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This paper presents a solution to the problem of creating region
adjacency graph (RAG) pyramids on parallel computers compris-
ing the hypercube topology. RAG pyramids represent hierarchies
of irregular tesselations, with each tesselation generated in paral-
lel by independent stochastic processes, and can be used for
multiresolution image analysis. The outcome of the stochastic
processes depends on the input data allowing the adaptation of
RAG pyramids to the image content. For the extraction of con-
nected components from labeled images, different connected com-
ponents are reduced to different roots which are interconnected in
a final region adjacency graph. An algorithm for implementing
RAG pyramids on hypercube computers is discussed in detail and
timing results are presented for the Connection Machine CM-2
supercomputer. The time complexity of the algorithm is found for
the hypercube and the CRCW PRAM. The results show that the
iterative process that creates a new level of the hierarchy from its
preceding one does not heavily depend on the size of the graph, as
its expected time is O(log N) for a random graph, where N is the
total number of vertices in the input graph. The total number of
levels is O(log(image_size)), as for the regular pyramid. o© 1994

Academic Press, Inc.

1. INTRODUCTION

Salient features in an image are often large, that is,
they have a global nature. A popular method for fast
delineation of global features is the multiresolution ap-
proach [21]. At sufficiently low resolution a small neigh-
borhood will contain all the salient information about a
global feature. The feature can be detected by the appli-
cation of a local operator to the low resolution represen-
tation. For successful multiresolution image analysis all
the feature representations must remain discriminable
during resolution reduction.

Let the input image be level 0 of the hierarchy of repre-
sentations. The value of a pixel on the level [ + 1 repre-
sentation is computed from the values of a small set of
pixels on level I. The computation is performed by a pro-
cessing cell, and in this paper we will use the terms cell,
vertex, and pixel interchangeably. The cell on level I + 1
is called the parent, while the aforementioned set of cells
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on level [ are its children. Note that in general a child can
have more than one parent. The child—parent links define
the structure of the hierarchy. Tracing these links from a
cell on level ! down to the base delineates the receptive
field of the cell in the input image. The value of the cell
represents the receptive field at the resolution of level /.

The values of the parents are computed in parallel and
the average number of children is always larger than one.
Thus, the size of the receptive field of a cell increases
strictly monotonically with the level in the hierarchy. The
receptive field cannot exceed the size of the image and
therefore the hierarchy building process will always con-
verge after a few steps. If the average number of children
on every level of the hierarchy is K, then the complete
stack of multiresolution representations contains
O(logg(image_size)) levels.

Traditional multiresolution representations have regu-
lar structure with all parents having K children arranged
in a square neighborhood. Adjacent neighborhoods may
overlap. The value of the parent is computed as the
weighted average of the values of its children. The
weights are often chosen to correspond to a low-pass
filtering of the children’s level representation; therefore a
smaller number of parents are required for the reduced
resolution representation. In a traditional multiresolution
hierarchy the number of pixels decreases fourfold be-
tween successive representations. These hierarchies are
also known as image pyramids.

The regularly structured image pyramids are not opti-
mal for feature extraction tasks where homogeneous re-
gions have to be delineated. For example, consider an
image with two large features separated by a small gap.
During the resolution reduction, not only the extent of
the features decreases but also their separation. Thus,
the two features will be fused into one before they can be
represented as local information, and it is not guaranteed
that they will be discriminated at higher levels of the
pyramid. Similarly, global connectivity of a connected
component may become evident only at the top of the
hierarchy, in which case the logarithmic processing time
property of the pyramid will be violated [14]. Several
feature extraction algorithms with adaptive child-parent
links were proposed to avoid the artifacts of rigid pyra-
mid structures. See [10, 21] for reviews. All these algo-
rithms modify the links after the hierarchy is built and
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therefore they do not offer a satisfactory and efficient
solution (4].

In most applications the features to be delineated are
homogeneous regions in the input image. To keep their
representations separated during the resolution reduc-
tion, the child—parent links must be defined based only on
local homogeneity; i.e., all the children connected to a
parent must belong to the same homogeneous patch.
Such a child-parent relation yields homogeneous recep-
tive fields for all the cells in the hierarchy. If the receptive
fields do not overlap, feature delineation is reduced to
identifying the cell whose receptive field coincides with
the feature of interest. The condition for nonoverlapping
receptive fields is a unique child—parent connection. That
is, a cell on level / should be connected to only one cell on
level I + 1. However, the resolution reduction requires
that on the average several cells from level / converge to
the same cell of level [ + 1.

