Skip to main content

Research Interests

Automorphic Forms, Representation Theory, Trace Formula, L-Functions. My research is partially supported by NSF Award DMS-2000192 (later transfered to DMS-2103720). My CV is here (last update: 2021/11).



1. A local relative trace formula for the Ginzburg-Rallis model: the geometric side. Memoirs of the American Mathematical Society Volume 261, Number 1263. doi:10.1090/memo/1263

2. Multiplicity one theorem for the Ginzburg-Rallis Model: the tempered case. Trans. Amer. Math. Soc. 371 (2019), 7949-7994. doi:10.1090/tran/7690

3. The local Ginzburg-Rallis model over complex field. Pacific Journal of Mathematics 291-1 (2017), 241-256. doi:10.2140/pjm.2017.291.241

4. A local trace formula and the multiplicity one theorem for the Ginzburg-Rallis model. Ph.D. thesis, 2017.

5. A local trace formula for the generalized Shalika model, with Raphael Beuzart-Pleassis. Duke Mathematical Journal Volume 168, Number 7 (2019), 1303-1385. doi:10.1215/00127094-2018-0064

6. The local Ginzburg-Rallis model for generic representations. J. Number Theory 198 (2019), 74-123. doi:10.1016/j.jnt.2018.10.004

7. A G_2-period of a Fourier coefficient of an Eisenstein series on E_6, with Aaron Pollack and Michal Zydor. Israel Journal of Mathematics 234 (2019), 229-279. doi:10.1007/s11856-019-1919-x

8. The multiplicity problems for the unitary Ginzburg-Rallis models, with Lei Zhang. Israel Journal of Mathematics 2023, 50 pages.

9. On the residue method for period integrals, with Aaron Pollack and Michal Zydor. Duke Mathematical Journal Volume 170, Number 7 (2021), 1457-1515. doi: 10.1215/00127094-2020-0078

10. On a multiplicity formula for spherical varieties, Journal of the European Mathematical Society 24 (2022), no. 10, 3629–3678. DOI 10.4171/JEMS/1172

11. Periods of automorphic forms associated to strongly tempered spherical varieties, with Lei Zhang, accepted by Memoirs of the American Mathematical Society, 109 pages.

12. A multiplicity formula of K-types, submitted, 41 pages.

13. Multiplicities for strongly tempered spherical varieties, with Lei Zhang, submitted, 116 pages.

14. A Conjecture for Multiplicities of Strongly Tempered Spherical Varieties, with Lei Zhang, submitted, 17 pages.

15. BSV duality for some strongly tempered spherical varieties, with Zhengyu Mao and Lei Zhang, submitted, 21 pages.


Invited Talks