Skip to main content

Research Interests

Automorphic Forms, Representation Theory, Trace Formula, L-Functions. My research is partially supported by NSF Award DMS-2000192 (later transfered to DMS-2103720). My CV is here (last update: 2021/11).



1. A local relative trace formula for the Ginzburg-Rallis model: the geometric side. Memoirs of the American Mathematical Society Volume 261, Number 1263. doi:10.1090/memo/1263

2. Multiplicity one theorem for the Ginzburg-Rallis Model: the tempered case. Trans. Amer. Math. Soc. 371 (2019), 7949-7994. doi:10.1090/tran/7690

3. The local Ginzburg-Rallis model over complex field. Pacific Journal of Mathematics 291-1 (2017), 241-256. doi:10.2140/pjm.2017.291.241

4. A local trace formula and the multiplicity one theorem for the Ginzburg-Rallis model. Ph.D. thesis, 2017.

5. A local trace formula for the generalized Shalika model, with Raphael Beuzart-Pleassis. Duke Mathematical Journal Volume 168, Number 7 (2019), 1303-1385. doi:10.1215/00127094-2018-0064

6. The local Ginzburg-Rallis model for generic representations. J. Number Theory 198 (2019), 74-123. doi:10.1016/j.jnt.2018.10.004

7. A G_2-period of a Fourier coefficient of an Eisenstein series on E_6, with Aaron Pollack and Michal Zydor. Israel Journal of Mathematics 234 (2019), 229-279. doi:10.1007/s11856-019-1919-x

8. The multiplicity problems for the unitary Ginzburg-Rallis models, with Lei Zhang, accepted by Israel Journal of Mathematics, 50 pages.

9. On the residue method for period integrals, with Aaron Pollack and Michal Zydor. Duke Mathematical Journal Volume 170, Number 7 (2021), 1457-1515. doi: 10.1215/00127094-2020-0078

10. On multiplicity formula for spherical varieties, accepted by Journal of the European Mathematical Society, 51 pages.

11. Periods of automorphic forms associated to strongly tempered spherical varieties, with Lei Zhang, submitted, 76 pages.

12. A multiplicity formula of K-types, submitted, 41 pages.

13. Multiplicities for strongly tempered spherical varieties, with Lei Zhang, submitted, 74 pages.


Invited Talks