When the child—parent links are defined based on local
homogeneity, every level of the multiresolution represen-
tation can be described as a region adjacency graph
(RAG). The cells on a given level are the vertices of the
RAG for that level, while the edges of the graph describe
the adjacency relations among the cells’ receptive fields.
Hierarchies built as stacks of RAG representations will
be called RAG pyramids. Being molded after the homo-
geneous regions in the image, the structure of a RAG
pyramid is no longer regular. RAG pyramids are optimal
for feature extraction as they eliminate the artifacts of
regular image pyramids while preserving the logarithmic
processing time property [13]. A probabilistic technique
was proposed recently for building RAG pyramids [17].
This technique is prone to parallel implementation, and in
this paper we solve the problem of generating RAG pyra-
mids on hypercube parallel computers and on the CRCW
PRAM, and estimate the complexity of the solution. Per-
formance results for the Connection Machine system
CM-2 supercomputer follow.

The paper is organized as follows. Section 2 presents a
sequential algorithm for building RAG pyramids, Section
3 introduces an algorithm that builds RAG pyramids on
the hypercube. Its time complexity is compared to that of
a similar algorithm for the CRCW PRAM. Section 4
presents results from the implementation of the algorithm
on the Connection Machine system CM-2 supercompu-
ter. Finally, Section 5 contains concluding remarks.

2. A PROBABILISTIC ALGORITHM FOR
RAG PYRAMID CONSTRUCTION

An algorithm that applies a stochastic process for the
construction of RAG pyramids [17] is succinctly de-
scribed in this section. For the moment, let us assume
that the entire image is homogeneous under the employed
homogeneity criterion. For example, if homogeneity is
measured by similar gray level, all the pixels in the image
have the same value. Thus, the input adaptive behavior
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of RAG pyramids is eliminated to simplify the presenta-
tion of the algorithm. How the structure of RAG pyra-
mids becomes molded by the input is discussed later in
this section.

On level 0, which contains the input image, the RAG is
the 8-connected mesh structure of the image. Every cell
determines in parallel that its eight neighbors in the graph
belong to the same homogeneity class. All the cells on
level 0 thus acquire the same information. However, to
build the hierarchy in O(log(image_size)) steps, only a
subset of the level 0 cells can be selected for inclusion
into the RAG of level 1. The selection process must sat-
isfy the following two requirements for the creation of the
level I + 1 RAG, G (V4. Ei51), where Vi and E;,; are
the sets of vertices (cells) and edges, respectively.

* Cells selected for level I + 1 should not be neighbors.
* Cells not selected for level I + 1 should have at least
one selected neighbor.

These two conditions ensure that the apex of the hier-
archy is reached in a logarithmic number of steps while
using only local operations. In addition, they imply that
the vertices of the RAG on the next level, G, (V,,,,
E;)1), represent a maximum independent set (MI1S) [6] of
the vertices in the graph G(V,, E)). The most common
technique for the generation of an MIS uses a greedy
approach that generates an independent set vertex by
vertex [11]. This technique selects a set of vertices for the
MIS with probability reciprocal to the degree of the ver-
tex. A parallel version of this technique first extracts an
elimination tree from the given graph [20]).

A parallel randomized algorithm to find an MIS of a
graph was also presented [3]. This algorithm is iterative,
with an expected number of iterations equal to O(log N),
where N is the total number of vertices in the input
graph. Another paralle} algorithm of similar complexity
was proposed in [12]. A probabilistic symmetry breaking
iterative parallel technique [13] is used here. Every ver-
tex in the graph is allocated with an i.i.d. (independent
identically distributed) random variable. Uniform distri-
bution [0, 1] is the simplest choice. If the outcome is a
local maximum, i.e., all the neighbors drew smaller val-
ues, the vertex is selected into the MIS. The algorithms
in [3, 13] are very similar. In contrast to the technique in
[3] that applies a corrective step, the selection criterion
cannot be satisfied by two adjacent vertices. However,
both techniques require O{log N} iterations for random
graphs. As the graphs used here are derived from an
eight-connected mesh, in practice we have observed that
a constant number, i.e., O(1), of steps are required to
generate an MIS. In fact, comparison of our technique
with the one in [12] has shown a significant speed-up [16].

