Skip to main content

Integrated ACMG-approved genes and ICD codes for the translational research and precision medicine

A timely understanding of the biological secrets of complex diseases will ultimately benefit millions of individuals by reducing the high risks for mortality and improving the quality of life with personalized diagnoses and treatments. Due to the advancements in sequencing technologies and reduced cost, genomics data are developing at an unmatched pace and levels to foster translational research and precision medicine. Over 10 million genomics datasets have been produced and publicly shared in 2022. Diverse and high-volume genomics and clinical data have the potential to broaden the scope of biological discoveries and insights by extracting, analyzing and interpreting the hidden information. However, the current and still unresolved challenges include the integration of genomic profiles of the patients with their medical records. The definition of disease in genomics medicine is simplified, whereas in the clinical world, diseases are classified, identified and adopted with their International Classification of Diseases (ICD) codes, which are maintained by the World Health Organization. Several biological databases have been produced, which include information about human genes and related diseases. However, still, there is no database that exists, which can precisely link clinical codes with relevant genes and variants to support genomic and clinical data integration for clinical and translational medicine. In this project, we focused on the development of an annotated gene–disease–code database, which is accessible through an online, cross-platform and user-friendly application, i.e. PROMIS-APP-SUITE-Gene-Disease-Code. However, our scope is limited to the integration of ICD-9 and ICD-10 codes with the list of genes approved by the American College of Medical Genetics and Genomics. The results include over 17 000 diseases and 4000 ICD codes, and over 11 000 gene–disease–code combinations.

Database URL: