, also introduce artifacts in the
more textured parts of the image were the employed crite-
rion for discontinuity detection fails and oversmoothing
results. See for example the tree at the right, When only
3 X 3 windows are used for the MAS algorithm (Fig. 1d)
22.4% of the windows were declared homogeneous and
the central pixel substituted with the spatial average. For

FIG. 1.
to the house image. {a) Input image. (b) Constant-facet smoothing, one
iteration. {c) Diffusion smoothing, one iteration. (d} Multiresolution
adaptive smoothing.

Different 3 x 3 window based smoothing methods applied
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FIG. 2. Different 3 % 3 window based smoothing methods applied
to the noisy house image. (2} Input image, additive Gaussian noise
ol = 900, (b) Constant-facet smoothing, three iterations. (c) Diffusion
smoothing, four iterations. (d} Multiresolution adaptive smoothing.

the other pixels the adaptive least squares procedure was
used. The image passed practically unchanged.

The difference in performance is emphasized when the
image is noisy, corrupted with additive Gaussian white
noise having o2 = 900 (Fig. 2a). In Fig. 2b the result of
the constant-facet smoothing algorithm after three itera-
tions, in Fig. 2c the result of the diffusion smoothing
method after four iterations are given. Both methods used
3 x 3 windows and further iterations did not vield signifi-
cant changes. The presence of small *‘tiles’” in the image
is due to local correlations introduced by the iterations.
The image smoothed with the MAS algorithm for p,,, =
1 is shown in Fig. 2d. Again less artifacts are introduced
and the fine details are better preserved. Pure smoothing
accounted for 40.2% of the pixels, the adaptive least
squares procedure for 59.8%. Since the estimated noise
variance is used as decision threshold, the percentage of
windows declared homogeneous increased relative to the
noiseless case. The increase is due to windows containing
small step-edges which now are buried in the noise.

The noisy fouse image was also employed for compari-
son of the MAS algorithm’s performance with Lee’s [10]
adaptive smoothing technique. Lee’s method usesa7 x 7
window. From the window a directional subset of pixels
is chosen after local edge detection and the adaptive least
squares procedure is applied to these pixels. The user can
supply a threshold on the local variance estimate to select
only the windows containing significant edges. Lee pro-
posed to improve the local noise variance estimate, used
in the computation of the weights, by averaging the five
smallest variances associated with the pixels inthe 7 x 7
window.
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FIG. 3. Smoothing of image in Fig. 2a. (a} Lee's method, without
directionai subsets, {b) Lee’s method, with directional subsets. {c) Multi-
resolution adaptive smoothing, pg,, = 3.

In Fig. 3a the result of Lee’s method is shown, without
applying the directional subsets based procedure. The
technique thus becomes a one-step adaptive least squares
filtering algorithm in 7 X 7 windows. The local variance
estimates often are biased upward by the discontinuitics
and the image is oversmoothed. In Fig. 3b, directional
subsets were used for every pixel. The sharpness of the
edges in the smoothed image is improved, however, the
quality of homogeneous regions somewhat deteriorates.
For comparison, the MAS algorithm was run with
Puax = 3. The result, in Fig. 3¢, shows that the hierarchi-
cal approach combined with global noise variance esti-
mates, succeeds to find the optimal trade-off between
smoothing of homogeneous regions and preserving dis-
continuities. The three homogeneity measure sequences
based on which the smoothed pixel values were estab-
lished, are shown in Fig. 4 as histograms. The locations
of the modes are marked by arrows. The detected values
are '} = 976 for the 7 x 7 windows, '3 = 1106 for the
5 x 5 windows, and I'f = 1045 for the 3 x 3 windows;
all close to the true variance of the noise, o2 = 900. (The
error is around ten percent in the standard deviation val-
ues.) The slight systematic increase in the estimated val-
ues is due to windows containing small step edges or ramp
edges. This increase did not degrade the performance
of the algorithm. When the correct variance value was
supplied to the algorithm the output did not change sig-
nificantly. Using the modes as decision threshold, 35.5%
of the smoothed values were taken from 7 x 7 windows,
22.1% from 5 X 5 windows, 19.7% from 3 X 3 windows,
and the values of the remaining 22.7% of pixels were
estimated with the adaptive least squares procedure. Thus
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the MAS algorithm allocated the pixels evenly across the
resolutions in accordance with the image structure.

The MAS and Lee algorithms take different approaches
in adapting the shape of the processing window to the
local image structure. Near an edge the MAS algorithm
will decrease the size of the window while Lee’s technique
will choose the best suited directional subset. To compare
the two approaches, both methods were used as preproc-
essors for edge detection in a noisy synthetic image (Fig.
5b). The original image (Fig. 5a) contains step edges of
all orientations. The image was smoothed (Figs. 5¢ and
5d) and the edges detected with Canny’s edge detector
having the two thresholds set to optimal values. Both
smoothing methods yield edges of same quality (Figs. 5e
and 5f). For data reproducing the assumptions embedded
in the algorithms (piecewise constant image structure) the
two approaches yield similar performance.

5. EXPERIMENTAL RESULTS: MULTIPLICATIVE
NOISE CASE

The mode of the homogeneity measure, (i, j), se-
quence is the estimate of the stationary multiplicative
noise variance computed from (2p + 1) X 2p + 1) homo-
geneous windows. The weight &(i, f) can be defined for
the multiplicative case by combining (3) and (10)

KeD = i pa+ Ty (19
The value of ¥i(i, j) must exceed I'? in order to use the
adaptive filtering procedure.