An example of vertices selected for the next level after
one iteration of this MIS algorithm is shown in Fig. 1a for
an 8 X 6 segment of an image. The density of selected
vertices (filled in squares) may be low as the probability
of being a local maximum is the reciprocal of the degree
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FIG. 1. Iterative process to select the vertices for level | in a uni-
form image: (a) First iteration. (b) Second iteration. (c) The RAG on
level 1. '

of the vertex. Subsequent iterations are applied only to
vertices not adjacent to an already selected vertex. In all
of our experiments, in at most five iterations the MIS was
obtained. Figure 1b shows the selected vertices after the
second iteration, which is the last one for this example.

After the selection of cells for inclusion in the next
level graph, the child—parent links must be established.
Note that in RAG pyramids each parent on level [ + 1 is
always a cell from level [. Thus, the child—parent links
between levels { and / + 1 are the edges in the RAG of
level [ connecting the selected (parent) cell to some of its
neighbors. When a child is neighbor to more than one
parent, all but one of the links are broken by using the
outcomes of the random variables in the last iteration
(e.g., only the connection to the neighbor with the largest
value drawn is kept). Since the receptive fields are non-
overlapping, the adjacency relations for cells on level [ +
I can be determined from the RAG of level I. This is a
standard graph reduction procedure. Two parents are
neighbors on level [ + 1 if two or more of their children
are neighbors on level /. This way, the edges for the RAG
of level I + 1 are established. Figure Ic shows the RAG
on level 1 for the input graph in Fig. la. The average
decimation ratio for RAG pyramids is between 4 and S
and the number of levels is O(log(image_size)) [13].

We can consider now the case of an arbitrary input
image. Adapting the structure of the RAG pyramid to the
content of the input image is done by introducing an addi-
tional processing step. Before the selection of the cells
for level [ + 1, every cell on level [ classifies its neighbors
into two classes, namely similar or nonsimilar, based on
the homogeneity criterion defined by the task. Edges to
nonsimilar neighbors are temporarily removed from the
RAG and several separate similarity partial subgraphs
are obtained. Each similarity graph corresponds to a ho-
mogeneous feature in the input. Since the decision
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threshold is computed locally and therefore may differ
for adjacent cells, the similarity graphs are directed
graphs. The resolution reduction is performed as above
with the removed edges being taken into account when
constructing the RAG of level | + 1.

When the local class allocation is independent of the
cell selection process for previous levels, the RAG pyra-
mid converges to a unique representation of the image.
This is the case for labeled images. Each homogeneous
region (i.e., connected component) is then represented
by a single cell at the apex and the final RAG describes
the topology in the input. Figure 2 shows the four highest
levels of the hierarchy for an example image. By uniquely
enumerating the nodes of the RAG at the apex and trans-
mitting the labels in a top-down fashion following the
links in the RAG pyramid, the connected components of
the given image can be labeled. We restrict the discussion
to examples using labeled images. In the case of gray
level images, the local similarity threshold depends on
the employed neighborhood which is determined by the
previous selections. The probabilistic nature of the algo-
rithm thus inroduces a spread in the possible outputs of
the RAG pyramid which can be exploited to achieve reli-
able feature representations {16].

3. PARALLEL CONNECTED COMPONENT LABELING
USING RAG PYRAMIDS

The introduction of an algorithm that creates RAG pyr-
amids on hypercube parallel computers, as well as com-
parison of its performance with that of the theoretical
CRCW PRAM, is the major objective in this section.
Without loss of generality, the application algorithm cho-

[ d

FIG. 2. The four highest levels of a RAG pyramid.
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sen is connected component labeling. The connected
component labeling problem is fundamental in image
analysis and machine vision. The assignment of unique
labels to connected regions reduces the complexity of
high level image operations that distinguish among the
various components. Several algorithms have been pro-
posed for sequential and parallel computers. A survey of
parallel algorithms was presented in [2} while representa-
tive work appeared, among others, in [8, 9, 15, 18].

