Skip to main content

Brief Resume:

  • Ph.D. 2002, Brandeis University (Supervised by Professor Shing-Tung Yau)
  • Assistant Adjunct/Hedrick Assistant Professor, 2002-2005, UCLA
  • Assistant Professor (Tenure Track), 2005-2010, The Chinese University of Hong Kong
  • Assistant, Associate Professor, Professor 2010-present, Rutgers University at Newark
  • https://orcid.org/0000-0003-1935-1786

Research Interest:

  • Differential Geometry
  • Algebraic Geometry
  • Symplectic Geometry

Papers and Preprints:

Algebraic Geometry (Geometric Invariant Theory and Moduli)

Differential Geometry (Einstein metric, G2 Geometry and Isometric Embedding)

  • with Jian Song and Jacob Sturm, An analytic proof of stable reduction theorem, (2020), arXiv:2009.13596
  • with Jian Song and Jacob Sturm, Continuity of Weil-Petersson potential, (2020), arXiv:2008.11215
  • with Jian Song and Jacob Sturm, Riemannian geometry of K\”ahler-Einstein currents III: compactness of K\”ahler-Einstein manifolds of negative scalar curvature(2020),  arXiv:2003.04709
  • with Duong H. Phong, Jian Song and  Jacob Sturm, The Ricci flow on the sphere with marked points. J. Differential Geom. 114 (2020), no. 1, 117-170.
  • with  Ved Datar, Bin Guo and Jian Song,  Connecting toric manifolds by conical Kahler-Einstein metrics. Adv. Math.  323 (2018) 38-83, arXiv:1308.6781 
  • with Ke Zhu, Isometric embeddings via heat kernel. J. Differential Geom. 99, no. 3, (2015) 497-538, arXiv:1305.5613
  • with Naichung Conan Leung and Ke Zhu, Instantons in G_2 manifolds from J-holomorphic curves in coassociative submanifolds.. Proceedings of Gokova Geometry-Topology Conference 2012, 89-111, arXiv:1303.6728
  • with Jian Song, The greatest Ricci lower bound, conical Einstein metrics and the Chern number inequalityGeom. Topol. 20 (2016), no. 1, 49-102, arXiv:1207.4839
  •  with Naichung Conan Leung and Ke Zhu, Thin instantons in G2-manifolds and Seiberg-Witten invariants. J. Differential Geom. 95, no. 3, (2013) 419-483, arXiv:1107.1947 
  • Canonical metrics on stable vector bundles. Comm. Anal. Geom. 13, no. 2, (2005), 253-285

Symplectic Geometry(Moment Map and Symplectic Quotient)