The multiplicative noise of interest for us is the speckle
noise, as was discussed in Section 1. An often used pre-
processing step for speckle removal is the average of
several images taken independently in different bands.
The number of averaged images N is called the number of
looks of the final image. The accepted model of speckled
images is the gamma distribution. In a homogeneous
neighborhood the expected value of a pixel g(f, jyina N
looks speckled image is the uncorrupted pixel value {7, f),
while its variance is f(i, ) N. The original pixel value
thus can be estimated with g(i, j), the spatial average.
Since the mean and the variance are proportional, the
speckle noise is signal-dependent and can be modeled as
multiplicative noise [9, 11]. We must, however, assume
that the speckle image is undersampled such that the pix-
¢els are independent [23]. Note that, for uncorrupted data
the homogeneity measure (11) should be equal to 1/N.

The performance of the MAS algorithm for SAR images
was compared with the method of Kuan er al. [8], i.e.,
the multiresolution approach vs. a one-step procedure.
The method of Kuan er af. [8] is similar to that of Lee
(1981) but does not use the linear approximation of the
latter. The aerial image (Fig. 6a) was corrupted with
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FIG. 4.
arrow marks the detected mode.

gamma notse corresponding to four looks (Fig. 6b). The
output of the adaptive least squares smoothing algorithm
of Kuan et al. for 7 X 7 window size is shown in Figure
6c. It is important to emphasize that the multiplicative
noise variance o2 = 0.25 must be known a priori for this
algorithm. The large size of the employed window does
not allow smoothing to be performed in a few pixel wide
band along the edges. Once a window contains a signifi-
cant edge, the adaptive algorithm prefers the original data.

The MAS algorithm estimates the values of &2 from
the homogeneity measure sequences and thus it is not
required to be supplied by the user. The estimated mode
values were I'} = 0.29, T = 0.34, and T} = 0.32. The
unsmoothed bands along edges are now significantly re-

Distribution of the homogeneity measures extracted from Fig. 3c. (a) 7 X 7 windows (b) 5 X § windows (¢) 3 X 3 windows. The

duced since in such regions the MAS algorithm prefers
smaller neighborhoods. About 39.5% of the pixels were
replaced with the spatial averages computed in 7 X 7
windows, 20.4% in 5 X 5 windows, 16.0% in 3 X 3 win-
dows, and 24.1% by the adaptive least squares estimate.
The distribution of the pixels selected at ditferent resolu-
tions is shown in Fig. 7.

To investigate the performance of the MAS algorithm
for more realistic SAR images a 128 X {28 image was
generated using the SARSIM radar simulator program of
The Analytic Sciences Corp. The image is shown in Fig.
8a and the output of the algorithm in Fig. 8b. Note the
preservation of all the features in spite of significant
smoothing of the background.
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FIG. 5.

Preprocessor for edge detection. (a) Original image. (b) Cor-
rupted with additive Gaussian noise, o = 400. {c) Smoothed with MAS
algorithm. (d) Smoothed with Lee’s algorithm. (g) Edge extracted from
(¢c). (f) Edge extracted from (d).

6. DISCUSSION

The principal novelty of the proposed smoothing
method is that does not have any free parameter to be

FIG, 6. Smoothing of SAR images. (a) Original image. (b} The simu-
lated four-looks SAR image. (¢} Smoothing with the Kuan et al. [8)
algorithm in a 7 X 7 window. {d) Multiresolution adaptive smoothing
with p., = 3.

FIG. 7. Selection masks for the result in Fig. 6d. (a) 7 X 7 windows:
39.5%. (b) 5 x 5 windows: 20.4%. (¢) 3 x 3 windows: 16.0%. (d) Adaptive
least squares: 24.1%.

set by the user. The noise variance is robustly estimated
from the image at several resolutions and used to find the
optimal window size for every pixel. Techniques which
explicitly detect discontinuities before smoothing in order
to choose the best shape for the processing window [10,
25] can be incorporated in the proposed algorithm.
McLean and Jernigan [14] concluded in a study of local
image homogeneity measures that most adaptive filtering
techniques will perform similarly given that the measures
have the same quality. Our robust global estimates for
the noise variance are the most reliable ones which can
be extracted from a given image. Recently Olsen [16]
compared several methods for image noise estimation and
found that simple averaging of local estimates from homo-
geneous windows performed the best. The homogeneous
windows were selected after local edge detection. Our

FiG. 8.

Multiresolution adaptive smoothing of a SAR image gener-
ated by the SARSIM of the Analytic Sciences Corp. (a) Input. (b)
Multiresolution adaptive smoothing, pp, = 3.
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technique is simpler and includes additional safeguards
by using the robust mode estimator. The long tails of the
distributions in Fig. 4 prove the need of robust ap-
proaches.

An important property of the MAS algorithm is its hier-
archical structure which allows implementation on image
pyramids [17]. In this case the image is analyzed at the
resolutions corresponding to successive levels of the pyra-
mid: 2 X 2,4 x 4,8 x 8, Since the processing is no longer
pixel based, the rigid pyramid structure can introduce
artifacts. The artifacts are eliminated by combining the
results obtained for the input being shifted around. Note
that all variances can be computed recursively and the
modes can be detected at the apex of the pyramid.

The technique presented in this paper is an example of
a more general paradigm. Assume that many nonrobust
computational modules, of which about half provide unbi-
ased estimates of an invariant, are available. In our case,
these modules are the windows at a given resolution and
the invariant is the true value of the stationary noise vari-
ance. A simple robust operation can then recover the
reliable estimate for the invariant. In the MAS algorithm,
the mode detection is that robust operation. Once the
close-to-correct value of the invariant is known, the com-
putational modules which provided “‘good’’ estimates can
be selected. In our case the windows yielding variances
smaller than the mode were used. Since only the “‘good”
modules are now taken into account, the final result is
robust relative to the assumptions on which the nonrobust
computational modules were based. This paradigm is not
restricted to image smoothing and can be applied to other
computer vision tasks as well.
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