The hypercube is one of the most frequently used to-
pologies for the implementation of distributed-memory
parallel computers. Its robust structure permits the effi-
cient emulation of other frequently used topologies [23].
For example, algorithms that embed regular pyramids
and a class of more robust multilevel structures [24] into
the hypercube were investigated in [22, 25], respectively.
Three types of parallel systems are considered in this
paper for the theoretical evaluation of our algorithm’s
performance, namely the CRCW PRAM and the SIMD
and MIMD hypercubes. It is assumed that hypercube
systems have bidirectional channels, while processors
can receive data on all incoming channels simultaneously
and can send data only on one outgoing channel at a time.

An optimal one-to-one mapping of the 2* X 27 image
array onto the hypercube with 22 nodes is the first step of
our algorithm. This mapping uses the binary reflected
Gray code [22]. The creation of the RAG pyramid is ac-
complished as follows. Each cell with r neighbors in G[/]
creates an array \; of binary values, fori =0, 1,2, ..., r,
with one value for each neighbor. At the base of the
pyramid (i.e., ! = 0), r = 8. More specifically, in Phase 1
of the algorithm the cell sets A\; = 1 if the ith neighbor
belongs to the same class; otherwise it sets A; = 0. The
0Oth neighbor is the cell itself; therefore Ay = 1. This way
edges to nonsimilar neighbors can be temporarily re-
moved to derive the similarity partial subgraphs dis-
cussed in Section 2 and subsequently adapt the structure
of the RAG pyramid to the content of the image.

To determine the binary values of A; in Phase 1 for each
cell on level I, every processor representing a cell on
level [ sends its pixel value to its r neighbors. This pro-
cess does not take a significant amount of time for / = 0
due to the perfect mapping of the image array onto the
hypercube. Phase 1 requires O(r) time on the CRCW
PRAM. As the structure of G[!] is generally random, the
transmission of a single value on the hypercube may take
O(n) time when message congestion at intermediate pro-
cessors is ignored. For an SIMD hypercube, O(n X r)
time is consumed in Phase 1 for the transmission of the r
values, assuming that the transmission of a single mes-
sage makes O(n) hops. For an MIMD hypercube, how-
ever, this time is proportional to (r — 1) + 2rn0or O{n + r};
this worst case appears when the last value sent by the
processor with the largest number of neighbors goes to its
diametrically opposite processor (i.e., at distance 2n).
Each processor then compares its own pixel value with
the values it receives in order to determine the values for
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the elements of the array A. As for higher levels the de-
gree of a vertex may be larger than 8, for computer imple-
mentation the array A should be created with many more
than eight elements. Since the comparison of the r values
takes O(r) time, the time complexity for Phase 1 is similar
to the time complexity for the transmission of the r val-
ues, as evaluated above.

The interative local process that selects the vertices
from G[/] to be included in V[I + 1] is implemented as
follows. Let cell ¢, have at most r neighbors in G[!]. Two
binary state variables p and g and a random variable x
uniformly distributed between 0 and 1 are associated with
every cell. The cell ¢ is selected for inclusion in the MIS,
and therefore in G[/ + 1], if after the last iteration &,
where k = 0, 1, ..., its po(k) state variable is 1. Initially,
pi{0) = 0,Vi=20,1, ..., r, and every iteration of the local
selection process is implemented in two phases, namely
Phases 2 and 3.

In Phase 2, the value of g, in the kth iteration is deter-
mined by

1 ifxpk~1)=0 Vi=0,1,..r
qolk) =

0 otherwise.

Thus, qok) is set to 1 if none of its neighbors in the
similarity subgraph (including c¢y) was selected earlier.
The implementation of Phase 2 requires the transmission
of the value of the variable p to its r neighbors in time
similar to that for Phase 1. The updated value of go(k) is
transmitted in Phase 3 to the neighbors and the new value
of py(k) is computed based on the received values for the
array g:

| if go(k)xo(k)
Yi

polk — 1) otherwise

max(h,gd{k)x{k)) > 0
0,1, ...r

]

i

polk) =

The cell ¢ is selected for inclusion in the MIS if the
outcome of the random variable for ¢, is a local maximum
in the similarity graph. Phase 3 takes the same amount of
time as Phase 1.

