Research
Interests
Machine learning applications to fundamental physics; physics beyond the Standard Model; dark matter; collider phenomenology; astroparticle physics
My research aims to answer longstanding questions which remain unanswered by the Standard Model. Questions such as what is the nature of dark matter? Why is gravity the weakest force? Why are there three generations of quarks and leptons?
In my work, I have approached these questions from a variety of angles, including model building and phenomenology. More recently, I have become interested in the power of modern machine learning to greatly enhance the search for new physics.
Below you will find my recent papers on machine learning for HEP and astronomy, organized into various topics.
Machine Learning Applications to HEP
-
-
Full Phase Space Resonant Anomaly Detection
Erik Buhmann, Cedric Ewen, Gregor Kasieczka, Vinicius Mikuni, Benjamin Nachman, David Shih
-
Combining Resonant and Tail-based Anomaly Detection
Gerrit Bickendorf, Manuel Drees, Gregor Kasieczka, Claudius Krause, David Shih
- Back To The Roots: Tree-Based Algorithms for Weakly Supervised Anomaly Detection
Thorben Finke, Marie Hein, Gregor Kasieczka, Michael Krämer, Alexander Mück, Parada Prangchaikul, Tobias Quadfasel, David Shih, Manuel Sommerhalder
-
The Interplay of Machine Learning–based Resonant Anomaly Detection Methods
Tobias Golling, Gregor Kasieczka, Claudius Krause, Radha Mastandrea, Benjamin Nachman, John Andrew Raine, Debajyoti Sengupta, David Shih, Manuel Sommerhalder
-
Resonant anomaly detection without background sculpting
Anna Hallin, Gregor Kasieczka, Tobias Quadfasel, David Shih, Manuel Sommerhalder
-
Anomaly Detection under Coordinate Transformations
Gregor Kasieczka, Radha Mastandrea, Vinicius Mikuni, Benjamin Nachman, Mariel Pettee, David Shih
-
Online-compatible Unsupervised Non-resonant Anomaly Detection
Vinicius Mikuni, Benjamin Nachman, David Shih
-
Classifying Anomalies THrough Outer Density Estimation (CATHODE)
Anna Hallin, Joshua Isaacson, Gregor Kasieczka, Claudius Krause, Benjamin Nachman, Tobias Quadfasel, Matthias Schlaffer, David Shih, Manuel Sommerhalder
-
Comparing Weak and Unsupervised Methods for Resonant Anomaly Detection
Jack H. Collins, Pablo Martín-Ramiro, Benjamin Nachman, David Shih
-
The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics
Gregor Kasieczka, Benjamin Nachman, David Shih (eds) et al
-
Anomaly Detection with Density Estimation
Benjamin Nachman, David Shih
-
Simulation Assisted Likelihood-free Anomaly Detection
Anders Andreassen, Benjamin Nachman, David Shih
-
-
-
EPiC-ly Fast Particle Cloud Generation with Flow-Matching and Diffusion
Erik Buhmann, Cedric Ewen, Darius A. Faroughy, Tobias Golling, Gregor Kasieczka, Matthew Leigh, Guillaume Quétant, John Andrew Raine, Debajyoti Sengupta, David Shih
-
SuperCalo: Calorimeter shower super-resolution
Ian Pang, John Andrew Raine, David Shih
-
How to Understand Limitations of Generative Networks
Ranit Das, Luigi Favaro, Theo Heimel, Claudius Krause, Tilman Plehn, David Shih
-
Matthew R. Buckley, Claudius Krause, Ian Pang, David Shih
-
L2LFlows: Generating High-Fidelity 3D Calorimeter Images
Sascha Diefenbacher, Engin Eren, Frank Gaede, Gregor Kasieczka, Claudius Krause, Imahn Shekhzadeh, David Shih
-
CaloFlow for CaloChallenge Dataset 1
Claudius Krause, Ian Pang, David Shih
-
CaloFlow II: Even Faster and Still Accurate Generation of Calorimeter Showers with Normalizing Flows
Claudius Krause, David Shih
-
CaloFlow: Fast and Accurate Generation of Calorimeter Showers with Normalizing Flows
Claudius Krause, David Shih
-
DCTRGAN: Improving the Precision of Generative Models with Reweighting
Sascha Diefenbacher, Engin Eren, Gregor Kasieczka, Anatolii Korol, Benjamin Nachman, David Shih
-
-
- ABCDisCo: Automating the ABCD Method with Machine LearningGregor Kasieczka, Benjamin Nachman, Matthew D. Schwartz, David Shih
- DisCo Fever: Robust Networks Through Distance CorrelationGregor Kasieczka, David Shih
-
-
Feature Selection with Distance Correlation
Ranit Das, Gregor Kasieczka, David Shih
-
Machine Learning for Astronomy
-
- Weakly-Supervised Anomaly Detection in the Milky WayMariel Pettee, Sowmya Thanvantri, Benjamin Nachman, David Shih, Matthew R. Buckley, Jack H. Collins
- Via Machinae 2.0: Full-Sky, Model-Agnostic Search for Stellar Streams in Gaia DR2David Shih, Matthew R. Buckley, Lina Necib
- Via Machinae: Searching for Stellar Streams using Unsupervised Machine LearningDavid Shih, Matthew R. Buckley, Lina Necib, John Tamanas
-
-
Mapping Dark Matter in the Milky Way using Normalizing Flows and Gaia DR3
Sung Hak Lim, Eric Putney, Matthew R. Buckley, David Shih
-
Measuring Galactic Dark Matter through Unsupervised Machine Learning
Matthew R Buckley, Sung Hak Lim, Eric Putney, David Shih
-
-
-
GalaxyFlow: Upsampling Hydrodynamical Simulations for Realistic Gaia Mock Catalogs
Sung Hak Lim, Kailash A. Raman, Matthew R. Buckley, David Shih
-
-
-
Fast Parameter Inference on Pulsar Timing Arrays with Normalizing Flows
David Shih, Marat Freytsis, Stephen R. Taylor, Jeff A. Dror, Nolan Smyth
-