The iterative process that selects the cells for the next
higher level is terminated when every cell either was se-
lected earlier or has at least one neighbor which was
selected. Otherwise, Phases 2 and 3 are implemented
again. This condition is checked in Phase 2 by summing
up the values of gg(k) for each unselected cell using the
global sum operation and then comparing the result
against zero. If the result is zero then the iterative pro-
cess is terminated. The global sum operation is carried
out by assuming a binary tree circuit, where bottom-up
additions are performed. For the hypercube and a 2" x 27
image, a many-to-one mapping of the binary tree with 22
nodes in the base onto the (2n)-dimensional hypercube is
assumed. All the processors in the hypercube form the
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base of the binary tree while parents on level s of the
binary tree are emulated by hypercube processors whose
(2n)-bit binary addresses have the lower 2s bits equal to
0. The global sum is then found in time proportional to 2n
or O(n) on any of the three systems (this time is normally
O(log N)) for the CRCW PRAM, where N, is the number
of nodes in the graph of level / and N, = 2”7 X 27), In fact,
the Connection Machine system CM-2 implements sev-
eral global reduction operations in time proportional to
the logarithm of the total number of processors in the
system. To summarize, Phase 2 of the algorithm takes
time O(n + r), O(n X r), and O(n + r) on the CRCW
PRAM, SIMD hypercube, and MIMD hypercube, re-
spectively.

As the number of iterations is Q(n — /) for a random
graph on level / (the number of iterations is O(log(num-
ber_of_vertices)) while the graph G[!] contains O(2"~)
vertices), the iterative process in Phases 2 and 3 that
selects the cells for the next level of the RAG pyramid
requires total time O((n — ) X (n +r)), O((n — 1) X n %
r),and O((n — 1) X (n + r)) for the CRCW PRAM, SIMD
hypercube, and MIMD hypercube, respectively. As the
expected number of iterations is O(1) when the input
graph is an image, the three time complexities are re-
duced to O(n + r), O(n X r), and O(n + r), respectively,
for images.

In Phase 4 the links between parents on level / + 1 and
their children on level [ must be established. Every unse-
lected cell chooses from its selected neighbors as parent
the one with the largest random value drawn in the last
iteration. Then it sends its address to its chosen parent,
who stores it locally. Phase 4 takes the same amount of
time as Phase 1 of the algorithm.

Phase 5 determines the set of edges E[/ + 1] for the
RAG of level [ + 1. By the condition imposed on the cell
selection process, two cells in G[/ + 1] can be neighbors
only if they were not more than three edges apart in G[/].
Since vertices in V[/ +1] now also represent regions cor-
responding to their children on level /, region adjacencies
denoted by their children should be combined to derive
region adjacency information for the new graph G[/ + 1].
This is the most time-consuming phase of the algorithm
because it may involve a very significant amount of com-
munication.

Phase 5 of the algorithm represents parallel graph con-
traction. Graph contraction is a sequence of edge con-
tractions where pairs of vertices are merged and the
edges between them are deleted [20]. The selective con-
traction in our algorithm is carried out only for edges that
connect parents to their children. The creation of E[/ + 1]
is carried out as follows. Every child gets the addresses
of its neighbors’ parents in time similar to that for Phase 1
of the algorithm. A one-bit flag that indicates the class of
the neighbor as similar or nonsimilar is appended to each
address. This class information is used later to decide
about the neighbors’ class on level { + 1. Cells selected
for level [ + 1 then get the latter addresses from their
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children. In our examples cells have 9—11 neighbors and
7-9 children (except for the topmost pair of levels which
may have much less). Thus, each selected cell may get
from 60 to 100 addresses.

The addresses that a parent gets from its children may
be repeated several times, since several of its children
may have links in G[!] with cells that now have a com-
mon parent. Therefore, the receiving processor must
compare the received addresses in order to discard any
repetitions. Similarly, the children could first compare
the parent addresses they receive from their neighbors in
order to discard any repetitions. Assuming that a linked
list structure is used to store the received addresses, the
binary search method can discard repetitions and also
sort the addresses is O(r X log r) time [1]. The next step
of the algorithm involves the children that send their
sorted list of parent addresses for their neighbors to their
parent. Since the number of addresses in a list is O(r),
this process takes time O(r), O(n X r), and O(n + r) for
the CRCW PRAM, SIMD hypercube, and MIMD hyper-
cube, respectively. Each parent will then merge the O(c)
sorted lists of O(r) addresses that it receives from its O(c)
children in order to discard more repetitions. Two sorted
lists can be merged in linear time and the received sorted
lists can be sorted in pairs using a binary tree of height
O(log ¢), so this process takes O(r X ¢ X log c) time as
the total number of elements to be merged on each level
of the binary tree is O(r X ¢). To conclude, Phase S of the
algorithm takes time O(r X logr + r X ¢ X logc), O(n X r
+rXxlogr+rxcxloge),andO(n+rxlogr+rXxc
X log c¢) on the CRCW PRAM, SIMD hypercube, and
MIMD hypercube, respectively.

Alternately, the following potential improvement could
be included in Phase 5 of the algorithm to reduce the
computation time. The merging of sorted lists using the
binary tree structure mentioned at the end of the last
paragraph could be speeded up by using the children for
the merging of intermediate lists. Therefore, a binary tree
of height O(log ¢) is mapped onto the O(c) processors
that represent the children and the parent. This improve-
ment increases the utilization of the processors in the
system. This process starts with half of the children send-
ing their sorted lists to the other half, then the receivers
sorting the received sorted lists in order to discard re-
peated addresses, half of them sending their new sorted
lists to the other half that merge their own list and the one
Just received, and so on. The final merging involves only
the parent. The parent can send to the senders the ad-
dresses of the destinations for all the communication cy-
clesin time O(c/2 + ¢/4 + ¢/8 + -+ + 1) or O(c), O(n X
¢}, and O(n + ¢) for the CRCW PRAM, SIMD hyper-
cube, and MIMD hypercube, respectively. The number
of levels in the binary tree is O(log c), a sender on level j
of the binary tree transmits O(2/ X r) values, a receiver
on level j + 1 spends time O(2/*! X r) to merge a pair of
sorted lists, 2.2/ = 22! — |, and 2!°¢c = ¢, therefore the
total time for Phase 5 is O((c X r/c) x log(c X r) + log¥(c
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Algorithm 11

TABLE I
The Performance for a Random Graph of the Algorithm That Creates RAG Pyramids
System Algorithm 1
CRCW PRAM O+ xXr+rxlogr+rxcxlogo

SIMD hypercube
MIMD hypercube

O xr+rxlogr+rxcxlogc)
O+ xr+rxlogr+rxc¢xlogc)

O+ n2xr+rxlogr
O Xr+nxXrxc)
O+ P Xr+nxlogic+rXxg)

X r)yorO(r xlogr), O(n X rxc),and O(n X log?c¢ + r
x ¢) for the CRCW PRAM, SIMD hypercube, and
MIMD hypercube, respectively.

The entire RAG pyramid building process is termi-
nated when the graph obtained in the last step is the
region adjacency graph of the original labeled image. For
this condition to be satisfied, all the neighbors of each cell
should belong to a different class from that of the refer-
enced cell. Every cell tests this condition individually in
Phase 6. It produces zero if none of its neighbors belong
to its own class, otherwise it produces one. These results
from all the selected cells are then added using the global
sum operation. The entire process is terminated if the
global sum is zero. This phase of the algorithm takes a
time similar to that for Phase 1.

The total number of levels in the hierarchy is O(n), as
for the regularly structured pyramid; therefore Phases 1
and 4-6 are performed O(n) times, while Phases 2-3 are
performed O(Zf-o(n — 1)) or O(n?) times. This process
creates the RAG pyramid of an image. For the subse-
quent labeling of the connected components, the ad-
dresses of the processors that represent cells at the high-
est level of the hierarchy are propagated in a top-down
fashion to the processors that represent the base. This
final phase of connected component labeling takes time
O(n x ¢), O(n? x ¢), and O(n* + n % ¢) on the CRCW
PRAM, SIMD hypercube, and MIMD hypercube, re-
spectively.

Tables I and II summarize the performance of the algo-
rithm that builds RAG pyramids for a random graph and
for an image array in the input, respectively. These are
also the times for labeling the connected components.
Algorithm Il incorporates the potential improvement sug-
gested for Phase 5. In general, the constants associated
with the time complexity for the MIMD hypercube are
larger than the constants for the CRCW PRAM. Also,
potential message collisions were ignored for the hyper-
cube. For practical cases, the times are O(n X r), O(n X

r X ¢), and O(r x ¢) for the CRCW PRAM, SIMD hyper-
cube, and MIMD hypercube, respectively.

The creation of a RAG pyramid on a hypercube may
not be very efficient because of its irregularity. A close to
optimal mapping of a RAG pyramid onto a hypercube,
where neighboring nodes from the RAG pyramid are
mapped to neighboring nodes of the hypercube, is very
difficult to obtain and may require dynamic reassignment
of cells. Neighboring nodes from the source graph may be
mapped to distant nodes in the target graph, and vice
versa. Therefore, communication times may be quite sig-
nificant. These aspects were taken into consideration for
the evaluation of the algorithm’s time complexity. How-
ever, advanced systems with wormhole routing capabili-
ties [19] can provide very good performance because,
ignoring congestion at intermediate nodes, the communi-
cation time is very similar for any source-destination
pair due to pipelining on the communication channels.
The worst-case performance on the new Connection Ma-
chine system CM-5 for communication operations be-
tween distant processors is only a factor of 4 worse than
best-case performance for neighboring processors. In
fact, often the time complexity for communication opera-
tions is found by counting the number of routing steps in
the parallel algorithm rather than the number of hops for
their implementation. The worst-case time complexity of
our algorithm for the SIMD and MIMD hypercubes then
becomes equal to that for the CRCW PRAM.

4. CONNECTION MACHINE IMPLEMENTATION

A Connection Machine system CM-2 [5, 7] with 16K
processors was used for the implementation of our algo-
rithm. The image size considered was 27 x 27 or 128 x
128 (i.e., a total of 16K pixels) in most of the cases. The
CM-2 contains the hypercube topology. To minimize the
time for the comparison of addresses with the purpose of

Algorithm 11

TABLE II
The Performance for an Image Array of the Algorithm That Creates RAG Pyramids
System Algorithm 1
CRCW PRAM O+ nxr+rxlogr+rxcxlogc

SIMD hypercube
MIMD hypercube

Om xr+rxlogr+rxcXlogec)
Omt+nxr+rxlogr+rxcXlogec)

Ont+nxr+rxlogr
O xXr+nxrXxXc
Ot +nxr+nxlogic+rxo
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removing duplicate ones during the creation of E[/ + 1], a
hashing of the addresses was first performed. Every pro-
cessor representing a cell selected for the new level
stores each address it receives from a child into one of
four local arrays. The appropriate array is selected for
each address based on a modulo 4 operation (i.e., the
address is divided by 4 and the remainder of the opera-
tion determines the array to be used). Then, duplicate
addresses are discarded in individual arrays. A procedure
applying binary search may become very time-consum-
ing, as multibit values must be compared and often be
exchanged, while the CM-2 contains one-bit processors.
Therefore, a one-bit variable is initialized to 0 for all ele-
ments in each array. The comparison is then done se-
quentially starting with the first element, and only ele-
ments for which the one-bit variable is equal to 0 are
involved. Elements are discarded by setting this variable
to 1. This way several unnecessary multibit comparisons
are avoided. At the end, only elements that contain 0 for
the one-bit variable are used to connect to neighbors and
therefore establish the edges in E[/ + 1].

Communication operations on the CM-2 are not car-
ried out efficiently due to hardware limitations. Router
nodes often create bottlenecks because they are shared
by 16 processors. In addition, the bandwidth of the chan-
nels is low, as they are only one bit wide and data trans-
fers must be synchronized to the low frequency clock due
to the SIMD mode of computation. Finally, ‘‘send’’ oper-
ations with multiple simultaneous receipts, which appear
very often in our algorithm, are not permitted; ‘‘get”
operations must be used instead. As each ‘‘get’’ opera-
tion is implemented as a pair of ‘‘send’’ operations, it
consumes significantly more time.

Before we present results for some synthetic images, it
is important to show the almost logarithmic increase in
the total execution time with the image size. For this
reason, uniform images where all the pixel values are 0
are considered. The sizes of these images are 27 x 2/, for
i =3,4,5 6,7 and 8. In five cases each processor
receives a single pixel. Only for i = 8 does each processor
receive four pixels. Since the stochastic nature of the
process that builds RAG pyramids does not necessarily
produce the same number of levels with the regular pyra-
mid, the algorithm sometimes was run several times until
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the number of levels produced was equal to n + 1 for the
2" x 2" image. Results are presented in Table 1I1. The
almost logarithmic increase in the total execution time is
illustrated by the fact that the ratio f of the total execution
time (i.e., Total in Table 111) divided by n, for the 27 x 2"
image, grows approximately linearly with the value of n.
While the value of fis constant in the ideal case, these
results show that the total execution time grows more
slowly than a X n?, where « is a constant. Therefore,
increases in the total execution time do not keep up with
increases in the image size (i.e., 2.

Several other timings, expressed in seconds, are also
shown in Table 111. T represents the time it takes to find
the addresses of neighbors on the new level { + 1 for the
creation of E[! + 1]. The following three timings are com-
ponents of T. T, represents the time it takes children on
level [ to get the addresses of their neighbors’ parents. T;
represents the time it takes cells on level I + 1 to get the
addresses of parents collected earlier from all of their
children. This is the most time-consuming process in the
algorithm as up to 100 addresses may be retrieved as
discussed earlier. Finally, T, represents the time it takes
cells on level I + 1 to discard duplicate addresses.

For the assignment of a single pixel from the image to
each processor, synthetic images of size 128 x 128 were
considered in the input. Seven images with rich features
that can test all the intricacies of the process that builds
irregular tesselations in a hierarchical fashion were con-
sidered. The results for these images are presented in
Table IV. The 7;’s, fori = 1, 2, and 3, are as for Table lII.
Image 1 contains four square objects with each object
occupying approximately 50% of one of the four quad-
rants in the image. Images II and 111 contain four and six
long objects, respectively. Images IV and V represent
checkerboards with 8 X 8 pixels/square and 16 X 16 pix-
els/square, respectively. Finally, images VI and VII con-
tain two white and three black bands, and one white and
two black bands, respectively (i.e., the connectedness
puzzle images of Minsky and Papert in [17]).

All of the results presented in this section show that the
most time-consuming step is the one corresponding to
parents getting addresses of neighbors’ parents from all
of their children (i.e., time T;). The large execution times
are attributed to the stochastic nature of the process that

TABLE III
Performance Results on the Connection Machine System CM-2 for Uniform Images,
as a Function of the Image Size

Image Size n Total T T, T, Tx f

8x8 3 8.7100 7.8169 0.1104 6.0137 1.6926 2.9033
16 X 16 4 12.3213 10.9785 0.2617 8.4222 2.2943 3.0803
2 x32 S 15.6794 13.9171 0.2091 10.6325 3.0752 3.1358
64 x 64 6 20.3631 17.6813 0.3586 13.6242 3.6982 3.3938
128 x 128 7 24.1082 19.4058 0.3218 15.0322 4.0514 3.4440
256 x 256 8 29.3601 24.4006 0.4231 18.9321 5.0194 3.6700
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TABLE 1V
Performance Results for Several Images of Size 128 x 128 on the
Connection Machine System CM-2

Image Total T T, T, Levels
I 36.7411 29.5114 0.4067 23.4824 5.6219 10
II 34.5278 27.6435 0.5099 21.5504 5.5827 10
4 32.6256 26.5781 0.4811 20.8030 5.2935 9
v 41.7637 33.6086 0.4690 26.1449 6.9942 11
\" 37.9642 30.9815 0.5255 23.9695 6.4859 12
V1 32.5569 25,9896 0.4714 20.0891 5.4286 9
vii 31.3258 25.4032 0.3988 19.6916 5.3123 10

Note. The conventional pyramid has eight levels.

results in random graphs and to the weak capabilities of
the CM-2 system, as justified earlier.

5. CONCLUSIONS

This paper introduced an algorithm for creating RAG
(region adjacency graph) pyramids on parallel computers
comprising the hypercube topology. In contrast to the
regular pyramid, RAG pyramids adapt their structure to
the content of the image. Nevertheless, the number of
levels in both structures is O (log(image_size)). RAG pyr-
amids are appropriate for feature extraction tasks where
homogeneous regions must be delineated. The implemen-
tation of our algorithm on the Connection Machine sys-
tem CM-2 was discussed and results were presented. The
results show that the creation of RAG pyramids for prac-
tical cases may become a time-consuming process when
compared to the creation of the regular pyramid, for a
system that cannot implement efficiently global commun-
ications. However, the creation of RAG pyramids facili-
tates subsequently the efficient and highly accurate ex-
traction of image features.
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